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Abstract 

The paper concerns model and noise design relevant to Drag-Free and Attitude Control of the 

European satellite GOCE (Gravity field and steady-state Ocean Circulation Explorer) under 

different control modes. As the model must include accurate dynamics of disturbance and 

measurement drifts to be rejected/estimated, noise design aims to select, and to mark with the 

Boolean variables of the control modes, the necessary and sufficient feedback channels (noise 

estimator) connecting model error to noise, which are the paths through which model state variables 

can be updated in real-time. Noise design is applied to a generic model encompassing position and 

attitude control, fed by position, rate, attitude and acceleration sensors. The resulting closed-loop 

becomes a state predictor, providing controllable and disturbance states to drag-free and attitude 

control law, switching smoothly from mode to mode. Noise estimator gains are tuned to robust 

performance and stability by properly assigning closed-loop eigenvalues. Tuning details and 

simulated results illustrating the different modes are provided.  

1 Introduction 
1.1 Drag-free control problems 

The paper aims to outline and solve the real-time estimation and control problems which are 

typical of drag-free satellites. To restrict the scope but not the generality, solutions and results are 

limited to the European GOCE satellite (Gravity field and steady-state Ocean Circulation Explorer), 

which has been successfully launched from Plesetks (Russia) on March 17, 2009 [1]. Drag-free 

satellites establish local inertial frames to reveal gravity anomalies from the distance variation 

between pairs of non-rotating, free-falling bodies (proof masses). Three main control problems 

arise: i) to make the proof-masses free-falling by canceling non-gravitational accelerations (or 

‘drag’, hence drag-free control); ii) to keep the proof-masses non-rotating (attitude control); iii) to 

keep their distance within a suitable tolerance (formation control). When, as in GOCE, each proof-

mass pair is mounted on a single satellite, the satellite center-of-mass (CoM) has to be made free-
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falling and each proof-mass must be actively controlled to remain at a fixed distance from it. Each 

proof mass and position control constitute an accelerometer. The main drawback lies in the offset 

and drift of the accelerometers: they propagate through drag-free control, forcing position and 

attitude to slowly drift. In GOCE, being a single satellite, only attitude drift must be cancelled; in a 

drag-free formation, relative position would also need to be controlled.  

1.2 Sensor fusion and noise design 

The accelerometer solution looks attractive and flexible from the control standpoint, since 

smaller masses track a larger mass, the spacecraft. In this way, the frequency bandwidth of the 

accelerometer measurements can be made wider than drag-free sampling frequency (10 Hz in the 

GOCE case) and the noise can be made extremely small in a mid-frequency band, so as to allow for 

fine measurement and cancellation of non-gravitational forces. Accelerometers must be integrated 

with attitude/position sensors to compensate for accelerometer bias and drift. The combination of 

acceleration (center-of-mass and angular) and position/attitude measurements is a typical real-time 

sensor fusion, where the two measurements complement each other due to different bandwidths and 

noise. Acceleration measurements are larger bandwidth and, if doubly integrated, are less noisy at 

higher frequencies than are position and attitude. On the contrary, position/attitude measurements 

are provided at lower sampling rates (< 2 Hz) and are affected by greater noise, though the latter is 

bounded from DC to Nyquist frequency maxf . Position data for low Earth orbiters, as for the GOCE, 

come from a Global Positioning System (GPS) receiver, whereas attitude comes from star trackers. 

Control requirements are expressed as piecewise spectral densities of the residual acceleration and 

attitude in a domain from DC to the Nyquist frequency; the domain is usually partitioned into low-, 

mid- and high-frequency bands as follows 
 { } { } { }0 1 1 1 2 2 2 max5 mHz ,  0.1 Hz ,  5 Hzf f f f f f f f= < = = ≤ < = = ≤ < =F F F . (1) 

Traditionally, drag-free control is an inner loop of attitude/formation control [2]. The drag-free 

loop, fed by accelerometer measurements, is designed through H∞ techniques, [3], [4], to match 

drag spectral density with the residual acceleration profile. The outer loop, for instance attitude, is 

designed via Linear Quadratic Gaussian (LQG) techniques to recover attitude rate and acceleration 

bias. Here a generic approach is suggested in the framework of Embedded Model Control [5]. The 

key is the design of the disturbance dynamics to be counteracted, which may vary because of 

different sensors and requirements under different control modes. Disturbance dynamics is driven 

by a noise vector of suitable size and location, which represents the unpredictable innovation to be 

real-time estimated from measurements. By selecting appropriate noise components through 

Boolean variables, different disturbance dynamics can be shaped and smoothly switched to different 

mission phases.  
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1.3 Overview of the paper 

Section 2 shows similarities between CoM and attitude dynamics in view of a generic model. 

Section 3 outlines the Embedded Model construction, valid for position and attitude control and 

different mission phases. Noise design starts from an unobservable and reducible Embedded Model 

to provide a model class which is observable, irreducible-noise and decomposed between the 

available output measures, depending on the control mode parameterized by a Boolean vector. The 

result is a set of noise estimators, driven by univariate model errors, which combine with the 

Embedded Model to provide the state predictor. Section 4 exploits state prediction to feed a control 

law which guarantees performance achievement, in this case zero tracking. Robust stability and 

performance in the presence of neglected dynamics are then guaranteed by tuning state predictor 

eigenvalues to satisfy some inequalities. Tuning is then applied to pure drag-free control. Section 5 

shows some simulated results of the GOCE drag-free and attitude control along with different 

mission phases. 

2 Satellite dynamics, noise and perturbations 
2.1 Reference frames 

Center-of-mass and attitude dynamics are written in the spacecraft body frame { }, , ,C= i j kR . 

The spacecraft is a slender cylindrical body and the cylinder axis along the direction of motion 

defines i . The mean plane of the solar panels defines k , and j  points to the active side of the 

panels. Attitude control keeps the body frame aligned to the Local Orbit Reference Frame (LORF) 

{ }, , ,O O O OC= i j kR , defined by the Earth-centered position r  and the velocity v  of the spacecraft 

center-of-mass, as follows  
 / ,  / ,   O O O O O= = × × = ×i v v j r v r v k i j . (2) 

Due to the a small orbit eccentricity, r  and v  are not orthogonal and k  is slightly misaligned from 

r . The body-to-LORF transformation ( )R q  defines the attitude T
x y zq q q⎡ ⎤= ⎣ ⎦q  as a vector of 

small Euler rotations in agreement with the fine attitude control treated here. A third frame 

{ }, , ,EC= i j kR , centered on the Earth's CoM EC , defines the reference circular orbit of radius r  

and angular rate ω . The unit vector i  is tangential and motion-directed, j  is inertial and normal to 

the orbit plane, and k , radial, points to the satellite. The perturbed satellite position r  can thus be 

resolved into the sum  
 r x y zΔ Δ Δ Δ= + = + + +r r r k i j k , (3), 

where Δr  is much less than r , close to the eccentricity fraction, over time intervals lasting tens of 

orbital periods. The perturbation Δr  is due to anomalies in the Earth's gravity and to residual drag. 

When reference and actual orbits are slightly apart, the LORF-to-reference transformation ( )O OR q  

defines the LORF attitude 
 ( ) ( )/ / / /T

O y r x r z r y rΔ Δ Δ ω Δ ω= − −⎡ ⎤⎣ ⎦q , (4) 
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which provides monitoring of reference and actual orbit discrepancy.  

2.2 Perturbed CoM and attitude dynamics 

Let the rates of the perturbed CoM position and velocity, in the reference frame, be denoted with 

Δr  and Δv . Then, under small Oq , the following relative dynamics hold 

 
( ) ( ) ( ) ( ) ( )( )22 /O O sU U R R m

Δ Δ

Δ Δ Δ Δ

=

= − × × + × + −∇ −∇ + +

r v

v ω ω r ω r v r r r q q D F
, (5) 

where ω=ω j  is the reference orbital rate, gravity acceleration derives from a quadratic expansion 

of the gravity potential U , D  and F  denote drag and command forces in body coordinates, and sm  

the spacecraft mass. Equation (5) simplifies to the classical Hill’s equation [6] if spherical gravity 

terms are made explicit. Moreover, assuming small attitude q  and neglecting second order terms, 

equation (5), valid also in body coordinates, simplifies to  
 ( ) ( )2 2,  2 , / sZ K mΔ Δ Δ ωΔ ω Δ Δ Δ= = − − − + +r v v v r g r r D F , (6) 

where the matrices 

 
0 0 1 0 0 0
0 0 0 ,  0 1 0
1 0 0 0 0 3

Z K

j

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (7) 

make spherical gravity terms explicit and ( ),Δ Δg r r  accounts for gravity anomalies. Interestingly, a 

similar equation applies to small attitude angles, upon definition of the angular rate ω  in body 

coordinates and of the LORF-to-body rate error ( )TRΔ ω= −ω ω q j ; it holds 
 ( )2 2 1,  2 q q s qZ K JΔ Δ ωΔ ω −= = − − + +q ω ω ω q D C . (8) 

The first term on the right-hand side is the linearized gyro-acceleration, the second term is the 

linearized gravity-gradient acceleration; the last two terms, qD  and C , denote environmental 

perturbations (aerodynamic and magnetic) and commanded torques. The GOCE inertia tensor sJ  is 

quasi diagonal, but largely unbalanced, i.e. sx sy szJ J J<< , due to the spacecraft's shape, which 

leads to the gyro term in (8). The first two matrices may be approximated as 

 

1 0 00 0 1/ 8
0 0 0 ,  0 3 0

1/ 2 0 0 0 0 0
q qZ K j

<⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

, (9) 

the values depending on the inertia tensor. Equations (6) and (8) must be completed with 

sensor/actuator noise as well as perturbation dynamics before passing to the Embedded Model and 

noise design.  

2.3 Perturbing forces and torques 

Three perturbations significantly affect position and attitude dynamics at a low Earth orbit: (i) 

aspherical gravity anomalies ( ),Δ Δg r r , (ii) aerodynamic forces and torques due to thermosphere 

and wind; (iii) magnetic torque due to coupling of the Earth's magnetic field with the spacecraft's 
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magnetic dipole moment. Aerodynamic forces are the most significant at low Earth orbit. Although 

their time-profile is periodic with the orbital rate, it must be held to be highly uncertain and 

unpredictable, both in the short and in the longer term. In the short term, they can only be modeled 

by non-stationary stochastic processes. Noise design does not require accurate models, but requires 

knowledge of the spectral shape up to the control Nyquist frequency maxf . To this end, long-term 

models have been combined with short-term ones and stochastically interpolated. As a result, drag 

spectral density is enveloped by first- to second-order drifts in the mission bandwidth 1F . Since the 

same shape applies to gravity anomalies, the spectral density of perturbing forces is assumed to be 

enveloped as follows 

 ( )( ) ( )( )1 12 22 2
0 1 2( ) 1 / 1 /d d d dS f S f f f f

− −
≤ + + , (10) 

where 1 1df f< , and 2 2df f< . Perturbing torques are a combination of aerodynamic and magnetic 

effects. Under attitude control, aerodynamic torques may become smaller than magnetic torques. 

The latter may be contrasted by simple magnetic torquers, which implies that the residual torques 

share a spectral profile as in (10).  

2.4 Sensor/actuator noise and dynamics 

2.4.1 Accelerometer 

Only accelerometer noise is treated, being specific to drag-free control. The servo-accelerometer 

measure ay  is equal to the restoring acceleration a  plus a disturbance ad . Within the accelerometer 

bandwidth 20 Hzaf , ad  is the combination of the position-sensor noise ayw  and of the command 

disturbance; the latter may be partitioned into drift (including bias ab ) and white noise 0aw , as 

follows 

 
( ) ( )21

1 0

( ) ( ) ( )

( ) 2 ( ) ( ) / ( )
a a

a a a a ay

y f a f d f

d f j f w f w f f f w fπ −

= +

= + −
. (11) 

Then, assuming statistical independence and factoring out the flat spectral density 2
0uS  of 0aw , the 

spectral density of the total noise ad  may be expressed in a compact form by 

 ( ) ( )( )2 42 2
0( ) / 1 / ,  1 2s

a u h aS f f f f f S s= + + = ÷ . (12) 

Assuming 1uf f<  and 2hf f>  in (12) implies that ( )aS f  is minimal across the mission band 1F . 

The bowl-shape resulting from (12) is typical of servo-accelerometers; the second derivative of the 

sensor noise ayw  shapes the high-frequency rim, referred to as 2f  noise; actuator noise and drift 

shape the low-frequency side. Accelerometer servo-dynamics may be neglected if max af f< . 

Accelerometer measurements must be anti-aliased to avoid folding of the 2f  noise across maxf . 

Anti-aliasing and transmission delays are treated in the Embedded Model as a first-order plus 

neglected dynamics. 
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2.4.2 Electric propulsion 

GOCE will employ proportional electric mini-thrusters to counteract the along-track drag. In 

addition, the first GOCE design relied on electric micro-thrusters, for cross-track drag-free and 

attitude control. Micro-propulsion technology not being mature, it was abandoned in favor of 

traditional magnetic control, which is only restricted to attitude. Since then, micro-thrusting has 

evolved and will be one of the key technologies for future scientific missions. This justifies 

assuming micro-propulsion in the present analysis. The dynamics of electrostatic thrusters is a 

combination of propellant flow and ionization. Since PID regulators are employed, second order 

dynamics between voltage command u  and thrust F  applies, with a resonance frequency maxtf f> . 

By restricting the frequency band to tf f< , the thruster noise spectral density can be written as  

 ( )( )22 2
0( ) / 1r

t l tS f f f S= + , (13) 

where maxlf f<  may be anywhere within the mission band 1F . Different thruster configurations are 

possible. The first GOCE design assumed that a single mini-thruster was used to counteract the 

along-track drag, and 8m =  micro-thrusters to actuate lateral, angular drag-free as well as attitude 

control. By neglecting thruster dynamics, the static voltage to force/torque relation can be written as 

 ( ) ( )( )( )t
q

B
t t t

B
⎡ ⎤⎡ ⎤

= +⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

F
u w

C
, (14) 

where 0≥u  is the thrust command vector, and tw  denotes the overall noise defined in (13). F  and 

C  have been defined in (6) and (8). The thrust distribution matrices B  and qB , converting u  into 

forces and torques, mainly depend on the thruster geometry. 

3 Embedded model and noise design 
3.1 Introduction 

Embedded Model Control [5] aims to exactly replicate the design model within control 

algorithms. To this end, disturbance spectral densities like (10), (12) and (13) are not converted to 

weighting functions [7], but to simple stochastic equations to be real-time updated by the estimated 

innovation [8]. Observable though unpredictable disturbances can thus be explicitly rejected in a 

timely manner by the control law. 

3.2 Controllable dynamics and output equation 

Exploiting the similarity of (6) and (8), and coordinate decomposition, a unique class of 

Embedded Models can be derived. Coordinate decomposition follows assuming damping and 

harmonic coupling terms in (6) and (8) to be weak with respect to closed-loop eigenvalues, which is 

true when ( ) max2 0.5 /f Tπ ω << = , where 0.1 sT =  is the designed control time unit. That leads to 

splitting (6) and (8) into six independent discrete-time state equations, only connected by known 

perturbations and the thrust distribution matrices in (14). By denoting a component of Δr  and q  
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with cx , and a component of TΔv  and TΔω  with cv , the generic single-axis dynamics can be 

written as 

 
( )( ) ( ) ( ) ( )( ) ( ) ( )

2

( 1) ( ) 1 ,  ( ) ( ) ( )

1 1 0
,  ,  

0 1

c c c c v g d v u

c
c c c

c

i A i B l i g i d i a i a i d i l i d i B i

x
A B

v T

+ = + − + + = + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

x x u

x
. (15) 

In (15), g  is the known gravity term from (6) which has been separated from d , since only the 

latter, expressing known gyro and gravity-gradient terms in (8), must be cancelled. To represent 

both of them in (15), the Boolean variable { }0,1vl =  has been added, switching from position (=0) 

to attitude (=1). The term gd  encompasses unknown gravity terms and, in drag-free satellites, it 

also includes accelerometer bias and drift; dd  includes non-gravitational forces from (6) and 

torques from (8) that are to be cancelled; a  is the residual drag-free acceleration free of 

accelerometer drift and bias, and uB  is a matrix row in (14). Thruster noise from (14) is included in 

dd .  

Equation (15) must be completed with the disturbance dynamics (Section 3.3) and the position, 

rate, and acceleration output equations (see Section 2.4): 

 

( ) ( ) ( )( )

( ) ( ) ( ) ( )
( )

( 1) 1 ( )

1 0 0
( ) ( ) ( ),  0 1 0

0 0

a a a a a

c
c

v v
a

a a

z i z i a i d i

y
i y i C i i i C i l i

z
y l i

β β+ = − + +

⎡ ⎤⎡ ⎤
⎡ ⎤ ⎢ ⎥⎢ ⎥= = + = −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

x
y e

. (16) 

In (16), { }0,1al =  is a Boolean variable switching the accelerometer ON/OFF; az  is the state of the 

modeled dynamics from thruster to accelerometer, where 1β ; ad  is the overall accelerometer 

noise defined in (11), and dim yn=y .  Accelerometer switching occurs in time, at different mission 

phases. Rate measurements are only employed ( 0vl = ) for position estimation (GOCE), because 

GPS rate data are so accurate that they greatly improve noise estimates with respect to position 

alone. The opposite occurs with star trackers, which justifies ignoring rate data ( 1vl = ) in the 

absence of gyro measurements. In (16) [ ]T
c v ae e e=e  is the vector of the model errors, where 

each component ,  , ,je j a v c= , includes the measurement error jv  and the neglected dynamics j∂P  

as follows 
 ( ) ( ) ( ) ( )j j j je z z x z v z= ∂ +P . (17) 

In (17), j∂P  is not part of the Embedded Model, but must be explicitly given so as to select closed-

loop eigenvalues which guarantee robust stability (Section 4.2). For instance, a∂P  expresses the 

fractional error of the thruster-to-accelerometer dynamics (Sections 2.4.1 and 2.4.2, [1], [9]) with 

respect to the 1st order dynamics (16). 
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3.3 Disturbance dynamics 

Disturbance dynamics is the first step in noise design. Each of the unknown perturbations in (15) 

and (16), namely ,  , ,kd k g d a= , is assumed be a composition of white noise, first- and second-

order drift as follows 

 

[ ] [ ]0 1 2

( 1) ( ) ( ),
( ) ( ) ( )

,  

k k k k k

k k k k k
T T
k k k k k k k

i A i G i
d i C i H i

x v w w w

+ = +
= +

= =

x x w
x w

x w

. (18) 

That is consistent with (10), (12) and (13), except for the 2f  noise in (12), which is simplified to a 

white noise, being significant only close to maxf . The detail of matrices in (18) is as follows  

 
1 1 0 1 0
0 1 0 0 1
1 0 1 0 0

k k

k k

A G
C H

⎡ ⎤
⎡ ⎤ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎣ ⎦

. (19) 

3.4 The Embedded Model 

The equations (15), (16) and (18) define the Embedded Model, driven by u  and the noise vector 
T T T T

g d a⎡ ⎤= ⎣ ⎦w w w w  of size wn , and having state T T T T T
c a g d az⎡ ⎤= ⎣ ⎦x x x x x  of size n . The 

model is made variable by a Boolean vector T
v a gl l l⎡ ⎤= ⎣ ⎦l , where gl  is defined in Section 3.5. 

Noise is assumed to be a class of bounded, arbitrary signals where no causal relation exists between 

( )iw  and the past ( )i h−w , 0h > . The best prediction of ( )iw  from the past is fixed to zero. The 

model of a single axis may be written in the compact form  

 
( )( ) ( )( )

( ) ( )( ) ( )
( 1) ( ) , ( )

( ) ( ) ( )m

i A i B i i G i i

i C i i i i i

+ = + + +

= + = +

x x u d l l w

y l x e y e
, (20) 

the known disturbance components from (15) having been merged into the vector d  and the model 

output denoted with my . By reordering the state vector x , the matrix ,  wG n n× , in (20) can be 

transformed into  

 0 0

0 0

G G H
G

JG JG H
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, (21) 

where 0G , w wm m× , w wm n≤ , is invertible. 

3.5 Observability and noise design 

The problem addressed here is to transform (20) into a state predictor, fed by e  and u , which is 

variable with l , and bounded-input-bounded-output (BIBO) stable. A first objective requires the 

stabilizing feedback (called the noise estimator), which is fed by e , to pass only through w  and to 

be irreducible. A second objective concerns stability, which must be guaranteed even if the pair 

( )( ),C Al  is not observable.  

Consider the first objective. A noise vector iw  is said to be irreducible when each component 

forces a single state variable and the pair ( ), iA G  is controllable; in which case dim i wG n m= × , 
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with wm n≤ , each column of iG  has a single nonzero element and iG  is full rank. Then, assuming 

( , )C A  to be observable, at least one (not necessarily static) feedback from e  to w  exists which 

stabilizes the state predictor. Note the full-rank of iG  is not necessary to guarantee stability, but it 

simplifies feedback construction. Given G  in (21), the following transformation provides iG  and 

iw : 

 
[ ]

[ ]

1
0 0 0

0 0

0 0

0 0
0

0 0 0i

i

G G HI I G H
G

JG JG HJ I I

G G H

−⎡ ⎤⎡ ⎤ −⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=w w

. (22) 

In our case 0J =  and only two rows of G  must be reduced as follows 

 
( )
0 0

0 0

di d g

ai a d a

w w w

w w wβ

= +

= +
. (23) 

Noise statistics and correlation change under (22), which may reflect on feedback design. Here 

components in (23) are assumed to be retrieved from different measurements.  

The next step is an irreducible noise estimator, i.e. when each noise component is fed by the least 

number of measurements (in the limit case, one) and the feedback dynamic is of least order (in the 

limit case, zero). Here we restrict the analysis to the form of the matrices in (20), where the pair 

( ),C A  can be reordered to be block upper-triangular with yn  pairs of  diagonal blocks ( ),j jC A  

which are paralleled by the diagonal blocks ijG  in the irreducible iG . Since yn  is the output size in 

(16), a univariate decomposition, such as each block is associated to a single measure,  is a 

candidate for irreducibility. However, a necessary and sufficient condition [10] for the existence of 

a stabilizing feedback (not necessarily static) is that each pair ( ),j jC A  is observable and each pair 

( ),j ijA G  is controllable. Although the latter condition may be not satisfied by a univariate 

decomposition – a case occurring here (Section 3.6.1)-, stability conditions may be recovered by 

associating each block with more than one measurement, thus leading to a multivariate 

decomposition. 

Assuming a stabilizing feedback exists, the aim is to find the least order. Denote the relevant 

output, irreducible noise and model error with , ,mj ij jy ew  and the noise-to-output transfer function 

as  
 ( ) ( ) ( ) ( )1 T

mj j j ijy z z z zϕ−= M w , (24) 

where, by previous assumptions, no pole-zero cancellation occurs. Then denote the greatest degree 

of ( )j zM  with ( )deg j zM , and the model-error to noise feedback with 
 ( ) ( ) ( ) ( ) ( ) ( )1

ij j j j j jz z e z z z e zψ −= =w L N , (25) 

where ( ) ( )deg degj jz zψ=N  in order for the noise estimator to be all-pass. If 

dim dimj ij jA n= =w , ( )deg 1j jz n= −M , a static feedback ,j j je=w L  with ( )deg 0j z =L , is 

sufficient to stabilize the closed-loop polynomial ( ) ( )T
j j jz zϕ +M L . If dim dimj ij wjA n> =w , a 
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sufficient condition to recover stability is ( )deg j j wjz n nψ ≥ − . Note, in the latter case, both the 

gains of ( )j zN  and the free coefficients of the monic ( )j zψ  must be fixed by the selected closed-

loop eigenvalues.  

The second objective can only be met by dropping unobservable states. Actually a generic 

procedure is adopted: a Boolean vector ( )il  is defined, switching OFF the noise components which 

drive unobservable state variables, and leaving their free response to depend on initial states to be 

calibrated or set to zero. Note the free-response must be bounded to ensure the required BIBO 

stability. A smooth switching among different models may require suitable calibration phases 

(Section 3.6.2). Consider for instance the addition of gd  and dd  in (15), and of their state vectors 

gx  and dx  through (18): they cannot be observable under 0al = , which requires a Boolean variable 

gl  switching gw  ON and OFF. The same holds for dx  and ax  when 1al = .  

3.6 Noise design application  

3.6.1 Center-of-mass dynamics 

This case, corresponding to 1vl =  in (16), does not admit of a univariate decomposition because 

of the rate measurement vy . Let us restrict considerations to accelerometer ON, namely to 1al = , 

and assume the drag dd  to be estimated from the accelerometer, which in turn allows gd  to be 

estimated from rate and position, and implies 1gl = . Observability is guaranteed if aw  is switched 

OFF through 1 al− , in other words if ax  in (18) only admits of a free response, which implies the 

accelerometer bias has been calibrated. Consider the univariate decomposition in Table 1: it cannot 

lead to noise estimation since cx  is uncontrollable by noise. The reason is that no disturbance exists 

in (15) which directly forces cx , since the center-of-mass position must be the output of the velocity 

integration, free of any perturbation. To make cx  controllable, subsets 1 and 2 in Table 1 must be 

merged, thus leading to a multivariate noise estimation. In the GOCE satellite, subsets 1 and 2 in 

Table 1 are employed to estimate the LORF as defined in (2); no orbit control is needed. Subset 3 is 

employed to estimate the non-gravitational forces and to drive the CoM drag-free control. The 

corresponding noise estimator (25) is static and reduces to  
 ( ) ( ) [ ]0 1 21,  ,  T

a a a a a a az N z L L l l lψ = = = . (26) 

Table 1. Univariate decomposition of the CoM dynamics 
Subset 

(subscript j ) 

Measure Observable  Unobservable  Uncontrollable  Noise 

1 ( c ) 
cy  cx  None 

cx  None 

2 ( v ) 
vy  ,  c gv x  None None 

1 2 0, ,g g dw w w  

3 ( a ) 
ay  ,  a dz x  ax  None 

1 2 0, ,d d aw w w  
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3.6.2 Attitude dynamics 

Neglecting attitude rate measurements, i.e. assuming 0vl = , univariate decomposition always 

exists whatever the values of dl  and al , but it may not be unique depending on which state variables 

have been declared unobservable. To this end, three control modes are considered, valid also for 

position dynamics: (i) fine pointing, when only attitude measurements are available, i.e. 0al = , 

which in turn implies 0gl = ; (ii) calibration, when accelerometer bias is calibrated, i.e. 1al = , and 

0gl =  is kept, since perturbation torques are still estimated from the star tracker; (iii) science, when 

1al =  and 1gl = , since perturbation torques are now recovered from the accelerometers. 

Control modes and subsets are shown in Table 2. Restricting considerations to the science mode, 

subset 2 gives rise to a static noise estimator as in (26); on the contrary, subset 1 needs a dynamic 

estimator, since 1 14,  3wn n= = . 

Table 2. Attitude decomposition for different control modes 
Control mode Subset 

(subscript j ) 

Measure  Observable  Unobservable Noise 

Fine pointing 1 ( c ) 
cy  ,c dx x  gx  0 1 2, ,d d dw w w  

Calibration 1 ( a ) 
cy  ,c dx x  gx  0 1 2, ,d d dw w w  

 2 ( c ) 
ay  ,a az x   

aw  

Science 1 ( c ) 
cy  ,c gx x   

0 1 2, ,d g gw w w  

 2 ( a ) 
ay  ,a dz x  ax  0 1 2, ,a d dw w w  

4 Embedded Model Control and eigenvalue tuning 
4.1 Requirements and control law 

The state predictor, which consists of the state equation (20) and of the noise estimators (25) 

converted to state equations, is the core of the control unit and solves the problem of real-time 

updating unknown disturbance dynamics. Here zero-tracking is assumed, which for the GOCE 

satellite amounts to the following performance equalities 

 
( ) ( ) ( )( )
( ) ( ) ( )

1 0

0,  0,  0
st m t t

t t tΔ Δ

−= + =

= = =

a D F

q ω ω
. (27) 

The first equality requires zero CoM non-gravitational accelerations a  (drag-free), the second 

requires zero attitude, zero angular rate and zero acceleration. Actually, in the case of GOCE, (27) 

must be replaced by a piecewise profile, usually bowl-shaped, which bounds the spectral density of 

the performance variables in the frequency bands defined in (1). 

Let us restrict considerations to the science mode, namely to 1al = , 1gl =  and to position drag-

free control; attitude control has been partly treated in [9]. Performance variables in (27) are 
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converted into single-axis variables of the Embedded Model with the help of (15) and by replacing 

subscripts ,c u  with q  in the attitude variables, which yields 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 0,  0
0,  0,  ( ) ( ) 0,  1
d u v

q q q g d q v

a i d i B i l
x i v i a i d i d i d i B i l

= + = =

= = = + + + = =

u
u

. (28) 

Drag-free and attitude control laws, which are model-based, follow immediately from (28) and the 

state predictor (20) and (25), by replacing unknown perturbations, say dd , with their state variable, 

say dx : 

 
( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( )
u d d

q x q v q g q

B i d i x i

B i k x i k v i x i x i d i

= − = −

= − − − − −

u

u
. (29) 

Note that control law does not explicitly depend on the Boolean l , as the latter only switches noise. 

Only the gain values may depend on it, because of different requirements in Section 5. Attitude 

control in (29), which is always ON from pointing to science mode, combines attitude, rate and 

acceleration targets in (28) through the feedback gains xk  and vk , which ensure closed-loop 

stability of the controllable dynamics (15). By replicating (29) three times, six force/torque 

components are computed to be apportioned among 1 9m + =  thrusters, as mentioned in Section 

2.4.2. 

4.2 Closed-loop stability  

The control law (29) and the state predictor, defined by (20) and (25), are the core of control 

algorithms. The control gains to be tuned are split between state feedback gains in (29) and noise 

estimator gains in (25). They must be tuned to guarantee stability in the presence of de-stabilizing 

model error components. To this end, model error je  has been split in (17) into noise jv , not 

affecting stability, and neglected dynamics j∂P .  

The robust stability in the presence of unstructured uncertainties is usually guaranteed in the 

frequency domain (H∞ 
 or related techniques [11]). The Embedded Model Control, as shown in [5] 

and applied here, provides a simple and explicit relation from j∂P  to performance variables. To this 

end, restricting considerations to a  (center-of-mass) and qx  (attitude) in (28) and following [5], the 

Z-transform equalities become 

 
( )

( )( )
1

1

a a a a a d

q q q q q g a a a a a d

a e d d

x e d e d d

−

−

= + +

= − + − + +

V M S

V S M V M S
, (30) 

where the controllable dynamics in (15) and (16) correspond to ( ) 21q z T−= −M  and 

( ) 11a a az β β−= − −M , respectively. In (30), aS  and qS  are the closed-loop sensitivities, whereas 

1a a= −V S  and 1q q= −V S  are their complements. By replacing (17) in (30), the final expression, 

restricted to position drag-free control, holds: 
 ( ) ( )11 a a a a a a a da v d d−+ ∂ = + +V P V M S , (31) 

showing a combination of Embedded Model, neglected dynamics and state predictor. 
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4.3 Stability and performance inequalities 

Following [5], stability and performance are ensured by tuning noise estimator gain to respect 

the following inequalities valid for maxf f≤ : 

 
( ) ( )

( ) ( ) ( ) ( ) ( )
max

2 22 2 2

max 1

1

a af f

a a a d a

f f

f S f f S f S

η

η

≤ ∂ ≤ <

+ ≤ +

V P

V S
, (32) 

where η  is the degree of robustness and ( )aS f  is the upper bound to the spectral density of the 

residual CoM acceleration a . Inequality (32) is a rather complex expression of the gain aL  in (26), 

but it can be solved analytically under the following assumptions. 

State-predictor eigenvalues are equal to 1 1,  1,..., 3ak a awk nλ γ= − < = = , and correspond to the 

frequency ( ) 12a af Tπ γ−= . 

The highest peak of ( )a f∂P  occurs at 2a af f∂ > ∈F , implying that ( )a afV  is approximated by 

the high-frequency asymptote [5], [12], as follows 
 ( ) ( ) ( )2

max2 2 1 0.5 / ,  <a a a a a af fT f f fπ β γ γ β−
∞ + <V . (33) 

Accelerometer and drag spectral densities aS  and dS  can be enveloped by piecewise profiles 

according to frequency partition (1), which enables the performance inequality in (32) to be split 

into three parts. To this end, (33) must be completed with the following low- and high-frequency 

asymptotes 

 
( ) ( ) ( ) ( )
( )

2 2
0 0 21,  2 1 2 ,

1,  
a a a a a

a a

f f fT f f f

f f f

π γ γ−

∞

+ ≤ <

>

V S

S
. (34) 

Employing (33) and (34), and replacing aS , dS  and tS  with their asymptotes obtained from (10), 

(12) and (13), the pair of inequalities in (32) is converted to a single stability inequality and to three 

performance bounds, partitioned from 2F  to 0F , as follows. 

 

( )
( ) ( ) ( )( )
( ) ( )

( )

1
max

21
2 2 0

2
1

0

2 1 / 2 1

1 1 1 / 2 / 1

1 2 / 1 1

1

a a a a

a a a a t

a a

a

S

b

ηα β γ γ β η η

α η β β γ γ β η

α γ η γ

α η

−

−

+ ≤ < <

+ − + + ≤

+ + ≤ <

≤ +

. (35) 

The coefficient ηα  of the stability inequality, the first term in (35), includes the peak ( )a af∂∂P  of 

the neglected dynamics; 1 2,  α β  are ratios between drag spectral density and requirements, and 

0 2,  α α  are spectral bounds. Inequality (35), if feasible, can be shown to converge, starting from 

0η = . More specifically (i) the first inequality, providing η , establishes whether the stability 

robustness, expressed by max 1η < , is feasible; (ii) the second inequality provides an upper bound to 

thruster noise spectral density 0tS  defined in (13); (iii) the third inequality provides a lower bound 

to aγ  whereas the upper bound is given by the first inequality; (iv) the final inequality provides a 

bound to the accelerometer bias ab .  
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5 Simulated results 
Simulated results derive from a fine GOCE simulator. The simulator includes fine models of 

gravity anomalies, of the Earth's magnetic field and of thermosphere density: stochastic 

extrapolation has been applied to match a simulation step less than 0.1 sT = . Drag forces and 

torques are computed from simplified satellite geometry. Simulated results refer to worst-case 

mission conditions and to the sequence of the phases in Table 2, from fine pointing and calibration 

during commissioning to the science phase, which latter has being treated in [9].  

The performance of position drag-free control is shown in the time and frequency domain. 

During pointing mode, as accelerometers are OFF, 0al = , drag-free control (29) is silent except for 

setting the along-track thrust equal to mean drag, so as to maintain orbit. Drag-free control starts as 

soon as the accelerometers are ON, 1al = , at 68.5 kst = , during the calibration phase, 0gl = , 

lasting until 79 kst = , when the bias of the angular accelerations is under calibration. Figure 1 

shows the along-track and out-of-plane residual accelerations. Oscillations correspond to orbital 

periods. Only the along-track component is forced to zero from DC to mid frequency. Lateral 

accelerations are not forced to zero either in fine-pointing or in the science mode in order to save 

propellant and limit the thruster peak [9]: they are forced to zero only at mid frequencies.   

 

Figure 1 Time history of the center-of-mass non-gravitational acceleration. 

Figure 2 compares along-track non-gravitational acceleration to the target bound during pointing 

and science modes. The low-frequency jump in the science mode is due to CoM accelerometer bias, 

which is not calibrated. As expected from the design, the science mode spectral density shows a 

margin. 
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Figure 2 Spectral density of the along-track acceleration (pointing and science modes, and target 

bound). 

A summary of fine-pointing and science mode performance is given in Table 3, but is limited to 

CoM acceleration. The performance of each axis is compared to mid-frequency requirements.   

Table 3. Simulated performance within GOCE mid frequency 
Variable Mode Unit Along-track  Out-of-plane Radial Science bound 

a  Pointing ( )2μm/s / Hz  3.200 0.114 0.095  

Science ( )2μm/s / Hz  0.013 0.010 0.007 0.025 

Figure 3 shows the angular accelerations estimated from the star tracker measurements, during 

pointing and science modes. They join at 79 kst =  through the large bias estimated during the 

calibration phase by the drag-free state-predictor corresponding to subset 2 in Table 2. During 

pointing and calibration phases, the perturbing torques (Section 2.3) are estimated by the attitude 

state-predictor defined by subset 1 in Table 2: they are shown in Figure 3 for 79 kst < , in angular 

acceleration units. The estimation time has been made longer than 10 ks  for plotting purposes. In 

the science mode the opposite occurs, as the attitude state-predictor (subset 1) only estimates the 

weak accelerometer drift which is obscured in Figure 3 by accelerometer bias. Perturbing torques 

are instead estimated from the drag-free predictor (subset 2) and cancelled by the control law (29). 
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Figure 3 Angular accelerations estimated by attitude predictor in the pointing (left) and science 

modes (right). 

Figure 4 shows the residual angular rate and illustrates the difference in performance between 

pointing and science modes. The pointing mode is dominated by star-tracker noise, which can be 

filtered out in the science mode so as to meet attitude and angular rate requirements in the mission 

band 1F . The same noise cannot be adequately filtered out in the pointing mode so as to make 

available a wider BW than in the science mode, and thus to cancel perturbing torques in the absence 

of drag-free control. 
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Figure 4 Residual angular rate in the pointing (left) and science modes (right). 

6 Conclusions 
The paper outlines Embedded Model and noise design for drag-free and attitude control, that can 

combine position/attitude and accelerometer measurements in a suite of control modes. Noise 

design selects the necessary and sufficient feedback channels for updating disturbance to be rejected 

in real-time. The resulting models and state predictors are rather generic, and apply to future drag-

free missions requiring satellite formation. Models and predictors constitute the formal image of the 

control code and enable a smooth switching between control modes, by means of appropriate 

Boolean variables. Feedback gains are tuned by means of eigenvalue assignment, respecting 

performance and robust stability. Simulated results are outlined showing performance under 
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different modes which are typical of drag-free missions like GOCE. Soon after the launch in Spring 

2009, GOCE entered the early stages of the pointing mode, prior to commissioning and science 

mode. 
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