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Abstract

Both the artificial compressibility method and the lattice Boltzmann method
yield the solutions of the incompressible Navier-Stokes equations in the limit
of the vanishing Mach number. The inclusion of the bulk viscosity is one of
the reasons for the success of the lattice Boltzmann method since it removes
quickly the acoustic mode, which inevitably appears as the compressible effect,
and contributes to the reinforcement of the stability. In the present paper, the
robustness of the artificial compressibility method is enhanced by introducing
a new dissipation term, which makes high cell-Reynolds number computation
possible. The increase of the stability is also confirmed in the linear stability
analysis; the magnitude of the eigenvalues for high wave numbers and low resolu-
tion are drastically reduced. Comparisons are made with the lattice Boltzmann
method. It is confirmed that the fortified ACM is more robust as well as more
accurate than the lattice Boltzmann method.

Key words: Incompressible Navier-Stokes Equations, Artificial
Compressibility Method, Acoustic Wave, Lattice Boltzmann

1. INTRODUCTION

The similarities between the lattice Boltzmann method (LBM) and the ar-
tificial compressibility method (ACM) [3] are sometimes mentioned in the lit-
erature. It is well-known that the Chapman-Enskog expansion of the LBM
updating rule derives the equation system that ACM is based on, i.e. the ar-
tificial compressibility equations (ACE), which consist of the same momentum
equation as that of the incompressible Navier-Stokes equations (INSE) and an
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artificial continuity equation with the pressure time derivative. ACE are also
revived by summing up the equation systems derived by the more systematic
expansion, i.e. the Hilbert expansion under the diffusive scaling. The lattice
kinetic scheme (LKS), which is a variant of LBM, also emphasizes the simi-
larity at the level of the computer programming despite the fact that LBM
deals with the distribution function of gas molecules and ACM deals with only
macroscopic variables. For a special value of the relaxation parameter in the
LBM updating rule, an updated value of the distribution function is given only
by that of the previous equilibrium function at a mesh point in the stencil,
i.e. f(t = n + 1, xi, ci) = fe(t = n, xi − ci, ci). Since the value of the equilib-
rium function fe is characterized only by those of the macroscopic variables, i.e.
fe(t, xi, ci) = f̃e(h(t, xi), ci), where h stands for the macroscopic variables, the
LKS updating rule is immediately recognized as a kind of purely macroscopic
finite difference scheme. Indeed, by taking the moments of the LKS updat-
ing rule, we have a variant of ACM. Incidentally, a compact LKS with tunable
viscosity is proposed on the basis of this recognition in Ref. [1].

The following points have been clarified by recent studies on LBM and ACM
(Refs. [1, 10, 7]):

i) The applicability of LBM using usual compact stencils, such as D2Q9 and
D3Q15, is validated only up to the Navier-Stokes level. The classic high
order stress beyond Navier-Stokes, i.e. Burnett, super Burnett, etc., re-
quires more discrete velocities.

ii) ACM is, in principle, tunable for Mach number even for the fixed resolution
with respect to space and time. This property enables a drastic error
reduction, i.e. the achievement of the fourth order accuracy in space and
the second order accuracy in time.

In the present paper, we take the item i) for granted and treat LBM employing
a usual compact stencil as one of INSE solvers. The item ii) does not mean the
superiority of ACM over LBM immediately, since the performance of numerical
methods is not evaluated only by the accuracy and the efficiency. It is said
that LBM, in particular MRT-LBM [5, 6], has sufficient robustness, which is
one of the reasons why LBM is successfully employed in various complex fluid
flow simulations. In Sec. 2, we shall propose a simple method for enhancing
the stability of ACM. The robustness of the fortified ACM will be examined
numerically in Sec. 3 together with the Galilean invariance and the isotropy,
which are also regarded as the important properties of fluid-dynamic solvers.
LBM and ACM yield the INSE solutions in the limit of the vanishing Mach
number and therefore the compressibility effect inevitably appears as the error.
The compressibility error is categorized into the two modes, the acoustic mode,
which is rapidly varying with respect to time, and the diffusive mode, which is
slowly varying with respect to time. One of the main superiority of MRT-LBM
over LBGK [8] lies in the capability of tuning the bulk viscosity. Owing to
the sufficient bulk viscosity, MRT-LBM is capable of killing the acoustic mode
quickly irrespective of the Reynolds number. The ACM proposed in Ref. [7]
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is equipped with a different artificial dissipation mechanism for the suppres-
sion of the acoustic mode. A comparison between these different dissipation
mechanisms will also be made in Sec. 3.

The drastic error reduction of ACM is brought by a Richardson extrapolation
in the Mach number; the leading error of the diffusive mode is eliminated by
taking a suitable linear combination of two ACM solutions for different values
of the Mach number under the same resolution [7]. In the conventional LBM
the Mach number is fixed for the fixed values of the mesh spacing and the time
step. By changing the equation of state, however, it is possible to redesign LBM
as the one with tunable Mach number [2, 11]. Sec. 4 is devoted to the discussion
on this issue.

2. THEORY OF ACM

2.1. Basic equations

Our target equation system is the time-dependent INSE:

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ uj

∂ui

∂xj
+

∂P

∂xi
= ν

∂2ui

∂x2
j

+ fi, (2)

where xi, t, ui, P and fi are dimensionless variables corresponding to the space
coordinates, time, the flow velocity, the (kinematic) pressure, and the external
force, respectively, and ν is the dimensionless kinematic viscosity, which is equal
to the inverse Reynolds number, i.e. ν = 1/Re. In the original ACM, the
solenoidal condition (1) is replaced by the artificial continuity equation:

k
∂P

∂t
+

∂ui

∂xi
= 0, (3)

where k is a positive constant and its value is usually chosen from the range
0.1 ≤ k ≤ 10. Equations (2) and (3) constitute ACE. In Ref. [7], the following
modified artificial continuity equation is proposed:

βǫ2
(∂P

∂t
+ γP

)

+
∂ui

∂xi
= 0, (4)

where γ is a positive function of t (it is treated as a constant in the present
paper for simplicity), ǫ is a positive and small constant, i.e. 0 < ǫ ≪ 1, and β
is a positive constant of the order of unity. The term γP is for the suppression
of the acoustic mode.
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2.2. Diffusive mode and acoustic mode

Consider a slowly varying solution of ACE (2) and (4), i.e. ∂αh = O(h)
(α = t, xi, h = ui, P ). We expand the solution into the power series of ǫ2:

h = hS0 + ǫ2hS1 + ǫ4hS2 + · · · . (5)

Substituting the solution in the above form into Eqs. (2) and (4) and equating
the terms of the same order of power of ǫ2, we get the PDE systems for the
coefficient functions hSm (m = 0, 1, 2, · · · ):

∂uiSm

∂xi
= −β

(∂PSm−1

∂t
+ γPSm−1

)

, (6)

∂uiSm

∂t
+

∑

0≤a≤m
0≤b≤m
a+b=m

ujSa
uiSb

∂xj
+

∂PSm

∂xi
= ν

∂2uiSm

∂x2
k

, (7)

where PSm−1 = 0 for m = 0. The equation system for m = 0 is INSE and
inhomogeneous Oseen-type equation systems follow from m = 1. There is only
one inhomogeneous term in the equation system for m = 1. It appears in Eq. (6)
and it is proportional to β, which implies that the leading error of the diffusive
mode is linear in β. Thus, we can, in principle, cancel the leading error of
O(ǫ2) by combining two ACE solutions for different values of β. However, the
above scenario does not take account of the acoustic mode, which inevitably
appears in the computation of ACE if casual initial data, such as those for
INSE, are employed. As previously mentioned, the term γP in Eq. (4) is to kill
the acoustic mode. In order to illustrate the role of this term, we consider the
linearized ACE for the acoustic scaling (t̃, q, wi) = (t/ǫ, P/ǫ, ui/ǫ2). We refer
the reader to Ref. [7] for the derivation of this scaling. The ACE linearized
around a uniform state at rest are given by

β
(∂q

∂t̃
+ γǫq

)

+
∂wj

∂xj
= 0, (8)

∂wi

∂t̃
+

∂q

∂xi
= ǫν

∂2wi

∂x2
j

(9)

where the external force is omitted for simplicity. From the above equation
system, we obtain the dissipative wave equation for P :

∂2q

∂t̃2
= (

1

β
+ ǫ2γν)

∂2q

∂x2
j

− ǫγ
∂q

∂t̃
+ ǫν

∂3q

∂x2
j∂t̃

. (10)

The term γP in Eq. (4) acts like a viscous damper and it works uniformly for
any wave number, while the dissipation due to the viscous term is proportional
to the wave number squared.
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2.3. Computation of ACM

In Ref. [7], the equation system (2) and (4) is cooked according to the fol-
lowing recipe.

i) As in the case of LBM, a structural mesh system with uniform mesh spacing
is employed. The small parameter ǫ is employed as the mesh spacing. The
time step ∆t is O(ǫ2).

ii) In the computation for obtaining the velocity and pressure fields at t = ∆t
from those at t = 0, a two-step semi-implicit time-marching method is
adopted. The flow velocity field at t = ∆t/2 is computed first by the
usual forward-Euler time-marching. Then, the pressure field at t = ∆t/2
is computed by using the backward-Euler time-marching; the divergence
of the velocity field at t = ∆t/2 is employed in the computation. The
second stage computes the velocity and pressure fields at t = ∆t by using
the mid-point formula of numerical integration.

iii) For the suppression of the checkerboard instability, the artificial continuity
equation employed in the second stage of the pressure update is modified
as

βǫ2
(∂P

∂t
+ γP

)

+
∂ui

∂xi
= βµǫ3

(∂2P

∂x2
j

+
∂uj

∂xi

∂ui

∂xj

)

, (11)

where µ is a positive constant of the order of unity.

iv) Each spatial derivative in the momentum equation is approximated by the
corresponding central finite difference formula with fourth order accuracy
(5 point formula). For each term on the right hand side of Eq. (11), the
corresponding three point central finite formula suffices. The divergence of
the flow velocity, which appears in the continuity equations (4) and (11),
is computed with fourth order accuracy by using a compact stencil. For
simplicity, let us consider the 2D case. Let p be one of the indices 1 and
2 and let q be the other index. The three point central finite difference
approximation of ∂up/∂xp (Einstein summation convention is not applied
to it) yields the leading error (ǫ2/6)∂3up∂x3

p. In the diffusive mode, the
divergence of the flow velocity is O(ǫ2), i.e. ∂u1/∂x1 + ∂u2/∂x2 = O(ǫ2).
Then, ∂3up/∂x3

p = −∂3up/∂x2
p∂xq +O(ǫ2). The mixed third order deriva-

tive can be computed with second order accuracy by using a 3× 3 point
stencil. Thus the divergence of the flow field is computed on a compact
stencil with fourth order accuracy in the case of the diffusive mode.

v) For high order accurate treatment of the Dirichlet-type boundary condition,
we refer the reader to Ref. [7], where the Numerov algorithm is locally
applied to the mesh points next to boundaries.

We show the explicit finite difference formulas in the 2D case below. For
ease of expression, we rewrite x1, x2, u1, u2, f1, and f2 as x, y, u, v, fx, and
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fy, respectively.

u
n+1/2
ij = un

ij+
∆t

2

(

−un
ijDxun

ij−vn
ijDyun

ij−DxPn
ij+ν[Dxx+Dyy]u

n
ij+Fn

ij

)

, (12)

v
n+1/2
ij = vn

ij+
∆t

2

(

−un
ijDxvn

ij−vn
ijDyv

n
ij−DyP

n
ij+ν[Dxx+Dyy]v

n
ij+Gn

ij

)

, (13)

P
n+1/2
ij =

(

Pn
ij −

∆t

2βǫ2
D(u

n+1/2
ij , v

n+1/2
ij )

)

/(1 +
γ∆t

2
), (14)

un+1
ij = un

ij + ∆t
(

− u
n+1/2
ij Dxu

n+1/2
ij − v

n+1/2
ij Dyu

n+1/2
ij

−DxP
n+1/2
ij +ν[Dxx + Dyy]u

n+1/2
ij + F

n+1/2
ij

)

,
(15)

vn+1
ij = vn

ij + ∆t
(

− u
n+1/2
ij Dxv

n+1/2
ij − v

n+1/2
ij Dyv

n+1/2
ij

−DyP
n+1/2
ij +ν[Dxx + Dyy]v

n+1/2
ij + G

n+1/2
ij

)

,
(16)

Pn+1
ij =Pn

ij + ∆t
(

− γP
n+1/2
ij − 1

βǫ2
D(u

n+1/2
ij , v

n+1/2
ij )

+ µǫ[(δxx + δyy)P
n+1/2
ij + 2(δxv

n+1/2
ij δyu

n+1/2
ij − δxu

n+1/2
ij δyv

n+1/2
ij )]

)

,

(17)

D(u
n+1/2
ij , v

n+1/2
ij ) = δxu

n+1/2
ij + δyv

n+1/2
ij +

ǫ2

6
(δxxδyv

n+1/2
ij + δxδyyu

n+1/2
ij ),

(18)
where hα

ij (h = u, v, P ) is h(α∆t, x(i), y(j)); x(i) = iǫ and y(j) = jǫ; Fα
ij =

fx(α∆t, x(i), y(j)) and Gα
ij = fy(α∆t, x(i), y(j)); δx, δxx, δy, and δyy are three

point central finite difference operators corresponding to ∂x, ∂xx, ∂y, and ∂yy,
respectively; Dx, Dxx, Dy, and Dyy are five point central finite difference oper-
ators corresponding to ∂x, ∂xx, ∂y, and ∂yy, respectively.

2.4. Fortification of ACM

We consider a method for enhancing the stability of ACM. We add a high
order dissipation term to the momentum equation:

∂ui

∂t
+ uj

∂ui

∂xj
+

∂P

∂xi
= ν

∂2ui

∂x2
j

+ fi − ǫ4
∑

l 6=m

slm
∂4ui

∂x2
l ∂x2

m

, (19)

where slm are constants of the order of unity. The term added to the momentum
equation is O(ǫ4) and the first two equation systems in the asymptotic analysis
of the diffusive mode are not altered by this modification. We investigate the
role of this term by carrying out the Von Neumann stability analysis using the
ACE linearized around a uniform state at rest:

βǫ2
(∂P

∂t
+ γP

)

+
(∂u

∂x
+

∂v

∂y

)

= 0, (20)
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(

βǫ2
(∂P

∂t
+ γP

)

+
(∂u

∂x
+

∂v

∂y

)

= βµǫ3(
∂2P

∂x2
+

∂2P

∂y2
)

)

, (21)

∂u

∂t
+

∂P

∂x
= ν

(∂2u

∂x2
+

∂2u

∂y2

)

− sǫ4
∂4u

∂x2∂y2
, (22)

∂v

∂t
+

∂P

∂y
= ν

(∂2v

∂x2
+

∂2v

∂y2

)

− sǫ4
∂4v

∂x2∂y2
, (23)

where s = s12 = s21. The finite difference scheme for the above linearized
equation system is made according to the recipe given in the previous subsection
[Eq. (21) is employed in the second step of the time integration for P . See the
recipe iii) in the previous subsection]. We assume the numerical solution in the
form





un
lm

vn
lm

Pn
lm



 = λn exp[ik̃(l + m)]





u0

v0

P 0



 , (24)

where i is the imaginary number unit (i =
√
−1) and k̃ is the normalized wave

number (k̃/ǫ is the wave number). We consider the (1, 1) direction in the (x, y)
plane as the direction of the travel of waves. The time step ∆t is assumed to
be O(ǫ2) and it will be expressed as ∆t = τǫ2. The eigenvalue λ depends on ν,
β, γ, µ, s, ǫ, τ , and k̃. The range of k̃ is 0 ≤ k̃ ≤ π since the resolution for one
wavelength requires at least two mesh points. In the case of the original ACM,
i.e. γ = µ = s = 0, we obtain the simple diffusive CFL condition ντ ≤ 3/16,
which is derived from the condition of the eigenvalue for the transverse mode
(shear without pressure variation). The conditions for the other two eigenvalues,
which correspond to the longitudinal mode, give the acoustic CFL condition,
which is τ < 1.211566β1/2 for ν = 0. Next we consider the general case of γ, ν,
and s. Let λa and λb be the eigenvalues for the longitudinal mode and let λc

be that for the transverse mode. The eigenvectors corresponding to λa and λb

are expressed as (Pa, 1, 1)T and (Pb, 1, 1)T , respectively, and that corresponding
to λc is given by (0,−1, 1)T , where Pa and Pb are complex valued functions
of (ν, β, γ, µ, s, ǫ, τ, k̃). In the limit of k̃ → π, we have |Pa| → ∞, Pb → 0,
and λb − λc → 0. That is, the eigenvector for λa becomes (1, 0, 0)T and that
for λb becomes (0, 1, 1)T . Then, we can choose (0, 1, 0)T and (0, 0, 1)T as the
normalized eigenvectors for the degenerate eigenvalue λb(= λc). In this limit,
the eigenvalue λa is given by

λa =
2− 16ǫµτ − ǫ2γτ

2 + ǫ2γτ
. (25)

We have λa = 1 for γ = µ = 0, which shows that the checkerboard instability
for the pressure is not suppressed. The terms multiplied by these two positive
constants contribute to the suppression of it; the term multiplied by γ is O(ǫ2)
and the one multiplied by µ is O(ǫ). The checkerboard instability can occur in
an actual nonlinear computation for µ = 0 (see Ref. [7]). The role of the term
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multiplied by s is as follows. The limiting value of λb(= λc) is expressed as the
sum

λb(= λc) = λb1 + λb2, (26)

where

λb1 = 1− 32ντ

3
+

512ν2τ2

9
, (27)

λb2 = 128ǫ4s2τ2 + 16ǫ2sτ(
32ντ

3
− 1). (28)

We notice 1/2 ≤ λb1 ≤ 1 for 0 ≤ ντ ≤ 3/16 (cf. the diffusive CFL condition
for γ = µ = s = 0). As ντ → 0 or ντ → 3/16, λb1 approaches to 1. Therefore,
for s = 0, λb(= λc) is nearly equal to unity around these limiting values of ντ ,
which is not preferable as in the case of λa. A positive value of s reduces the
value of λb for ντ < 3/32 and a negative value of s reduces it for 3/32 < ντ .
The magnitudes of the eigenvalues |λ| (λ = λa, λb, λc) vs. ǫ for (ν = 0.001,
β = 2, γ = µ = τ = 1) is shown in Fig. 1. It is seen that the magnitudes of λb

and λc are remarkably reduced by changing the value of s from 0 to 2.

2.5. Bulk viscosity

The usefulness of the inclusion of the bulk viscosity for ACM was pointed
out in Ref. [9] prior to the development of MRT-LBM [5]. In order to investigate
the role of the bulk viscosity in ACM, we consider the following ACE.

βǫ2
∂P

∂t
+

∂uj

∂xj
= 0, (29)

∂ui

∂t
+ uj

∂ui

∂xj
+

∂P

∂xi
= ν

∂2ui

∂x2
j

+ fi + χ
∂2uj

∂xi∂xj
. (30)

Although χ does not correspond to the (kinematic) bulk viscosity in general, we
simply call χ the bulk viscosity here. Incidentally, in the MRT-LBM for D2Q9
stencil [6], χ is given by (1/s2−1/2)/3. We consider the linearized ACE for the
acoustic scaling (t̃, q, wi) = (t/ǫ, P/ǫ, ui/ǫ2):

β
∂q

∂t̃
+

∂wj

∂xj
= 0, (31)

∂wi

∂t̃
+

∂q

∂xi
= ǫν

∂2wi

∂x2
j

+ ǫχ
∂2wj

∂xi∂xj
(32)

where the external force is omitted. From the above equation system, we obtain

∂2q

∂t̃2
=

1

β

∂2q

∂x2
k

+ ǫ(ν + χ)
∂3q

∂x2
k∂t̃

. (33)

We notice that both the viscosity and the bulk viscosity make the same contri-
bution to the suppression of the acoustic mode. The contribution of the bulk
viscosity to the diffusive mode appears as the leading error of O(ǫ2). In fact, by
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carrying out the similar asymptotic analysis for the diffusive mode of solution
of Eqs. (29) and (30), we have the equation system for the leading error:

∂uiS1

∂xi
= −β

∂PS0

∂t
, (34)

∂uiS1

∂t
+ ujS0

uiS1

∂xj
+ ujS1

uiS0

∂xj
+

∂PS1

∂xi
= ν

∂2uiS1

∂x2
k

+ χ
∂2ujS1

∂xi∂xj
. (35)

From Eq. (34) we notice

χ
∂3ujS1

∂xi∂xj
= −βχ

∂2PS0

∂xi∂t
, (36)

which shows that both of the two inhomogeneous terms in the above Oseen-
type equation system are proportional to β. Therefore, the leading error of the
diffusive mode can be eliminated in principle as before.

Finally, we mention the art of the approximation of the bulk viscosity term
χ(∂2uj/∂xi∂xj) in the numerical computation. For the cancellation of the
leading error of the diffusive mode, the accuracy of the approximation must
be at least fourth order. Although the use of the five point central difference
approximation of the second order derivatives, i.e. χ(Dxxun

ij + Dxyv
n
ij) and

χ(Dxyu
n
ij +Dyyv

n
ij), seems to be reasonable, however, it does not work well; the

fourth order convergence rate is not observed clearly in the numerical computa-
tion. This is considered to be due to the weak constraint on the linearity of the
bulk viscosity term in β at the numerical level. In order to enhance the con-
straint, we apply the three point central finite difference operators to D(un

ij , v
n
ij),

i.e. χδxD(un
ij , v

n
ij) and χδyD(un

ij , v
n
ij) [see Eq. (18)]. The employment of the

second order accurate finite difference operators δx and δy is legitimated by
the fact that the divergence of the flow velocity in the diffusive mode is O(ǫ2)
and the truncation errors of its first order derivatives are O(ǫ4). Incidentally,
the finite difference approximations of the divergence χ(Dxxun

ij + Dxyv
n
ij) and

χδxD(un
ij , v

n
ij) employ 5× 5 stencils.

The linear stability analysis of the ACM for Eqs. (29) and (30) can be done
in the same way as in the case of the fortified ACM for Eqs. (4) and (19). The
cure for the checkerboard instability is also implemented in the same way. The
structure of the eigenspace is similar to that of the previous case. We express
the three eigenvalues in the same way as before. In the limit of k̃ = π, λa is
given by

λa = 1− 8ǫµτ, (37)

which corresponds to Eq. (25) for γ = 0. As in the previous case, λb becomes
equal to λc in this limit. λb(= λc) is given by

λb = 1− 32ντ

3
+

512ν2τ2

9
, (38)

which corresponds to λb2 = 0 in the previous case. The bulk viscosity terms do
not contribute to the reduction of the eigenvalues for k̃ = π; they depend on
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χ in the case where the bulk viscosity terms in the momentum equations are
approximated as χ(Dxxu + Dxyv) and χ(Dxyu + Dyyv). This implies that the
effect of the bulk viscosity depends on the structure of numerical scheme. The
magnitudes of the eigenvalues |λ| (λ = λa, λb, λc) versus ǫ for χ = (1/s2−1/2)/3
with s2 = 1.63 (ν = 0.001, β = 2, µ = τ = 1) are shown in Fig. 2; s2 = 1.63 is
adopted here according to Ref. [6]. It should be remarked that the eigenvalue
of the transverse mode λc is independent of χ irrespective of the wave number.

3. ROBUSTNESS, GALILEAN INVARIANCE, AND ISOTROPY

As the test problems, we consider the generalized Taylor-Green problem and
the lid-driven cavity flow problem in two space dimension.

3.1. Generalized Taylor-Green problem

The problem of Taylor-Green vortices is widely employed as the test case of
various INSE solvers because of the availability of its simple analytical solution.
In Ref. [7] this problem is generalized by introducing a forcing in order to make
the solution periodic with respect to time as well. By adding the forcing

(

fx

fy

)

= (2k2ν cos t− sin t)

(

sin[k(x− u0t)] cos[k(y − v0t)]
− cos[k(x− u0t)] sin[k(y − v0t)]

)

, (39)

the following flow and pressure fields satisfy INSE.

u(x, y, t) = u0 + sin[k(x− u0t)] cos[k(y − v0t)] cos t,

v(x, y, t) = v0 − cos[k(x− u0t)] sin[k(y − v0t)] cos t,

P (x, y, t) =
1

4
{cos[2k(x− u0t)] + cos[2k(y − v0t)]} cos2 t,

(40)

where u0, v0, and k are constants. We study the case where the offset velocity
(u0, v0) is expressed as U(cos θ, sin θ). The initial data for the numerical com-
putation of ACM (and LBM) is given by Eq. (40) with t = 0 and the periodic
boundary condition is employed. Hereafter, the values of the parameters ν, γ,
µ, τ , s, and s2 will be ν = 0.001, γ = 1, µ = 1, τ = 1, s = 2, and s2 = 1.63,
respectively, and the result of ACM will mean the one produced by the Richard-
son extrapolation from the results of the fortified ACM on the basis of Eqs. (4)
and (19) for β = 2, 4 under the same resolution ǫ, unless otherwise stated. The
ACM for Eqs. (29) and (30) [χ = (1/s2 − 1/2)/3] will be called ACM-Bulk
and its results will be computed by the Richardson extrapolation from those for
β = 2, 4.

The time histories of L1 error Ẽ[h] (h = u, P ) of the ACM result in the
case of (k, U, θ, ǫ) = (1, 1, π/12, π/32) are shown in Fig. 3. For comparison, the
results of LBGK [8], MRT-LBM [6, 4], and ACM-Bulk are shown in the figure.
While LBGK exhibits the acoustic mode significantly even around t=100, the
quick suppression of the acoustic mode is confirmed for the other methods; while
χ = ν = 0.001 for LBGK, χ = 0.0378 (s2 = 1.63) for MRT-LBM and ACM-
Bulk. As mentioned previously, the viscous dissipation for the acoustic mode
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increases when the wave number increases. For k = 4, the acoustic mode is
suppressed sufficiently at t = 100 even in the case of LBGK. The convergence
rates for k = 4 are shown in Fig.4, where the results of ACM and ACM-Bulk are
shown together with those for LBGK and MRT-LBM. While LBGK and MRT-
LBM exhibit the second order convergence rate, both of the ACMs exhibit
nearly fourth order convergence rate. ACM-Bulk yields better results than the
fortified ACM with the additional dissipation term of O(ǫ4).

As the test of Galilean invariance, we carried out the computation for k = 1
and various values of U and θ. The L∞ errors of ACM at t = 100 for θ = π/12,
U = 0, 1 are shown in Fig. 5 and those for U = 1 and θ = 0, π/12, π/6, π/4 are
shown in Fig. 6. In these figures, the results of MRT-LBM are also shown for
comparison. While INSE is invariant under the Galilean transformation, ACE
is not. Thus the difference in the offset velocity (u0, v0) appears as that of the
error. The principal part of the error of ACM is eliminated by the Richardson
extrapolation and ACM yields better results than MRT-LBM.

Concerning the isotropy, we carried out the computations for (k, U, θ) =
(1, 1, 0) in the domain (0 ≤ X ≤ 2

√
2π) × (0 ≤ Y ≤ 2

√
2π), where X =

(x + y)/
√

2 and Y = (−x + y)/
√

2, using uniform mesh systems for X and
Y . The periodic boundary condition can still be employed in this case. The
computation for the XY coordinate system corresponds to 45 degree clockwise
rotation of the solution (40) around the origin. The results of ACM are shown
in Fig. 7 together with those of MRT-LBM. Although any special care is not
devoted to the isotropy in the case of ACM (the diagonal points in the stencil are
not employed in the approximation of the spatial derivatives in the momentum
equation), it yields better results than MRT-LBM. The present test is only for
45 degree rotation and is not sufficient. The tests for other angles are interesting
but they could not be done because of the unavailability of the periodic boundary
condition.

3.2. Lid-driven cavity flow

As the second test problem, we consider the standard lid-driven cavity flow
problem, i.e. the fluid motion in a square domain Ω = [0 ≤ x ≤ 1]× [0 ≤ y ≤ 1]
consisting of the top side (y = 1) with the imposed velocity (u = 1 and v = 0)
and the other three sides at rest. As the initial data, the impulse start from the
homogeneous state u = v = P = 0 was employed. Because of the discontinuities
with respect to space and time, the regularity of solution is obviously lost. The
computation of ACM and LBM were carried out for ν = 0.0002 under the
condition

√
βǫ = 0.3, which corresponds to the case where the Mach number

based on the speed of the moving wall is 0.3, and ∆t = 0.24ǫ. The relax of
the acoustic CFL condition is usually done for fast convergence to the steady
state. Consequently, the time step is proportional to the mesh spacing but τ is
inversely proportional to the mesh spacing, i.e. τ = 0.24/ǫ. According to the
diffusive CFL condition for γ = µ = s = 0, ντ ≤ 3/16, the stability region is
1/3906 . ǫ. Therefore this strategy should be legitimated if an effectively exact
solution is obtained before the breakdown of the computation; an accurate result
is obtained for ǫ = 1/256 (γ = 0, µ = 1, and s = 0) in Ref. [7]. The reason
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why we revisit the problem in this paper is to demonstrate the robustness of
the fortified ACM for low resolution regime, i.e. high cell-Reynolds number.

In the case of s = 0 (γ = 0 and µ = 1), the computation is unstable for
ǫ = 1/64 and it becomes stable up to the establishment of the steady state for
ǫ = 1/96. In the case of s = 2 (γ = 0, and µ = 1), the computation is stable
even for ǫ = 1/32; the cell-Reynolds number is 156.25. According to the linear
stability analysis (Sec. 2.4), the stability is enhanced by changing the value of s
from 0 to 2 (Fig. 1). The increase of the stability by the new artificial dissipation
term −s∂xx∂yyui is also confirmed in the present case (no figure); β and τ are
function of ǫ in the above strategy of fast convergence to the steady state. In
the case of ACM-Bulk, however, the increase of the stability is not confirmed;
it sometimes spoils the stability. On the other hand, the computation of MRT-
LBM (s2 = 1.63, χ ∼ 0.0378) is stable for ǫ = 1/96 but is not for ǫ = 1/64.
In the case of s2 = 1, i.e. χ ∼ 0.1667, the computation is stable for ǫ = 1/64
but it is not for ǫ = 1/32, which shows that the increase of the bulk viscosity
enhances the stability in the case of MRT-LBM. Incidentally, the computation
of LBGK (χ = 0.0002) is still unstable even for ǫ = 1/128.

4. EXTRAPOLATION IN THE MACH NUMBER FOR LBM

In the ACM, tuning the Mach number for the fixed resolution with respect
to space and time (and consequently combining different solutions) is the key to
achieve a drastic error reduction and to gain two orders of accuracy. Actually it
is possible to follow the same recipe in LBM by changing the equation of state
[2, 11]. The explanation of the theory will be for LBGK for simplicity but the
exhibition of the numerical results will be for MRT-LBM. The dimensionless
form of the discrete velocity model of the simplified BGK equation is written as

∂F

∂t̂
+ Vi

∂F

∂x̂i
= λ (Fe − F ) , (41)

where Vi is the dimensionless molecular velocity on the lattice, i.e. Vi belongs
to a set of Q permitted velocities, F and Fe are lists with Q elements and
their elements are functions of t̂ and x̂i. In the above dimensionless equation,
the time, space coordinate, and molecular velocity are nondimensionalized as
described for the original physical model. Moreover λ, which will be employed
as a tuning parameter of LBM, is regarded as a constant of the order of unity.
In D2Q9 model, the molecular velocity Vi has the following 9 values:

V1 =
[

0 1 0 −1 0 1 −1 −1 1
]T

, (42)

V2 =
[

0 0 1 0 −1 1 1 −1 −1
]T

. (43)

Consequently the components of the molecular velocity V1, V2, the discrete
distribution function F and the discrete equilibrium distribution Fe are all lists
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with 9 elements. Unlike what is usually done, we define the equilibrium Fe by

Fe =





























(9− 5ϕ)/9 ρ̂− 2/3 û2
1 − 2/3 û2

2,
ϕ/9 ρ̂ + 1/3 û1 + 1/3 û2

1 − 1/6 û2
2,

ϕ/9 ρ̂ + 1/3 û2 + 1/3 û2
2 − 1/6 û2

1,
ϕ/9 ρ̂− 1/3 û1 + 1/3 û2

1 − 1/6 û2
2,

ϕ/9 ρ̂− 1/3 û2 + 1/3 û2
2 − 1/6 û2

1,
ϕ/36 ρ̂ + 1/12 (û1 + û2) + 1/8 (û1 + û2)

2 − 1/24 (û2
1 + û2

2),
ϕ/36 ρ̂− 1/12 (û1 − û2) + 1/8 (−û1 + û2)

2 − 1/24 (û2
1 + û2

2),
ϕ/36 ρ̂− 1/12 (û1 + û2) + 1/8 (−û1 − û2)

2 − 1/24 (û2
1 + û2

2),
ϕ/36 ρ̂ + 1/12 (û1 − û2) + 1/8 (û1 − û2)

2 − 1/24 (û2
1 + û2

2)





























, (44)

where p̂ = ϕρ̂/3 and ϕ is a tunable parameter (for stability reasons ϕ ≤ 1). ρ̂,
û1 and û2 are obtained as the moments of F :

ρ̂ = 〈F 〉, ûi = 〈ViF 〉. (45)

In case ϕ = 1, the usual equilibrium is recovered. Recalling the discussion
reported in Ref. [6], the previous equilibrium corresponds to set c1 = −2, α2 =
8ϕ−16, α3 = −12ϕ+16, γ1 = 2/3, γ2 = 18, γ3 = 2/3 and γ4 = 18. The previous
choice corresponds to the optimal stability strategy suggested in Ref. [6] and
found by means of linear stability analysis, with the exception of parameter α2,
which was suggested to be α2 = −8. The optimal value is recovered in case
ϕ = 1, but it cannot be fixed in general, if one wants to generalize the equation
of state as in the present case.

LBM computation is nothing more than the forward Euler time integration
formula of Eq. (41) with the time step of the unity:

F (t̂ + 1, x̂i, Vi) = F (t̂, x̂i − Vi, Vi) + λG(t̂, x̂i − Vi, Vi), (46)

where
G = Fe − F. (47)

Recall that the unit of space coordinate and that of time variable in Eq. (46) are
the mean free path lc(= cTc) and the mean collision time Tc, respectively. They
are not appropriate as the characteristic scales for flow field in the continuum
limit. Introducing a proper scaling in Eq.(46), i.e. assuming t̂ = t/ǫ2 and
x̂i = xi/ǫ, yields

F (t + ǫ2, xi, Vi) = F (t, xi − Viǫ, Vi) + λG(t, xi − Viǫ, Vi). (48)

We express F (t + ǫ2, xi, Vi), F (t, xi − Viǫ, Vi), and G(t, xi − Viǫ, Vi) as their
Taylor expansions around (t, xi). Next we assume F in the form

F = F ∗ + ǫF (1) + ǫ2F (2) + · · · , (49)

and ρ̂ and ûi are also expanded:

ρ̂ = 1 + ǫρ(1) + ǫ2ρ(2) + · · · , (50)
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ûi = ǫu
(1)
i + ǫ2u

(2)
i + · · · , (51)

Corresponding to the expansion, Fe is expressed in the form:

Fe = F ∗ + ǫF (1)
e + ǫ2F (2)

e + · · · , (52)

G = ǫG(1) + ǫ2G(2) + · · · , (53)

where
G(k) = F (k)

e − F (k). (54)

Substituting the above expansions into Eq. (48) and equating the terms of the
same order of power of ǫ, we derive the expressions for the distribution function
coefficients F (k) (k = 1, 2, · · · ). From the orthogonality conditions 〈G(m)〉 = 0

and 〈VkG(m)〉 = 0, we have the PDE systems for p(m) = ϕρ(m)/3 and u
(m)
i .

It is possible to prove that the leading pressure field is uniform, i.e. p(1) =
p(1)(t), and in various situations, such as the problem in a closed domain, where
the total mass in the domain is constant, we can naturally assume p(1) = 0.

The coefficients p(2) and u
(1)
i satisfy the incompressible Navier-Stokes system

of equations. The coefficients p(3) and u
(2)
i constitute the homogeneous Oseen

system and its solution from homogeneous initial data and boundary condition
is zero. Hence the leading errors of the numerical scheme are ruled by the

coefficients p(4) and u
(3)
i , namely

β
∂p(2)

∂t
+

∂u
(3)
i

∂xi
= 0, (55)

∂u
(3)
i

∂t
+

∂

∂xj
(u

(1)
i u

(3)
j +u

(3)
i u

(1)
j )+

∂p(4)

∂xi
=

ω1

3

∂2u
(3)
i

∂x2
k

+ω1

(

1− 2

3
β

)

∂2p(2)

∂xi∂t
+I3,

(56)
where β = 3/ϕ and the inhomogeneous term I3 consists of the lower moments
and its derivatives (see Appendix B of Ref. [1] for the exact expression of I3).
Clearly looking at the last driving forces in Eq. (56), it is possible to distinguish
two contributions, both driven by the solution of the incompressible Navier-
Stokes: the first is independent of β, while the second is linearly dependent on
β. Hence it is possible to define also for LBM a Richardson extrapolation in the
Mach number. Essentially an improved solution of LBM, getting rid of the error
part linearly depending on β, is obtained as a suitable linear combination of two
solutions for different β(ϕ) under the same resolution, although no improvement
in the order of accuracy of the method is expected.

The MRT-LBM computations of the generalized Taylor-Green problem of
(k, U, θ) = (1, 1, π/12) were carried out for ϕ = 1 and ϕ = 1/2, which correspond
to β = 3 and β = 6, respectively. The results are shown in Fig. 8 together with
the results of the fortified ACM (Richardson extrapolation for β = 3, 6, s = 2).
By the Richardson extrapolation, the error of LBM is considerably reduced,
although the convergence rate is still second order as predicted theoretically.
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5. Concluding Remarks

LBM can be regarded as a sort of microscopic ACM in the sense that it
deals with the distribution function of gas molecules and its asymptotic expan-
sion derives ACE. While the classic ACM can achieve high order accuracy by
the Richardson extrapolation technique, the truncation error and the intrinsic
high order (fake on usual compact stencils) stress prevent the complete removal
of the leading error of the diffusive mode of the microscopic ACM. By careful
tune on the basis of the linear stability analysis, MRT-LBM acquires the fine
properties for the Galilean invariance and the isotropy. In the present study, the
linear stability analysis was employed only for the confirmation of the robust-
ness of ACM and any special care was not devoted to the improvement of the
Galilean invariance and the isotropy. Fortunately, the Richardson extrapolation
compensates for the lack of the effort and it enables ACM to yield better results
than that of LBM at least in the generalized Taylor-Green problem. The fourth
order accuracy isn space (the second order accuracy in time) is also confirmed
in the ACM computation with the bulk viscosity. However, the bulk viscosity
spoils the stability in some cases of lid-driven cavity flow problem, which is
in contrast to the case of MRT-LBM. Since the classic ACM deals with only
macroscopic variables, its improvement seems to be more feasible than that of
LBM. ACM was developed about 40 years ago. The present study shows that
ACM is still worth while being in the limelight.
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Figure 1: The magnitude of the eigenvalues for ACM versus ǫ. (a) s = 0 and (b) s = 2. The
other parameters are ν = 0.001, β = 2, γ = 1, µ = 1, and τ = 1 and they are common for (a)
and (b). The solid line, the dashed line, and the dash dotted line indicate |λa|, |λb|, and |λc|,
respectively.
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Figure 2: The magnitudes of the eigenvalues for ACM-Bulk versus ǫ; ν = 0.001, β = 2, µ = 1,
τ = 1, and χ = (1/s2 − 1/2)/3 (s2 = 1.63). The solid line, the dashed line, and the dash
dotted line indicate |λa|, |λb|, and |λc|, respectively.
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Figure 3: The time history of L1 errors Ẽ[h] (h = u, P ) in the generalized Taylor-Green
problem (ν, k, U, θ, ǫ) = (0.001, 1, 1, π/12, π/32).
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largest mesh spacing ǫ = π/16 because of the breakdown of the computation.
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Figure 8: The L∞ error E[h] (h = u, P ) versus ǫ at t = 100 in the generalized Taylor-Green
problem for (ν, k, U, θ) = (0.001, 1, 1, 0). The results of the fortified ACM (s = 2) and MRT-
LBM with tunable Mach number (s2 = 1.63) are plotted in the figure. The symbols △ and �

indicate the results of MRT-LBM for ϕ = 1 and ϕ = 1/2, respectively. The symbol ◦ indicates
the result obtained by the Richardson extrapolation from the MRT-LBM results for ϕ = 1, 2.
The symbol × indicates the result obtained by the Richardson extrapolation from the results
of the fortified ACM (s = 2) for β = 3, 6. The results of MRT-LBM are missing for the largest
mesh spacing ǫ = π/16 because of the breakdown of the computation.
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