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Abstract – Rolling bearing is probably the most widely used component in rotating mechanical equipments
and its condition monitoring and fault diagnosis to prevent the occurrence of breakdown is growing in
interest since many years. Vibration signal based methods are the most popular and have been adopted
in many kinds of condition monitoring systems. Starting in the early 60, an immense range of different
methods has been proposed on this basis, to perform diagnosis, fault identification and classification of
bearing faults. Among the others, one typical approach consists in deep analysis of the most informative
frequency range output of the system under test; the identification of this band is not straightforward
because the fundamental task consists in finding out the band which is the most informative in contents
which, in turn, might not be corresponding to that one of the maximum response, as claimed by some
authors. In this paper, Spectral Kurtosis and Support Vector Machine are analysed and compared and
it is shown that they typically reach similar results, in spite of their totally different approach. A brief
description of both methods is given and laboratory data are analysed from a lab rig which uses spare parts
of a full size power transmission gearbox, designed by AVIO. By taking advantage of these comparisons,
the analyses are conducted using classical indicators applied to the specific bands suggested by previous
analysis such as the RMS and other statistical quantities. Multi dimensional graphs are reported to show
the reliability of the obtained results.

Key words: Spectral Kurtosis (SK) / Support Vector Machine (SVM) / bearing diagnostics / frequency
selection

1 Introduction

Since rotating machinery is widely used in various in-
dustrial, military, and commercial processes, fault diag-
nosis and failure prognosis have gained significant atten-
tion in the past few years. It is well known that bearings
are the best location for measuring machinery vibrations
since this is where the basic dynamic loads and forces
of machines are applied and they are a critical compo-
nent of machinery. This means that condition monitoring
and fault diagnosis of bearings can represent properly the
condition of machine and their failures often result in a
critical damage, downtime, and costly repair. Therefore,
a proper fault diagnosis and failure prognosis providing a
condition based maintenance strategy to either machin-
ery or components is very important to the safety of the
system and results in substantial economic benefits.

a Corresponding author: luigi.garibaldi@polito.it

Vibration based condition maintenance is widely ac-
cepted as an appropriate strategy in many industrial situ-
ations as the best way to minimise maintenance costs and
avoid unscheduled production interruptions. So far, for in-
stance, an important class of bearing fault detection and
diagnosis techniques relies on bearing defect frequencies.
Typically, the diagnosis approaches are driven in a spe-
cific range of frequencies, say the most informative one,
where the system response shows higher levels.

In [1] Antoni et al. presented the Spectral Kurtosis
(SK) as a powerful analysis tool of non-stationary signals,
after demonstrating in [2] its high potential in detecting
and characterising non-stationary signals. According to
the authors, the SK provides a robust way of detecting
incipient faults even in presence of strong masking noise
and allows to design optimal filters for cancelling the me-
chanical signature of faults. In the same context, the kur-
togram concept is presented as a useful tool to seek for
the optimal band-pass filter for the envelope analysis.
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On the other side, Widodo et al. describe in [3] a sur-
vey of machine condition monitoring and fault diagnosis
using support vector machine (SVM), in particular for the
diagnosis of rolling element bearings. Among various au-
thors using SVM to detect faults, Jack and Nandi [4] rely
on both SVM and artificial neural network (ANN). They
analyse vibration data from a lab test rig and simulate
the bearing condition with four different faults. Statisti-
cal features based on moments and cumulants are defined
and calculated and the optimal features are selected us-
ing a genetic algorithm (GA) while the classification is
led with SVM using Radial Basis Function (RBF) kernel
with constant kernel parameter. Samanta et al. [5] apply
GA for feature selection too and to search proper RBF
kernel parameters in a procedure for diagnosis of bear-
ing condition using the two classifiers ANN and SVM.
On the whole, the performance of SVM have been found
to be substantially comparable or better than ANN with
the entire feature set. Rojas and Nandi [6] propose in
their paper a mechanism for selecting adequate training
parameters in order to make the classification procedure
fast and effective. In general, many authors present SVM
as a way to select features and to detect damages in rolling
elements; in spite of this, the SVM is not exploited as a
method to choose the best informative frequency band,
as in the case of this paper.

Here, SK and SVM are shortly described and adopted
to choose the best informative frequency band. Whilst the
Spectral Kurtosis has been fully analysed and adopted
to treat experimented data [2] up to the diagnosis, in
this case we just compare the kurtogram concept and the
SVM approach to detect the best range of interest on the
basis of experimental data from damaged and undamaged
bearings.

2 Spectral Kurtosis method

The Spectral Kurtosis (SK) is a statistical tool useful
to detect the presence of series of transients and their lo-
cation in the frequency domain. Up to now, it has rarely
been used as mean of detecting problems related to vi-
brating and rotating machines, but we want to show that
it can be efficiently used for their surveillance and di-
agnosis, as proposed in [1]. The general idea is that the
presence of faults in rotating elements (such as rolling
bearings) generates series of impacts producing transient
vibration signals. Unluckily, these signals are often seri-
ously corrupted by strong levels of background noise, so
that this problem can be formulated as the detection of
transient signals, called X(t), in strong additive noise,
called N(t). The measured signal is hence in the form
Y (t) = X(t) + N(t) and a model able to describe incipi-
ent faults in rolling bearings is the generalised shot noise
process, as seen in [1].

A possible way to analyse the characterisation of in-
cipient faults is then to consider statistical indicators sen-
sitive to the peakiness of the signal. The Kurtosis is a
feasible one, thanks to the high values achieved in pres-
ence of the fault signal X(t) and the ideal zero value it

takes in case of background noise N(t). In order to avoid
the masking of the signal by the strong vibrations pro-
duced from several competing sources which span a large
frequency range, the Kurtosis could be locally applied in
different frequency bands. That is the case of Spectral
Kurtosis presented by Antoni in [2].

Furthermore, in [1] the author proposes a SK estima-
tor based on the short-time Fourier transform (STFT)
using an analysis window w(n) with duration Nw shorter
than the mean between two consecutive impulses. So, the
SK of a vibration signal Y (t) with sampling frequency fs

and fault rate of occurrence fd becomes approximately

KY (f) ≈
(

fs

fd

γ4w

Nw
(κX + 3) − 2

)
1

[1 + ρ(f)]2

where γ4w is the time–bandwidth product of the square
of the analysis window, κX is the intensity of the fluctu-
ations in the impulse amplitudes and ρ(f) is the noise-
to-signal ratio. It is clear that it increases if the window
length Nw of the STFT decreases and this fact suggests
that a shorter Nw should be preferred.

It is now necessary to create some robust detection
filter with an imposed band-pass structure which needs
only two parameters to be identified, namely the central
frequency fc and the bandwidth Δf , or equally the fre-
quency f and the window length. The name “kurtogram”
is so coined to indicate the SK map formed as function of
f and Nw and its maximum value gives the optimal cen-
tral frequency and bandwidth of the band-pass filter. A
further simplification is proposed in [7] and is named fast
kurtogram. It involves the computation of the Kurtosis of
coefficients at the output of filter-banks of quasi-analytic
filters with central frequency f and bandwidth Δf . On
the whole, the fast kurtogram gives a strict method to
find automatically the best frequency band able to filter
the signal. Moreover, it detects in which frequency band
transients take place and it returns the complex envelope
for each selected band. Once some transients have been
identified by the kurtogram, it is possible to compute the
PSD of the filtered signal in order to find out spectral
lines related to defect frequencies.

3 Support vector machine method

Support vector machine (SVM) is a computational
learning method developed by Vapnik in the 80s and
based on the statistical learning theory, rather suitable
in case of classification and regression of a large set of
data [8]. The first one is a common need in machine learn-
ing: given some data points which belong to a certain
class, the purpose is to understand which class a new data
point would be in. An input data x in an n-dimensional
space is given and it is made up of a number M of sam-
ples, each of these belonging to a class, namely a positive
or a negative one. The SVM constructs a hyperplane that
should separate the two classes and hence it tries to place
a boundary between them. Moreover, this boundary has
to be oriented such that its distance from the nearest data
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Fig. 1. Signal analysed: acceleration from a test rig with 1.4×103 N radial load on the bearing and 24 000 RPM angular speed.

points in each class is maximal. In this way, an optimal
separating hyperplane is created, namely the maximum
margin. In both classes, the points nearest to this margin
are called support vectors and, once selected, contain all
the necessary information to define the classifier.

To formalise this concept in case of linear data, the
hyperplane that separates them is expressed as

f(x) = w · x + b = 0

where the M -dimensional vector w and the scalar b are
the parameters that exactly define its position.

The nearest data points lie instead on the planes
f(x) = ±1 and so the margin between them is 2 ‖w‖−1.
The goal is to maximise this one and it can be done
through the following optimisation problem:

minimize 1
2 ‖w‖2 + C

M∑
i=1

ξi

subject to
{

yi(w · xi + b) ≥ 1 − ξi i = 1, . . . , M
ξi ≥ 0 i = 1, . . . , M

where ξi (slack variables) measure the distance between
the margin and the points xi lying on the wrong side of
the margin itself, C is the error penalty and yi ∈ {−1, +1}
are the negative and positive class labels respectively.

This problem can be converted into the equivalent,
and easier to solve, Lagrangian dual problem [9]:

maximize L(α) =
M∑
i=1

αi − 1
2

M∑
i,j=0

αiαjyiyjxi · xj

subject to αi ≥ 0, i = 1, . . . , M,
M∑
i=1

αiyi = 0

where αi are the Lagrangian multipliers, necessary to de-
fine the decision function

f(x) = sign

(
M∑
i=1

αiyi(xixj) + b

)
.

In case of non-linear classification SVM can also be ap-
plied by means of a function Φ(x) that maps the data onto
a high-dimensional feature space, where the linear classi-
fication is then possible. Furthermore, if a kernel function
K(xi, xj) = (ΦT(xi) · Φ(xj)) is applied, it is not neces-
sary to evaluate Φ(x) explicitly in the feature space. So

Fig. 2. Test rig (on the left) and damage on the rolling element
after 50 h of testing (on the right).

that, in the decision function, the term yi(xixj) could be
replaced by K(xi, xj), which is easier to compute. There
are various possible choices of the kernel function, such as
linear, polynomial or Gaussian RBF. This fact is rather
outstanding because it enables SVM to be used in case
of very large feature spaces: the dimension of classified
vectors does not influence directly the SVM performance.

If the classes the input data could be classified in
are more than two, multi-class SVM is necessary. Two
different approaches are taken into account: One-against-
all (OAA) and One-against-one (OAO). In the first one
the ith SVM is trained with all of examples in the jth
class with positive labels and all the other examples with
negative labels, while in the latter one each classifier is
trained on data from two classes.

4 Application to bearing data

The methods presented in the previous sections are
here applied to real signals searching for the most infor-
mative frequency range of the system output. A signal
such as in Figure 1 is analysed, representing 10 seconds
of an acceleration time history sampled at 51.2 kHz. The
data are collected from a test rig assembled by the Dy-
namics & Identification Research Group (DIRG) at the
Department of Mechanics, which is shown in Figure 2;
for the described tests, the radial load on the damaged
bearing is settled at 1.4× 103 N and the rotational speed
is 24 000 RPM. Different levels of fault on rolling element
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Table 1. Frequency bands for level 3 decomposition.

Band n◦ Low freq Upper freq
1 0 3200
2 3200 6400
3 6400 9600
4 9600 12 800
5 12 800 16 000
6 16 000 19 200
7 19 200 22 400
8 22 400 25 600

are analysed, that is 450, 250 and 150 micron size fault.
An example of damage of 450 micron as it appears af-
ter 50 h of testing is presented in Figure 2. Faults on
the rolling element have been produced by using a Rock-
well type indentation hedge, causing a penetration surface
area of different sizes. The expected fault frequency

fb =
D

d
ω

(
1 − d2

D2
cos2 ϕ

)
,

where D is the pitch diameter, d the ball diameter, ω the
rotational speed, ϕ the thrust contact angle, null in this
case, is computed and it is 1.7 kHz.

With reference to [7], the signal is passed through
the detection filters and its kurtogram is then defined.
In Figure 3 three kurtograms for different levels of fault
on one rolling element are represented, with 450, 250
and 150 micron of their largest dimension, respectively.
The x-axis indicates the frequencies, while the y-axis
the levels into whom the signal is decomposed; the kur-
togram is able to point out transient occurrence in the
signal and also in which frequency band it is placed.
The level refers to the bandwidth though the relation
Bw = fs×2−(level+1). The scale in figures adopts brighter
colours for higher kurtosis values. It can be noticed that
faults of higher entity, such as for cases (a) and (b) in
Figure 3, reach higher Kurtosis values and, as a matter of
example, for the case of 450 micron fault the optimal cen-
tral frequency is placed in the n. 5 band (Fig. 3a, level 3,
bright band 12.8÷16.0 kHz). This means that filtering the
signal with a band-pass filter characterized by these two
parameters will enhance the impulse detection although
hidden in the signal.

In the SVM case, using the same band division as for
the previous analysis, more signals are taken into account
contemporary, representing various entity of damage (450,
250 and 150 micron size fault on the rolling element).
This is a case of multi-class SVM analysis and we actu-
ally adopt the one-against-one approach. Each of these
signals is divided into a certain number N of vectors and
their PSD is computed. The division in height frequency
bands previously defined is then performed (as in Tab. 1)
and their RMS are evaluated. These are taken with refer-
ence to the 3rd level computed by the SK method. Hence,
a matrix made up of (n×N)×8 elements is produced. To
set up the parameters that characterise the SVM analy-
sis, N/2 points are used to train it, while the others are
used to test it. That means that we know the “labels” for
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Fig. 3. Kurtogram for different fault levels on a single rolling
element: (a) 450 micron (b) 250 micron (c) 150 micron. The
brighter colours represent higher values of kurtosis. The titles
indicate in which frequency band transients occur.
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Table 2. Optimal frequency band intervals and central frequencies for different rotational speeds and same radial loads on
three damaged bearings computed for SK and SVM (less than 10% error) methods. For the sake of interpretation: bold numbers
indicate that SVM is able to detect fault in all the range indicated (0–3.2 kHz, 16.0–19.2 kHz and 22.4–25.6 kHz), whilst SK
seems to be better fitted for the range 21.1–25.6 kHz only.

1.4 kN 12 000 RPM 18 000 RPM 24 000 RPM

fault [µm] SK [kHz] SVM [kHz] SK [kHz] SVM [kHz] SK [kHz] SVM [kHz]

450 22.4–25.6 9.6–25.6 21.3–25.6 6.4–25.6 12.8–16.0 9.6–25.6

0–3.2 0–9.6

250 21.3–25.6 16.0–19.2 12.8–16.0 12.8–19.2 12.8–25.6 0–6.4

22.4–25.6 22.4–25.6 16.0–25.6

0–3.2

150 0–12.8 22.4–25.6 8.5–12.8 12.8–19.2 12.8–25.6 16.0–25.6

22.4–25.6
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Fig. 4. Error percentage in fault detection. Classes 1 are the
data for the 450 micron fault on the rolling element, Class 2
for 250 micron and Class 3 for 150 micron. Rotational speed
is always 24 000 RPM. Ranges 6 and 7 are clearly the most
reliable classes for all the three damage sizes.

each class and we want to see those the SVM would as-
sign. Thus, to find the most informative frequency range
the number of errors in each band is considered and
those where it is smaller is supposed to be the best one
(Fig 4). It is evident from the same figure that, for higher
frequencies, the number of errors decreases, so that these
ranges are to be taken into account.

5 Comparison between various data

The comparison between the two different methods to
extract the most interesting bands is given hereafter. The
scope is also to check how the band of highest interest can
change depending upon the speed of rotation, the defect
size and the load. Data are collected from a number of
accelerometers which have been positioned on the test

rig, where bearings with different levels of fault on rolling
element are tested (450, 250 and 150 micron size fault).
In the first case the radial load is fixed at 1.4×103 N and
three rotational speeds of 12 000, 18 000 and 24 000 RPM
are considered, while in the latter the speed is fixed at
18 000 RPM and three radial loads of 1, 1.4, 1.8 × 103 N
are taken into account.

Table 2 shows the optimal central frequencies and re-
spective frequency intervals obtained with the SK and
the SVM methods for the first case. It can be noticed
that when the fault is bigger, the Kurtosis reaches higher
values in shorter intervals. Analysing the optimal central
frequency for each fault it can be seen that it grows in
the case of the littlest damage, while it decreases when
the fault is bigger as a function of speed.

Frequency bands detected with SVM concern those
cases with a number of errors lower than 10%. The bands
that have less errors seem to be the higher, 6th, 7th and
8th especially, which refer to a frequency band from 16
to 25.6 kHz. It suggests that this is the most informa-
tive frequency range that has to be taken into account to
analyse this type of data. It can be noticed that when the
fault has the smallest size (150 micron) a lower number of
bands has proper detection ability while, with the largest
damage, the bands that can be considered are almost the
same regardless of the speed. For both approaches, SK
and SVM, the case of 250 micron damage has a non reg-
ular behaviour with respect to the increasing speed.

In Table 3 the optimal central frequencies and respec-
tive frequency intervals obtained with the SK and the
SVM method for the case of different loads are presented.
It is worth to notice that a good agreement between the
results from the two methods is confirmed, whilst the de-
pendence of the best frequency choice with respect to the
applied load is not evidenced for both the methods.

Once the most informative bands are obtained they
are treated by using different philosophies to detect the
faults and their relevance: the SK data are passed through
an algorithm based on Power Spectrum peaks distribu-
tion, the SVM data are passed through other statistical
based routines.

It must be observed that the high values of rotational
speed are due to the fact that the rig has been conceived
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Table 3. Optimal frequency band intervals and central frequencies for a fixed rotational speed (18 000 RPM) and different
radial loads: three damaged bearings computed for SK and SVM (less than 10% error) methods.

18 000 RPM 1 kN 1.4 kN 1.8 kN
fault [µm] SK [kHz] SVM [kHz] SK [kHz] SVM [kHz] SK [kHz] SVM [kHz]

0–3.2
450 21.3–25.6 6.4–25.6 21.3–25.6 6.4–25.6 21.3–25.6

9.6–25.6
0–3.2 0–9.6 0–3.2

250 12.8–16.0 12.8–19.2 12.8-16.0 12.8–19.2 12.8–16.0 6.4–9.6
22.4–25.6 22.4–25.6 12.8–19.2

0–3.2
150 4.3–8.5 12.8–19.2 8.5–12.8 12.8–19.2 0–4.3 0–6.4

22.4–25.6 12.8–19.2

for a specific aeronautical application. Moreover, the short
time between impacts might be the cause of misleading
interpretations, not being the optimal condition to apply
the SK algorithm. Possibly, the relatively low resolution
obtained by SK is due to this fact, i.e. the decay of the
transient of each impact is partially hidden by the subse-
quent impact.

6 Conclusions

The paper compares two techniques developed to de-
tect the most informative frequency range from damaged
bearing acceleration data. The aim is not to extend the
results to assess the best frequency range in a general case
but, conversely, to assess the methodology for seeking the
best range, for any type of speed, load and damage exten-
sion. It is worth to mention that, while the SK approach
allows a blind recognition of the most informative anal-
ysis bands, this fact does not hold for the case of SVM,
which needs a training approach to separate the classes
of features.

Under the author experience, however, it is true that
complex systems, such as the aeronautical gearbox simu-
lated by the lab rig proposed, the detected signal might
come from so many different sources that a pure blind
recognition represents a very hard work. Furthermore,
just a simple temperature drift might dramatically change
the vibration signature, so that important frequency shift-
ing would appear in the output. For this reason, it is the
authors feeling that a preventive mapping of the different
working spaces is necessary, even in presence of orthogo-
nalisation tool, such as the PCA, frequently adopted to
separate the contribute of exogenous inputs.

Under this point of view, since the training phase
seems unavoidable, the use of SVM does not overcharge
the procedure, being a part of the mentioned mapping
procedure.

Regarding the application to real data, only the case
of rolling element fault has been treated along this article
due to space restriction. Generally speaking, the SVM
approach looks a bit more flexible in terms of frequency
range choice, but it is true that 10% of errors is tolerated
in damage identification, which is too much in real life

application. If the percentage is restricted up to 100% of
correct answers, than the choice is restricted to certain
bands; one example is given for 24 000 RPM, where the
19.2−22.4 kHz range (6th and 7th bands) show the 100%
proper results for all the damage extensions tested.
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