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Thermal Control for Crossbar-based
Input-Queued Switches

Andrea Bianco, Paolo Giaccone, Guido Masera, Marco Ricca
Dipartimento di Elettronica, Politecnico di Torino, Italy

Abstract—We consider an N×N input-queued switch based on
a crossbar switching fabric implemented on a single chip. The
thermal power produced by the crossbar chip grows as NR3,
where R is the maximum bit rate. Power dissipation is becoming
more and more challenging, limiting the crossbar scalability for
high performance switches.

We propose to exploit Dynamic Voltage and Frequency Scaling
(DVFS) techniques, quite commonly used in integrated circuit
design, to control packet transmissions through each crosspoint of
the switching fabric. Our thermal control operates independently
of the packet scheduler and it is based on short-term traffic mea-
surements. We propose a family of control algorithms to reduce
the thermal power dissipation in non-overloaded conditions.

Index Terms—Input queued switch, energy, thermal control.

I. INTRODUCTION

The aggregate bandwidth of high speed routers is growing
fast, due to the increased traffic demand in the Internet.
Usually, one or few switching fabrics are present in the core of
the routers to switch all the data from the inputs to the outputs;
each fabric is often implemented on a single integrated circuit.
The hardware design of such fabrics is becoming more and
more critical, because of the large pin count and the high bit
rate. Indeed, if f is the maximum digital signal frequency,
the power consumption of a single CMOS is proportional to
f3 [1]. In a N × N single-chip crossbar with N2 crosspoint,
each implemented through a combinatorial logic, we have
θ(N2) CMOSs (i.e., a fixed number for each crosspoint), and
the total power consumption becomes proportional to R3N ,
where R is the bit rate and N is the maximum number of data
simultaneously flowing across the switching fabric.

Thermal dissipation is becoming a critical design issue,
due to high integration level on a single chip, that implies
very high power spatial density [2]. In integrated circuits,
Dynamic Voltage and Frequency Scaling (DVFS) [1] is a
classical technique used to control the power consumption.
DVFS is based on the idea of jointly varying the power supply
voltage and the peak signal frequency. A vast literature on
DVFS techniques is available such as focusing on a single
CMOS, on a CMOS cascade, and on a complete CPU.

In this paper we propose to use DVFS for the thermal con-
trol of a single-chip crossbar, analyzing the tradeoff between
throughput (i.e., performance) and power consumption (i.e.,
thermal power to dissipate). The main idea is to exploit low
load traffic conditions to extend packet duration by reducing
bit voltage and frequency to control thermal power. Note that
networks are typically provisioned for worst-case or peak-
hour traffic. However, several measurements (see for exam-

ple [3]) show that backbone utilization rarely exceeds 30%,
thus suggesting that exploiting low traffic conditions can be
a significant asset to reduce thermal power. We propose a set
of algorithms for thermal control that operate on an estimated
traffic matrix to assess the potential power gain that can be
obtained exploiting DVFS. We take an idealized approach, i.e.,
we disregard the interaction with packet scheduling algorithms
that select the packets to be transferred across the switching
fabric. The system model is defined in Sec. II. Sec. III
formalizes the optimal thermal control problem, describes its
properties, and proposes a set of algorithms to solve it. Perfor-
mance results in Sec. IV show the possible thermal gain of our
approach. The main contributions of the paper: (i) definition of
the thermal control problem for the crossbar; (ii) definition of
the optimal algorithm and of simpler approximated algorithms;
(iii) performance evaluation of such algorithms.

II. PROBLEM DEFINITION

We start by considering a single CMOS on which the
combinatorial logic is based. Then, we examine the switching
architecture to define the crossbar thermal control problem.

A. Energy model for a single CMOS gate

The energy consumption of a CMOS gate is strongly
dependent on the supply voltage V and it can be modeled
as a sum of a dynamic energy component (due to electrical
signal switching activity needed to transfer sequence of 0s and
1s) and a static energy component (due to leakage currents).
We consider only the dynamic energy component, while we
neglect the latter contribution. Indeed, leakage currents can
be made negligible with a proper hardware design, whose
discussion is out of the scope of this paper. The energy due
to a bit transition (i.e., the switching activity) is a quadratic
function of V according to the well known formula Ebit =
0.5CV 2, where C is the load capacitance. If we consider a 0-1
square wave signal with frequency f , the power consumption
is P = Ebitf ∝ fV 2; this value represents also the thermal
energy to dissipate. The maximum allowed frequency is

fmax ∝ V (1)

due to the delay needed to switch from one logic state to
another [4]. Thereby, the power consumption for a CMOS
operating at maximum frequency and voltage is proportional
to f3. DVFS techniques jointly reduce V and f to minimize
power consumption, exploiting time periods in which the
signal can be “slowed down” to a lower peak frequency.
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Fig. 1. Thermal control scheme

We consider a CMOS device operating at a voltage V
between a minimum Vmin and maximum Vmax. Within this
range, we assume that bit transmission can occur at interme-
diate voltage levels. When operating at V < Vmax, thanks to
(1), the signal peak frequency can be slowed down by a factor
α = Vmax/V with respect to the maximum frequency allowed
when using Vmax. Thus, α represents an expansion factor of
the bit duration with respect to the bit duration when using
Vmax. Furthermore, V should be larger than Vmin > 0, because
of technological constraints that forbid to reduce too much the
voltage level and of the impact of leakage currents, that would
become not negligible anymore. Define β = Vmin/Vmax.
Depending on the technology, β = 0.5 for a classical DVFS
scheme or β = 0.3 in the case of an “extreme” DVFS scheme,
according to [1]. By construction, 1 ≤ α ≤ 1/β.

B. Switching architecture

We consider an N × N input queued (IQ) switch, with
virtual output queueing (VOQ), i.e. one queue VOQij for each
input i and output j pair. This IQ architecture allows high
scalability in terms of line rate and number of ports, and the
VOQ scheme is theoretically optimal from the performance
point of view. To avoid dealing with data content at this
abstract level, we assume that a data packet of length P is
transmitted using P signal transitions: i.e., each packet is
composed by a sequence of alternating 0 and 1. The maximum
line rate for each port is Rmax, measured in [bit/s]; this value
can be only reached for V = Vmax. The switching fabric is
a N × N crossbar, with N2 crosspoints and θ(N2) CMOSs.
The crosspoint from input i to output j is denoted as XPij .

III. CROSSBAR THERMAL CONTROL

In real switch implementation, a packet scheduler is respon-
sible of selecting the set of packets to transfer simultaneously
through the crossbar, satisfying the constraints that at most
one packet is sent from each input and to each output. The
scheduling decisions occur at a packet level, with a time
granularity equal to the minimum packet duration. In the case
of minimum Ethernet packet size and 10 Gbit/s line rates, a
new scheduling decision must be taken every 50 ns. Given
such a strict timing constraint, packet schedulers are imple-
mented directly in hardware. A large literature is available on
the design of low complexity and high performance packet
schedulers for input queued switches [5]–[7].

Differently from the packet scheduler, the thermal control
operates at a larger time scale, related to the milliseconds
thermal constants of the materials employed to build the chip.
As shown in Fig. 1, we propose a thermal control scheme
decoupled from the packet scheduling decision, whose aim is
to exploit DVFS at crosspoints to reduce the crossbar thermal
power. Based on traffic measurements on the millisecond scale,
the control sets the DVFS factor αij for the combinatorial
logic present at XPij ; each crosspoint is controlled indepen-
dently. Note that, due to the relaxed timing constraints, the
algorithm for thermal control can be implemented in software.

Let α̂ = [αij ] be the N × N matrix with all the DVFS
factors. Note that setting αij > 1 implies that the forwarding
rate at XPij is reduced and the packet transmission time is
increased by a factor αij . This has two main consequences:
i) an additional queueing delay in VOQij , ii) the packet
scheduler cannot serve any new packet from input i and to
output j until XPij ends the packet transmission. This means
that the packet scheduler should take into account thermal
control expansion factor in packet scheduling. We disregard
this issue in the paper, and we take an ideal fluid-based
approach, looking only at rates of I/O flows, to understand
which are the potential benefits that can be obtained in terms
of reduced power consumption.

A. Problem definition

The traffic load on each link is measured on a time window
which duration is in the order of thermal constants (ms). Let
rij be the average rate [bit/s] for the traffic flows enqueued
at VOQij , and R = [rij ] the corresponding N × N traffic
matrix. Let S = [sij ] be the normalized traffic matrix obtained
by setting sij = rij/Rmax, with sij ∈ [0, 1]. We assume that
sij > 0 for any i and j. The average load of matrix S is defined
as ρave(S) = (

∑N
i=1

∑N
j=1 sij)/N. The load at input i and

at output j is ρI
i (S) =

∑N
k=1 sik and ρO

j (S) =
∑N

k=1 skj

respectively. The maximum load of matrix S is defined as
ρmax(S) = max{maxk{ρI

k},maxk{ρO
k }}. and it is said to be

admissible iff ρmax(S) ≤ 1. Obviously, ρave(S) ≤ ρmax(S).
We now model the constraints related to the maximum time

expansion allowed for the transmitted bits. Consider a generic
time period T , for which a flow rate is equal to rij . The
total duration of the bit transmissions is T1 = rijT/rmax and
the maximum bit expansion factor is T/T1 = rmax/rij , i.e.
αijrij ≤ rmax. At the same time, we have stricter constraints
on the expansion factor imposed by the traffic load in T
on input and output traffic relations:

∑N
i=1 αikrik ≤ rmax,∑N

j=1 αkjrkj ≤ rmax, ∀k ∈ {1, . . . , N} which can be
normalized as

N∑
i=1

αiksik ≤ 1
N∑

j=1

αkjskj ≤ 1 (2)

The power consumption of XPij is

Pij = rij

(
Vmax

αij

)2

= sijrmax

(
Vmax

αij

)2
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neglecting all constants of proportionality. The total crossbar
power consumption is the sum of the power contributions of
all crosspoints:

Ptot =
N∑

i=1

N∑
j=1

Pij =
N∑

i=1

N∑
j=1

sij

α2
ij

rmaxV
2
max

Finally, the minimum thermal power problem (denoted as
OPT-MTP) becomes: given a admissible S, find α̂ that mini-
mizes the cost function fP :

min
α̂

fP (α̂) = min
αij∈R+

N∑
i=1

N∑
j=1

sij

α2
ij

(3)

such that
N∑

k=1

αiksik ≤ 1 ∀i (4)

N∑
k=1

αkjskj ≤ 1 ∀j (5)

αij ∈ A (6)

where A is the set of all available voltage levels.
Property 1: OPT-MTP is an integer convex non-linear op-

timization problem.
Following a standard methodology, we start to relax OPT-MTP
to continuous variables; this defines the following problem,
denoted as CONT-MTP: minimize (3) subject to (4) and (5);
(6) is substituted by αij ≥ 1 ∀i, j that corresponds to a
DVFS scheme in which any voltage between 0 and Vmax is
allowed. Let α̂OPT-MTP be the optimal solution of OPT-MTP.
Let α̂CONT-MTP be the optimal solution of CONT-MTP.

Property 2: fP (α̂CONT-MTP) ≤ fP (α̂OPT-MTP)
i.e. α̂CONT-MTP as a lower bound on the thermal power cost.

Theorem 1: CONT-MTP is equivalent to

min
α̂

fP (α̂)

N∑
k=1

αiksik = 1 ∀i (7)

N∑
k=1

αkjskj = 1 ∀j (8)

αij ≥ 1 ∀i, j (9)

The proof of Theorem 1 is omitted for the sake of space.
Note that exactly one of the constraints in (7)-(8) is linearly
dependent from the other, and it can be omitted.

A non-negative matrix H ∈ R
N×N is said to be ρ-double-

stochastic if ρI
i = ρ for any i and ρO

j = ρ for any j. In this
case, ρave(H) = ρmax(H) = ρ. A 1-double-stochastic matrix
is called double-stochastic matrix.

A non-negative matrix H ∈ R
N×N is said to be ρ-sub-

stochastic if ρmax(H) = ρ. In this case, ρave(H) ≤ ρmax(H).
Thanks to Theorem 1, CONT-MTP has the following ex-

planation: given a ρ-sub-stochastic matrix S, find a double-
stochastic matrix Ŝ = [ŝij ] such that the set of αij = ŝij/sij

minimizes (3). Hence, the problem consists of augmenting S
such that it becomes double-stochastic.

In the following specific case, we can analytically compute
the optimal solution:

Theorem 2: Given a ρ-double-stochastic matrix S, the op-
timal solution for CONT-MTP is α̂ij = 1/ρ, for any i, j. The
corresponding power consumption is fP (α̂CONT-MTP) = Nρ3.
The proof is based on the use of the Lagrange multipliers and
on the Taylor’s Theorem for multivariate functions, and it is
omitted here due to lack of space. Furthermore, we can get an
important intuition from the above Theorem, that will drive
the design of approximated algorithms for the CONT-MTP
problem: In the optimal solution, all the αij are expanded
proportionally by the same factor.

When considering also Vmin, the expansion ratio is lim-
ited by: αij ≤ 1/β. The optimal solution becomes αij =
min(1/ρmax(S), 1/β) ∀i, j and the corresponding optimal
solution for CONT-MTP becomes:

fP (α̂CONT-MTP) =

{
Nρmax(S)β2 if ρave(S) < β

N(ρmax(S))3 if ρave(S) ≥ β
(10)

According to (10), β is the value of “critical load” above
which DVFS is not able to expand the bit duration due to
the constraints imposed by the traffic load in (2). Recall that,
in practical applications, β ∈ [0.3, 0.5].

Now we consider a relaxed version of the CONT-MTP
problem, denoted as MISO-MTP, in which we remove the
expansion constraints (7) on each input.

Theorem 3: Optimal solution of MISO-MTP is given by
αij = 1/ρO

j (S). The related power cost is: fP (α̂MISO-MTP) =∑
j(ρ

O
j (S))3. The proof is omitted for absence of space and

it is based on the definition of Lagrange function.
Property 3: fP (α̂MISO-MTP) ≤ fP (α̂CONT-MTP)

i.e. MISO-MTP provides a lower bound, immediate to com-
pute, for CONT-MTP and OPT-MTP.

A feasible, but not optimal, solution for OPT-MTP is when
no DVFS scheme is adopted, i.e. αij = 1 for all i, j. We define
this scheme as NODVFS and the corresponding solution as
α̂NODVFS. The power cost fP becomes

fP (α̂NODVFS) =
N∑

i=1

N∑
j=1

sij = Nρave(S) (11)

denoting a linear relationship between the average load on S
and the total power consumption.

Property 4: fP (α̂OPT-MTP) ≤ fP (α̂NODVFS)
This permits to use fP (α̂NODVFS) as a loose upper bound on
the performance for OPT-MTP.

In summary, the solution to the CONT-MTP problem,
assuming that any voltage level between Vmin and Vmax can be
used, provides a lower bound for the thermal gain of the OPT-
MTP problem deals with a finite number of voltage levels;
the optimal solution to CONT-MTP is immediate only for ρ-
double stochastic matrices.
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B. Thermal control algorithm

To solve OPT-MTP for any matrix we propose to: i)
solve the corresponding CONT-MTP problem, ii) approximate
each αij to the smaller voltage value available in A. If
αij is the solution for CONT-MTP, then use for OPT-MTP:
α′

ij = max{α ∈ A | α ≤ αij}. Note that, by construction,
the set of α′

ij defines an admissible solution for OPT-MTP.
To solve CONT-MTP, we adopt two approaches:

• quasi-optimal algorithm (denoted as OPT), obtained by
adopting the logarithmic barrier method for convex prob-
lems [8]. It provides an ε-approximation of the optimal solu-
tion, where ε is an input parameter, with enough large number
of iterations. It converges quite slowly in our scenarios. Thus,
we adopt it as a reference case for the optimal solution only.
• two-steps algorithm: we augment S to a double stochastic

Ŝ according to three algorithms: AUGM-1, AUGM-MAX or
AUGM-SORT. Then, we compute αij = ŝij/sij .

The three algorithms to augment S to a double-stochastic
Ŝ are based on the MATRIX-INCREASE algorithm, described
in the pseudo-code below.

MATRIX-INCREASE Algorithm
Input: N × N matrix S = [sij ], {ρI

i }N
i=1, {ρO

j }N
j=1, ρT , ΩI , ΩO .

Output: N × N matrix Δ = [δij ]
1. δij = 0 for any 1 ≤ i, j ≤ N
2. ΩIO = {(i, j) : i ∈ ΩI , j ∈ ΩO}
3. repeat until no choice is anymore available
4. choose any (i, j) ∈ Ω such max{ρI

i , ρO
j } < ρT

5. δij = min{ρT − ρI
i , ρT − ρO

j }
6. ρI

i = ρI
i + δij , ρO

j = ρO
j + δij

The MATRIX-INCREASE algorithms inputs are i) a sub-
stochastic matrix S, whose corresponding row ρI

i and column
ρO

j sums are pre-computed; ii) a target load value ρT such
that ρT ≤ maxk{ρI

k} and ρT ≤ maxk{ρO
k }, and iii) a set of

inputs ΩI and a set of outputs ΩO. The algorithm returns a
matrix Δ = [δij ] with the largest possible elements such that:
(i) only the elements δij corresponding to rows and columns
present in both ΩI and ΩO may be > 0; (ii) the maximum
row and column sum is ρT , i.e.

N∑
k=1

sik + δik ≤ ρT for any i ∈ ΩI

N∑
k=1

skj + δkj ≤ ρT for any j ∈ ΩO

The algorithm operates only on a sub-matrix corresponding
to the rows in ΩI and the columns in ΩO. It chooses a
sequence of elements in such sub-matrix for which both row
and column sum to less than ρT . Then, each element in the
sub-matrix is augmented as much as possible to reach ρT .
Note that the maximum number of iterations in steps 3-6 is
upper bounded by 2N . Having defined INCREASE-MATRIX,
we describe the algorithms that we propose to augment S to
a double-stochastic Ŝ:

• AUGM-1: i) compute ρI
i and ρO

j for any i, j; ii) run
INCREASE-MATRIX on S, ρI

i , ρO
j , ρT = 1, ΩI = ΩO =

{1, . . . , N}; iii) compute ŝij = sij + δij . This algorithm
is a classical iterative algorithm (see Sec. II.A of [9]) to
augment a sub-stochastic matrix to a double-stochastic one.
The complexity is O(N2), due to steps i) and iii).
• AUGM-MAX: i) for any i, j compute ρI

i , ρO
j and then lastly

ρmax(S); ii) run INCREASE-MATRIX on S, ρI
i , ρO

j , ρT =
ρmax(S), ΩI = ΩO = {1, . . . , N}; iii) compute ŝij = sij +
δij + (1 − ρmax(S))/N . The complexity is O(N2), due to
steps i) and iv).
• AUGM-SORT: i) initialize Ŝ as S by setting ŝij = sij for

any i and j; ii) compute ρI
i and ρO

j for any i and j; iii) sort ρI
i

and ρO
j in increasing order; the induced sequence of inputs is

described by I(k) defined as the k-th input and by O(k) defined
as the k-th output; iv) let ΩI = ΩO = ∅. Iterate, for k from
1 to N , the following procedure: iv.a) ΩI = ΩI ∪ I(k), i.e.
compute the set of the k inputs with the smallest row sums;
iv.b) ΩO = ΩO ∪ O(k), i.e. compute the set of the k outputs
with the smallest column sums; iv.c) run INCREASE-MATRIX

on S, ρI
i , ρO

j , ΩI , ΩO and ρT = max{ρI(k) , ρO(k)}, i.e. ρT

is the maximum load for first k inputs and outputs of S; iv.d)
update ŝij = ŝij + δij for any i and j, and continue with
a new iteration; v) compute ŝij = ŝij + (1 − ρmax(S))/N .
The complexity is O(N2). In iv) this complexity is achieved
by optimizing the data structure to choose an (i, j) ∈ ΩIO in
INCREASE-MATRIX and by initializing only once δij .

AUGM-1 is a classical way to augment a matrix, but has the
disadvantage that it increases a selected element to set the sum
of the corresponding row or column equal to one. As such, a
non uniform increase in matrix element is obtained. AUGM-
MAX is a simple variant of AUGM-1 in which the matrix is
augmented to reach exactly ρmax for all rows and columns.
Then, all matrix element are proportionally augmented until
the matrix becomes double stochastic. This approach is based
on the intuition derived from Theorem 2. Unfortunately, if even
a single row or column sums to 1, AUGM-MAX degenerates
into AUGM-1. Finally, AUGM-SORT order rows and columns
in the original matrix so as to define a set of sub-matrices of
different size. Each k×k sub-matrix includes a sub-matrix of
size (k − 1)× (k − 1) of smaller load. Elements in each sub-
matrix are augmented to reach the maximum admissible value
in the sub-matrix, starting from the sub-matrix of smallest size.

IV. PERFORMANCE EVALUATION

To compare the DVFS schemes, we define the relative
power η(α̂) of a DVFS solution α̂, relative to NODVFS, as:

η(α̂) =
fP (α̂)

fP (α̂NODVFS)
=

fP (α̂)
Nρave(S)

(12)

Roughly speaking, η(α̂) is the thermal reduction factor com-
pared to NODVFS. Since η(α̂) ∈ [0, 1], the closer η(α̂) to
zero, the larger the scheme gain with respect to NODVFS.

A. Power consumption under ρ-double-stochastic matrices

According to Theorem 2, the optimal solution for CONT-
MTP is expressed by (10). Fig. 2 shows the power consump-
tion per port fP (α̂)/N vs. the average load for CONT-MTP
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Fig. 2. Optimal solution for continuous DVFS, ρ-double-stochastic matrices.

optimal solution and β ∈ {0.3, 0.5, 0.7}; NODVFS shows a
linear growing according to (11). For small loads, the DVFS
scheme is really efficient, and the power reduction can be
as high as 50%. For larger loads, the DVFS gain decreases,
becoming negligible in highly loaded conditions, because bit
expansion is not allowed due to the high traffic load.

In the case of a finite set of voltage levels, it can be shown
that with only 4 voltage levels, the thermal gain is very close
to the thermal gain that could be obtained with infinite voltage
levels, i.e., the practical solution is not far from the ideal one.

B. Power consumption under ρ-sub-stochastic matrices

For general traffic matrices, simple optimal solutions are not
available. We consider the family of uniform traffic matrices
generated as follows. Given ρmax(S) ∈ (0, 1], generate N2

random variables uij uniformly distributed on the interval
(0, 1]. Then, compute ρmax(U) and derive each element of
S as sij = ρmax(S)uij/ρmax(U). Using this construction, it
can be shown that the average load follows the law ρave(S) =
ρmax(S)/(1 + Θ(

√
log(N)/N )) for enough large N .

We compare the algorithms proposed in Sect. III-B for
CONT-MTP, we have observed that it is a good approximation
of OPT-MTP even when few voltage levels are available. The
solution to MISO-MTP is easily obtainable, but it provides
potential thermal gain that could not be reached in practice,
given that the constraints among different output are neglected.
The OPT algorithm is a tight bound but its computational
complexity is huge. We set β = 0.3 and we do not report
results for other values of β, being qualitatively similar.

To understand the algorithm scalability, we consider larger
switching fabric size. We do not report thermal gain result
for smaller size switching fabric being quite similar to those
observed. Due to its slow convergence, especially at higher
average load values, we do not present results for OPT in this
scenario. Results for the CONT-MTP problem are presented
in Fig. 3 that shown the relative power vs. the average load,
for N = 256. Note that the maximum average load in the
abscissa is limited due to the procedure to compute S. We have
observed that the thermal gain for higher load is negligible.

For ρave(S) increasing, η(α̂MISO-MTP) shows a quadratic
growth, as expected by combining (10) with (12). More
interestingly, η(α̂AUGM-SORT) and η(α̂AUGM-MAX) show a similar
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Fig. 3. Relative power vs. average load for N = 256 and continuous DVFS.

growth. As a consequence, the algorithms AUGM-SORT and
AUGM-MAX provide performance close to the lower bound
MISO-MTP. Regardless of the considered load η(α̂AUGM-1)
overlaps η(α̂NODVFS) to confirm the inability of AUGM-1 to
exploit the DVFS gain.

V. CONCLUSIONS

We discussed the potential thermal gains that DVFS tech-
niques can provide when controlling a crossbar used as a
switching fabric in an input-queued switch. We took an
idealized approach, disregarding the details related to packet
scheduling, looking at flow rates. Thus, DVFS schemes can
be efficiently used to reduce power consumption especially at
low average load regardless of the switch size. The proposed
algorithms are computationally simple and obtain performance
gain close to those of more complex, optimal algorithms.
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