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Algebraic strata for non symmetrical orthogonal

fractional factorial designs and application

Roberto Fontana and Giovanni Pistone

1 Introduction

All the fractional factorial designs that satisfy a set of conditions in terms of orthogo-

nality between factors have been described as the zero-set of a system of polynomial

equations in which the indeterminates are the complex coefficients of their counting

polynomial functions [8], [5], see [6] for a short review. What is needed for this pa-

per is recalled in Section 2. In Section 3 we define strata. We write the problem of

finding fractional factorial designs that satisfy a set of conditions as a system of lin-

ear equations in which the indeterminates are positive integers and we provide some

results on regular fractions, wordlength patterns and margins. In section 4, using

4ti2 [11] we find all the generators of some classes of fractional factorial designs,

including mixed level orthogonal arrays and sudoku designs. Finally, in section 5

we study how to sample from the space of solutions. We build a procedure to move

between fractions that use Markov basis, where moves between different fractions

are defined as integer valued functions over the full factorial design.

2 Notation and background

2.1 Full factorial design

We adopt the notations used in [8], namely:
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2 Roberto Fontana and Giovanni Pistone

• D j is a factor with n j levels coded with the n j-th roots of the unity:

D j = {ω0, . . . ,ωn j−1} ωk = exp

(√
−1

2π

n j

k

)

≡ exp

(

i
2π

n j

k

)

;

• D is the full factorial design with complex coding

D = D1 ×·· ·D j · · ·×Dm .

• #D is the cardinality of D .

• L is the full factorial design with integer coding

L = Zn1
×·· ·×Zn j

· · ·×Znm ,

• α is a generic element of L

α = (α1, . . . ,αm) α j = 0, . . . ,n j −1, j = 1, . . . ,m .

• [α −β ] is the m-tuple made by the componentwise difference

(

[α1 −β1]n1
, . . . , [α j −β j]n j

, . . . , [αm −βm]nm

)

;

the computation of the j-th element being in the ring Zn j
.

• X j is the j-th component function, which maps a point to its i-th component

X j : D 3 (ζ1, . . . ,ζm) 7−→ ζ j ∈ D j ;

the function X j is called simple term or, by abuse of terminology, factor.

• Xα is the interaction term X
α1
1 · · ·Xαm

m , i.e. the monomial function

Xα : D 3 (ζ1, . . . ,ζm) 7→ ζ α1
1 · · ·ζ αm

m ;

We underline that L is both the full factorial design with integer coding and the

exponent set of all the simple factors and interaction terms and α is both a treatment

combination in the integer coding and a multi-exponent of an interaction term. These

identifications make the complex coding especially simple.

The full factorial design in complex coding is identified as the zero-set in C
m of

the system of polynomial equations

X
n j

j −1 = 0 , j = 1, . . . ,m . (1)

Definition 1. 1. A response f on the design D is a C-valued polynomial function

defined on D .

2. The mean value on D of a response f , denoted by ED ( f ), is:

ED ( f ) =
1

#D
∑

ζ∈D

f (ζ ) .
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3. A response f is centered on D if ED ( f ) = 0. Two responses f and g are orthog-

onal on D if ED ( f g) = 0, where g is the complex conjugate of g.

It should be noticed that the set of all the responses is a complex Hilbert space with

the Hermitian product:

f ·g = ED ( f g) .

Moreover

1. Xα Xβ = X [α−β ];

2. ED (X0) = 1, and ED (Xα) = 0 for α 6= 0.

The set of functions {Xα , α ∈ L} is an orthonormal basis of the complex re-

sponses on design D . In fact #L = #D and, from properties (i) and (ii) above, it

follows that:

ED (Xα Xβ ) = ED (X [α−β ]) =

{

1 if α = β

0 if α 6= β

In particular, each response f can be represented as a unique C-linear combina-

tion of constant, simple and interaction terms. This representation is obtained by

repeated applications of the re-writing rules derived from Equations (1). Such a

polynomial is called the normal form of f on D . In this paper we intend that all the

computation are made using the normal form.

Example 1. Consider the 23 full factorial design. All the monomial responses on D

are

1, X1, X2, X3, X1X2, X1X3, X2X3, X1X2X3

or, equivalently,

X (0,0,0),X (1,0,0),X (0,1,0),X (0,0,1),X (1,1,0),X (1,0,1),X (0,1,1),X (1,1,1)

and L is

L = {(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)} .

2.2 Fractions of a full factorial design

A fraction F is a multiset (F∗, f∗) whose underlying set of elements F∗ is con-

tained in D and f∗ is the multiplicity function f∗ : F∗ → N that for each element in

F∗ gives the number of times it belongs to the multiset F .

All fractions can be obtained by adding polynomial equations, called generating

equations to the design equations 1, in order to restrict the number of solutions.

Definition 2. If f is a response on D then its mean value on F , denoted by EF ( f ),
is
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EF ( f ) =
1

#F
∑

ζ∈F

f (ζ )

where #F is the total number of treatment combinations of the fraction.

A response f is centered if EF ( f ) = 0. Two responses f and g are orthogonal

on F if EF ( f g) = 0.

With the complex coding the vector orthogonality of two interaction terms Xα

and Xβ as defined before (with respect to a given Hermitian product) corresponds

to the combinatorial orthogonality as specified in Proposition 7.

We consider the general case in which fractions can contain points that are repli-

cated.

Definition 3. The counting function R of a fraction F is a response defined on D

so that for each ζ ∈ D , R(ζ ) equals the number of appearances of ζ in the fraction.

A 0− 1 valued counting function is called indicator function of a single replicate

fraction F . We denote by cα the coefficients of the representation of R on D using

the monomial basis {Xα , α ∈ L}:

R(ζ ) = ∑
α∈L

cα Xα(ζ ) ζ ∈ D cα ∈ C .

As the counting function is real valued, we have cα = c[−α]. We will write c0 in

place of c0,...,0.

Remark 1. The counting function R coincides with multiplicity function f∗.

Proposition 1. Let F be a fraction of a full factorial design D and R = ∑α∈L cα Xα

be its counting function.

1. The coefficients cα are:

cα =
1

#D
∑

ζ∈F

Xα(ζ ) ;

in particular, c0 is the ratio between the number of points of the fraction and that

of the design.

2. In a fraction without replications, the coefficients cα are related according to:

cα = ∑
β∈L

cβ c[α−β ] .

3. The term Xα is centered on F , i.e. EF (Xα), if, and only if,

cα = c[−α] = 0 .

4. The terms Xα and Xβ are orthogonal on F , i.e. EF (Xα Xβ ) = 0, if, and only if,

c[α−β ] = 0 .
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Example 2. We consider the fraction F = {(−1,−1,1),(−1,1,−1)} of the 23 full

factorial design of Example 1. All the monomial responses on F and their values

on the points are

ζ 1 X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3

(−1,−1,1) 1 −1 −1 1 1 −1 −1 1

(−1,1,−1) 1 −1 1 −1 −1 1 −1 1

Using Item 1 of Proposition 1, it is easy to compute the coefficients cα : c(0,1,0) =

c(0,0,1) = c(1,1,0) = c(1,0,1) = 0; c(0,0,0) = c(1,1,1) = 2
4

and c(1,0,0) = c(0,1,1) = − 2
4
.

Hence, the indicator function is

F =
1

2
(1−X1 −X2X3 +X1X2X3) .

From the null coefficients we see that X1 and X3 are centered and that X1 is orthog-

onal to both X2 and X3. �

2.3 Projectivity and orthogonal arrays

Definition 4. A fraction F factorially projects onto the I-factors, I ⊂ {1, . . . ,m}, if

the projection is a multiple full factorial design, i.e. a full factorial design where each

point appears equally often. A fraction F is a mixed orthogonal array of strength t

if it factorially projects onto any I-factors with #I = t.

Strength t means that, for any choice of t columns of the matrix design, all possible

combinations of symbols appear equally often.

Proposition 2 (Projectivity).

1. A fraction factorially projects onto the I-factors if, and only if, all the coefficients

of the counting function involving only the I-factors are 0.

2. If there exists a subset J of {1, . . . ,m} such that the J-factors appear in all the

non null elements of the counting function, the fraction factorially projects onto

the I-factors, with I = Jc.

3. A fraction is an orthogonal array of strength t if, and only if, all the coefficients

of the counting function up to the order t are zero:

cα = 0 for all α of order up to t, α 6= (0,0, . . . ,0) .

Example 3 (Orthogonal array).

The fraction of a 25 full factorial design
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FO = {(−1,−1,−1,−1,−1,1),(−1,−1,−1,1,1,1),(−1,−1,1,−1,−1,−1),

(−1,−1,1,1,1,−1),(−1,1,−1,−1,−1,−1),(−1,1,−1,1,1,−1),(−1,1,1,−1,1,1),

(−1,1,1,1,−1,1),(1,−1,−1,−1,1,1),(1,−1,−1,1,−1,1),(1,−1,1,−1,1,−1),

(1,−1,1,1,−1,−1),(1,1,−1,−1,1,−1),(1,1,−1,1,−1,−1),(1,1,1,−1,−1,1),

(1,1,1,1,1,1)}

is an orthogonal array of strength 2; in fact, its indicator function

F =
1

4
+

1

4
X2X3X6 −

1

8
X1X4X5 +

1

8
X1X4X5X6 +

1

8
X1X3X4X5

+
1

8
X1X2X4X5 +

1

8
X1X3X4X5X6 +

1

8
X1X2X4X5X6

+
1

8
X1X2X3X4X5 −

1

8
X1X2X3X4X5X6

contains only terms of order greater than 2, together with the constant term. �

3 Counting functions and strata

From Proposition 1 and Proposition 2 we have that the problem of finding fractional

factorial designs that satisfy a set of conditions in terms of orthogonality between

factors can be written as a polynomial system in which the indeterminates are the

complex coefficients cα of the counting polynomial fraction.

Example 4. Let’s consider 3 factors, each one with two levels. The indicator func-

tions F = ∑α cα Xα such that the terms X1,X2,X3 are centered on F and the terms

Xi,X j i, j = 1,2,3, i 6= j are orthogonal on F , where F = {ζ ∈ D : F(ζ ) = 1}, are

those for which the following conditions on the coefficients of F holds

{

c0 = c2
0 + c2

123

c123 = 2c0c123

Apart from the trivial F = 0, i.e. F = /0 and F = 1, i.e. F = D we find F =
1
2
(1+X1X2X3) and F = 1

2
(1−X1X2X3)

Let’s now introduce a different way to describe the full factorial design D and all

its subsets. Let’s consider the indicator functions 1ζ of all the single points of D

1ζ : D 3 (ζ1, . . . ,ζm) 7→
{

1 ζ = (ζ1, . . . ,ζm)

0 ζ 6= (ζ1, . . . ,ζm)

It follows that the counting function R of a fraction F can be written as

∑
ζ∈D

yζ 1ζ
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with yζ ≡ R(ζ ) ∈ {0,1, . . . ,n, . . .}. The particular case in which R is an indicator

function corresponds to yζ ∈ {0,1}.

The coefficients yζ are related to the coefficients cα as in the following Proposi-

tion 3

Proposition 3. Let F be a fraction of D . Its counting fraction R can be expressed

both as R = ∑α cα Xα and R = ∑ζ∈D yζ 1ζ . The relation between the coefficients cα

and yζ is

cα =
1

#D
∑

ζ∈D

yζ Xα(ζ )

Proof. From Proposition 1 we have

cα =
1

#D
∑

ζ∈F

Xα(ζ ) =

=
1

#D
∑

ζ∈D

yζ Xα(ζ )

3.1 Strata

As described in Section 2, we consider m factors, D1, . . . ,Dm where D j ≡ Ωn j
=

{ω0, . . . ,ωn j−1}, for j = 1, . . . ,m. From [8], we recall two basic properties which

hold true for the full design D .

Proposition 4. Let X j the simple term with level set Ωn j
= {ω0, . . . ,ωn j−1}. Let’s

consider the term X r
j and let’s define

s j =

{

1 r = 0

n j/gcd(r,n j) r > 0

Over D , the term X r
j takes all the values of Ωs j

equally often.

Proposition 5. Let Xα = X
α1
1 · · ·Xαm

m an interaction. X
αi
i takes values in Ωsi

where si

is determined according to the previous Proposition 4. Let’s define s = lcm(s1, . . . ,sm).
Over D , the term Xα takes all the values of Ωs equally often.

Let’s now define the strata that are associated to simple and interaction terms.

Definition 5. Given a term Xα ,α ∈ L = Zn1
× . . .×Znm the full design D is parti-

tioned into the the following strata

Dα
h =

{

ζ ∈ D : Xα(ζ ) = ωh

}

where ωh ∈ Ωs and s is determined according to the previous Propositions 4 and 5.
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Remark 2. We define strata using the conjugate Xα of the term in place of the term

Xα itself because it will simplify the notations.

Remark 3. Each stratum is a regular fraction whose defining equation is Xα(ζ ) =
ω−h, [8].

We use nα,h to denote the number of points of the fraction F that are in the

stratum Dα
h , with h = 0, . . . ,s−1,

nα,h = ∑
ζ∈Dα

h

yζ

The following Proposition 6 links the coefficients cα with nα,h. In the Appendix

we will explore the concept of strata for generic compex valued functions defined

over D .

Proposition 6. Let F be a fraction of D with counting fraction R = ∑α∈L cα Xα .

Each cα ,α ∈ L, depends on nα,h,h = 0, . . . ,s−1, as

cα =
1

#D

s−1

∑
h=0

nα,hωh

where s is determined by Xα (see Proposition 5). Viceversa, each nα,h,h = 0, . . . ,s−
1, depends on c[−kα],k = 0, . . . ,s−1 as

nα,h =
#D

s

s−1

∑
k=0

c[−kα]ω[hk]

Proof. Using Proposition 3, it follows that we can write the coefficients cα in the

following way

cα =
1

#D
∑

ζ∈D

yζ Xα(ζ ) =
1

#D

s−1

∑
h=0

ωh ∑
ζ∈Dα

h

yζ =
1

#D

s−1

∑
h=0

nα,hωh

For the viceversa, we observe the indicator function of strata can be obtained as

follows. We define

F̃s
0 (ζ ) =

s−1

∑
k=0

ζ k =

{
1−ζ s

1−ζ
if ζ 6= 1

s if ζ = 1

We have F̃s
0 (ωk) = 0 for all ωk ∈ Ωs,k 6= 0. It follows that

Fα,0(ζ ) =
1

s
F̃s

0 (ζ α) =
1

s

(

1+ζ α + . . .+ζ (s−1)α
)

is the indicator function associated to Dα
0 .

The indicator of Dα
h =

{

ζ ∈ D : Xα(ζ ) = ωh

}

=
{

ζ ∈ D : Xα(ζ ) = ω[−h]

}
will

be
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Fα,h(ζ ) = Fs
0 (ωhζ α) =

1

s

(

1+ωhζ α + . . .+ω[(s−1)h]ζ
(s−1)α

)

We get

nα,h = ∑
ζ∈Dα

h

R(ζ ) = ∑
ζ∈D

Fα,h(ζ )R(ζ ) =

= ∑ζ ∈ D

(

1

s

s−1

∑
k=0

ω[kh]X
kα(ζ )

)(

∑
β

cβ Xβ (ζ )

)

=

=
#D

s
∑

k,β :[kα+β ]=0

ω[kh]cβ =
#D

s

s−1

∑
k=0

ω[kh]c[−kα]

Remark 4. From Proposition 6 we get

n0,h = 0, h = 1, . . . ,s−1

nα,0 =
#D

s

s−1

∑
k=0

c[−kα]

and in particular n0,0 = #F .

We now use a part of Proposition 3 of [8] to get conditions on nα,h that makes

Xα centered on the fraction F .

Proposition 7. Let Xα be a term with level set Ωs on full design D . Let P(ζ ) the

complex polynomial associated to the sequence (nα,h)h=0,...,s−1 so that

P(ζ ) =
s−1

∑
h=0

nα,hζ h

and let’s denote by Φs the cyclotomic polynomial of the s-roots of the unity.

1. Let s be prime. The term Xα is centered on the fraction F if, and only if, its s

levels appear equally often:

nα,0 = nα,1 = . . . = nα,s−1 = λα

2. Let s = p
h1
1 . . . p

hd

d with pi prime, for i = 1, . . . ,d. The term Xα is centered on the

fraction F if, and only if, the remainder

H(ζ ) = P(ζ ) mod Φs(ζ )

whose coefficients are integer linear combinations of nα,h,h = 0, . . . ,s − 1, is

identically zero.

Proof. See Proposition 3 of [8].
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Remark 5. Being Dα
h a partition of D , if s is prime we get λα = #F

s
.

If we remind that nα,h are related to the values of the counting function R of a

fraction F by the following relation

nα,h = ∑
ζ∈Dα

h

yζ ,

this Proposition 7 allows to express the condition Xα is centered on F as integer

linear combinations of the values R(ζ ) of the counting function over the full design

D . In the Section 4, we will show the use of this property to generate fractional

factorial designs.

We conclude this section limiting to the particular case where all factors have

the same number of levels s and s is prime. We provide some results concerning

the coefficients of counting functions, regular fractions, wordlength patterns and

margins.

3.2 Coefficients of the polynomial counting function

From Proposition 7 we get the following result on the coefficients of a counting

function

Proposition 8. Given a counting function R = ∑α cα Xα , if cα = 0 then c[k·α] = 0

for all k = 1, . . . ,s−1, where [k ·α] is α + . . .+α
︸ ︷︷ ︸

k times

in the ring Z
m
s .

Proof. Let’s consider ck·α . From Proposition 7, ck·α is equal to zero if, and only if,

∑
ζ∈Dk·α

0

yζ = ∑
ζ∈Dk·α

1

yζ = . . . = ∑
ζ∈Dk·α

s−1

yζ

We observe that

Dk·α
h =

{

ζ ∈ D : Xk·α(ζ ) = ωh

}

=

=
{

ζ ∈ D : Xα(ζ )
k
= ωh

}

=
{

ζ ∈ D : Xα(ζ ) = ω[kh]

}

= Dα
[kh]

where [kh] is h+ . . .+h
︸ ︷︷ ︸

k times

in the ring Zs.

It follows that Xα and Xk·α partition D in the same strata and therefore we get

the proof.
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3.3 Regular designs

Let’s consider a fraction F without replicates and with indicator function F =

∑α cα Xα . Proposition 5 in ([8]) states that a fraction F is regular if, and only if, its

indicator function F has the form

F =
1

l
∑

α∈L

e(α)Xα

where L ⊆ L, L is a subgroup of L and e : L →{ω0, . . . ,ωs−1} is a given mapping.

If we use Proposition 7 we immediately get a characterisation of regular fractions

based on the frequencies nα,h.

Proposition 9. Given a single replicate fraction F with indicator function F =

∑α cα Xα the following statements are equivalent:

(i) F is regular

(ii) for nα,h there are only two possibilities

a. if cα = 0 then nα,h = #F

s
, h = 0, . . . ,s−1,

b. if cα 6= 0 then ∃h∗ ∈ {0, . . . ,s−1} such that

nα,h =

{
#D

l
if h = h∗

0 otherwise

Proof. Using Proposition 6 we get

cα =
1

#D

s−1

∑
h=0

nα,hωh

Proposition 5 in [8] gives the following conditions on the coefficients of the indicator

function F of a regular fraction F :

cα =

{
e(α)

l
, α ∈ L ⊆ L

0 otherwise

where e : L →{ω0, . . . ,ωs−1}, l = #L and L is a subgroup of L.

Let’s consider α ∈ L . We get

1

#D

s−1

∑
h=0

nα,hωh =
e(α)

l

Let’s suppose e(α) = ωh∗ . We obtain

1

#D

s−1

∑
h=0,h6=h∗

nα,hωh +(
1

#D
nα,h∗ −

1

l
)ωh∗ = 0 (2)
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To simplify the notation we let ah = 1
#D

nα,h,h = 0, . . . ,s − 1,h 6= h∗ and ah∗ =
1

#D
nα,h∗ − 1

l
. Therefore, from the proof of item (1) of Proposition 7, for the rela-

tion 2 to be valid, it should be

a0 = a1 = . . . = as−1

Being ∑
s−1
h=0 nα,h = #F it follows

s−1

∑
h=0

nα,h =
s−1

∑
h=0,h6=h∗

(#D)ah +(#D)(ah∗ +
1

l
) = (#D)

s−1

∑
h=0

ah +
(#D)

l
= #F

and so

ah =
1

s(#D)
(#F − (#D)

l
)

We finally get

nα,h =

{
1
s
(#F − (#D)

l
)+ (#D)

l
if h = h∗

1
s
(#F − (#D)

l
) otherwise

Being L a subgroup of L it follows that 0 ∈ L and so c0 = 1/l. We also know that

c0 = #F

#D
and therefore

#F =
#D

l

For the null coefficients of F , {cα : α ∈ L−L }, it is enough to refer to the proof of

item 1 of Proposition 7 to conclude the proof.

3.4 Wordlength Pattern

Aberration is often used as a criterion to compare fractional factorial designs. The

generalized minimum aberration, proposed by [12], is based on the generalised

wordlength pattern, see also [1]. It can be shown that the generalized wordlengths

can be written in terms of the squares of the modules of the coefficients cα , obtaining

A j =

(
#D

#F

)2

∑
wt(α)= j

|cα |2 =
1

c2
0

∑
wt(α)= j

|cα |2 for j = 1, . . . ,m

where wt(α) is the Hamming weight of α , i.e. the number of nonzero components

of α . We now express the square of the module of the coefficient cα in terms of nα,h.

Proposition 10.

|cα |2 =
1

(#D)2

s−1

∑
h=0

(n2
α,h −nα,hn[α,h−γ]) for γ ∈ {1, . . . ,s−1}
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Proof. From Proposition 6 we get

cα =
1

#D

s−1

∑
h=0

nα,hωh

It follows

|cα |2 = cα cα =

=
1

(#D)2
(

s−1

∑
h=0

nα,hωh)(
s−1

∑
k=0

nα,kωk) =

=
1

(#D)2
(

s−1

∑
h=0

nα,hωh)(
s−1

∑
k=0

nα,kω[s−k]) =

=
1

(#D)2

s−1

∑
γ=0

s−1

∑
p=0

nα,pn[α,p−γ]ωγ

|cα |2 must be a real number. Being ω0 = 1 it follows

(
1

(#D)2

s−1

∑
p=0

n2
α,p −|cα |2)ω0 +

1

(#D)2

s−1

∑
γ=1

s−1

∑
p=0

nα,pn[α,p−γ]ωγ = 0 (3)

To simplify the notation we let a0 =( 1
(#D)2 ∑

s−1
p=0 n2

α,p−|cα |2) and aγ = 1
(#D)2 ∑

s−1
p=0 nα,pn[α,p−γ],γ =

1, . . . ,s−1. Therefore, by the proof of item 1 of Proposition 7, for the relation 3 to

be valid, it should be

a0 = a1 = . . . = as−1

Using one of the equalities, a0 = ah h = 1, . . . ,s−1, it follows

|cα |2 =
1

(#D)2

s−1

∑
p=0

(n2
α,p −nα,pn[α,p−h])

Remark 6. Proposition 10 provides a useful tool to compute the modules of the coef-

ficients cα . Indeed it is enough to choose γ = 1 and compute |cα |2 as 1
(#D)2 ∑

s−1
h=0(n

2
α,h−

nα,hn[α,h−1]);

Remark 7. We make explicit these relations for 2 and 3 level fraction.

If s = 2 then

|cα |2 =
1

(#D)2
(nα,0 −nα,1)

2

If s = 3 then, choosing γ = 1,

|cα |2 =
1

(#D)2
(n2

α,0 +n2
α,1 +n2

α,2 −nα,0nα,2 −nα,1nα,0 −nα,2nα,1)
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Remark 8. We observe that, denoting by nα the mean of the values of nα,h, nα =
1
s ∑

s−1
h=0 nα,h, we get

s−1

∑
h=0

(nα,h −nα)2 =
s−1

∑
h=0

n2
α,h − sn2

α

We have

n2
α =

1

s2

s−1

∑
h,k=0

nα,hnα,k =

=
1

s2

(
s−1

∑
h=0

n2
α,h +2

s−1

∑
h=0

nα,hnα,[h−1] + . . .2
s−1

∑
h=0

nα,hnα,[h−s∗]

)

where s∗ = s−1
2

. Proposition 10 states that all the quantities ∑
s−1
h=0 nα,hnα,[h−γ] are

equal and so, choosing, without loss of generality, γ = 1, we get

n2
α =

1

s2

(
s−1

∑
h=0

n2
α,h +2s∗

s−1

∑
h=0

nα,hnα,[h−1]

)

=
1

s2

(
s−1

∑
h=0

n2
α,h +(s−1)

s−1

∑
h=0

nα,hnα,[h−1]

)

and therefore

s−1

∑
h=0

(nα,h −nα)2 =
s−1

∑
h=0

n2
α,h − sn2

α =

=
s−1

s

(
s−1

∑
h=0

n2
α,h −

s−1

∑
h=0

nα,hnα,[h−1]

)

=

=
s−1

s
(#D)2 |cα |2

It follows that, if we denote by σ2
α the variance of nα,h, σ2

α = 1
s ∑

s−1
h=0 (nα,h −nα)2

we get

|cα |2 =

(
s2

(s−1)(#D)2

)

σ2
α

and so the square of the module of cα represents, apart from a multiplicative con-

stant, the variance of the frequencies nα,h.

3.5 Margins

We now examine the relationship between the margins and the coefficients of the

counting functions. We refer to ([8]) and we report here a part of it.

For each point ζ ∈ D we consider the decomposition ζ = (ζI ,ζJ) where I ⊆
{1, . . . ,m} and J = {1, . . . ,m}− I ≡ Ic is its complement. We denote by RI(ζI) the

number of points in F whose projection on the I factors is ζI .



Algebraic strata for non symmetrical OFFD 15

In particular if I = {1, . . . ,m} we have RI = R and if I = /0 we have RI = #F .

We denote by LI the subset of the exponents restricted to the I factors and by αI

an element of LI :

LI = {aI = (α1, . . . ,αm),α j = 0 if j ∈ J}

Then for each α ∈ L and ζ ∈ D we have α = αI +αJ and Xα(ζ ) = Xα
I (ζI)X

α
j (ζJ).

Finally we denote by DI and DJ the full factorial over the I factors and J factors,

respectively (D = DI ×DJ).

We have the following proposition (see item 1 and 2 of Proposition 4 of [8])

Proposition 11. Given a fraction F of D

1. the number of replicates of the points of F projected on the I factors is:

RI(ζI) = #DJ ∑
αI

cαI
XαI (ζI)

2. F fully projects on the I factors if, and only if,

RI(ζI) = #DJ · c0 = #DJ
#F

#D
=

#F

#DI

We will refer to RI as k-margin, where k = #I. The number of k-margins is
(

m
k

)

and each k-margin can be computed over sk points ζI ∈ DI . It follows that there are

(1+ s)m marginal values in total.

Using item 1 of Proposition 11 and reminding that we work with a prime number

of level s we have

RI(ζI) = sm−k ∑
αI

cαI
ζ αI

I

or, by the definition of RI as the restriction of R over the I factors,

∑
ζJ∈DJ

R(ζI ,ζJ) ≡ ∑
ζJ∈DJ

yζI ,ζJ
= sm−k ∑

αI

cαI
ζ αI

I

We point out the following relationship between margins.

Proposition 12. If A⊆B⊆{1, . . . ,m} and RB(ζB)= sm−kBc0 then RA(ζA)= sm−kA c0

where #B = kB and #A = kA

Proof. Let’s put A1 = B−A. We have

RA(ζA) = ∑
ζA1

∈A1

RA∪A1
(ζA,ζA1

) = ∑
ζA1

∈A1

RB(ζA,ζA1
) = skB−kAsm−kBc0 = sm−kA c0

We finally observe that, as we already pointed out, given C ⊆ L a set of conditions

cα = 0,α ∈C translates in a set of conditions ∑ζ∈Dα
h

yζ = λ ,h = 0, . . . ,s−1,α ∈C

where λ does not depend by α (and by h). In general, with respect to margins, the

situation is different. For example let’s suppose to have a F that fully projects over
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the I1 and the I2 factors, with I1 ∩ I2 = /0 and #I1 6= #I2. From Proposition 11 we

obtain

RI1(ζI1) =
#D

s#I1
and RI2(ζI2) =

#D

s#I2

4 Generation of fractions

Let use strata to generate fractions that satisfy a given set of constrains on the coef-

ficients of their counting functions. Formally we give the following definition

Definition 6. A counting function R = ∑α cα Xα associated to F is a C -compatible

counting function if its coefficients satisfy to

cα = 0, α ∈ C , C ⊆ Zn1
× . . .Znm

We will denote by OF(n1 . . .nm,C ) the set of all the fractions whose counting func-

tions are C -compatible.

In the next sections, we will show our methodology on Orthogonal Arrays and

Sudoku designs.

4.1 OA(n,sm, t)

Let’s consider OA(n,sm, t), i.e. orthogonal arrays with n rows and m columns where

each columns has s symbols, s prime and with strength t.

Using Proposition 2 we have that the coefficients of the corresponding counting

functions must satisfy the conditions cα = 0 for all α ∈ C where C ⊆ L = {α :

0 < ‖α‖ ≤ t} where ‖α‖ is the number of non null elements of α . We have N1 =

∑
t
k=1

(
m
k

)
(s−1)k coefficients that must be null.

It follows that OF(sm,C ) =
⋃

n OA(n,sm, t).
Now using Proposition 7, we can express these conditions using strata. If we

consider α ∈ C we write the condition cα = 0 as







∑ζ∈Dα
0

yζ = λ

∑ζ∈Dα
1

yζ = λ

. . .

∑ζ∈Dα
s−1

yζ = λ

To obtain all the conditions it is enough to vary α ∈ C . We use Proposition 8 to

limit to the α that give different strata. It is easy to show that we obtain N2 = N1
s−1

different α , each of them generate s linear equations, for a total of
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N = sN2 = s
t

∑
k=1

(
m

k

)

(s−1)k−1

constraints on the values of the counting function over D .

We therefore get the following system of linear equations

AY = λ1

where A is the (N × sm) matrix whose rows contains the values, over D , of the

indicator function of the strata, 1Dα
h

, Y is the sm column vector whose entries are the

values of the counting function over D , λ will be equal to #F

s
and 1 is the sm column

vector whose entries are all equal to 1. We can write an equivalent homogeneous

system if we consider λ as a new variable. We obtain

ÃỸ = 0

where

Ã =







A

−1

−1

. . .
−1







= [A,−1]

and

Ỹ =

[
Y

λ

]

= (Y,λ )

In an equivalent way, we can also express the conditions cα = 0 for all α ∈ C in

terms of margins. We obtain

RI(ζI) = sm−(#I)c0

where I ⊆ {1, . . . ,m} and 1 ≤ #I ≤ t. If we recall Proposition 12, we can limit to the

margins RI where #I = t. We have st
(

m
t

)
values of such t margin

∑
ζJ∈DJ

yζI ,ζJ
= sm−tc0

In this case, with the same approach that we adopted for strata, we obtain a system

of linear equations

BY = ρ1

where ρ = sm−tc0 and its equivalent homogeneous system

B̃Ỹ = 0

Now we can find a set of generators of OF(sm,C ), that means of Orthogonal Arrays

OA(n,sm, t), by computing the Hilbert Basis [10] corresponding to Ã (or, equiva-

lently, to B̃). Given two orthogonal arrays Y1 ∈ OA(n1,s
m, t) and Y2 ∈ OA(n2,s

m, t) it
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is immediate to verify that Y1 +Y2 is an orthogonal array, Y1 +Y2 ∈OA(n1 +n2,s
m, t).

The Hilbert Basis is a minimal set of generators such that any OA(n,sm, t) becomes

a linear combination of the generators with positive or null integer coefficients. This

approach extends that of [2] where the following conditions were used

cα =
1

#D
∑

ζ∈F

Xα(ζ ) =
1

#D
∑

ζ∈D

Xα(ζ )yζ = 0

The advantage of using strata (or margins) is that we avoid computations with com-

plex numbers (Xα(ζ )). We explain this point in a couple of examples. For the com-

putation we use 4ti2 [11].

We use both Ã (strata) and B̃ (margins) because, even if they are fully equivalent

from the point of view of the solutions that they generate, they perform differently

from the point of view of the computational speed.

4.1.1 OA(n,25,2)

OA(n,25,2) were investigated in [2]. We build both the matrix Ã and B̃. They have 30

rows and 40 rows, respectively and 33 columns. We find the same 26,142 solutions

as in the cited paper.

4.1.2 OA(n,33,2)

We build both the matrix Ã and B̃. They have 54 rows and 27 rows, respectively and

28 columns. We find 66 solutions, 12 have 9 points, all different and 54 have 18

points, 17 different.

Finally we point out that 4ti2 allows to specify upper bounds for variables. For

example, if we use B̃ and we are interested in single replicate orthogonal arrays, we

can set 1 as the upper bound for yζ ,ζ ∈ D . The upper bound for the variable ρ can

be set to sm−t ≡ 33−2 that corresponds to c0 = 1, i.e. to the full design D .

4.2 OA(n,n1 . . .nm, t)

Let’s now consider the general case in which we do not put restrictions on the num-

ber of levels.
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4.2.1 OA(n,42,1)

In this case the number of levels is a power of a prime, 22. Using Proposition 2 we

have that the coefficients of the corresponding counting functions must satisfy the

conditions cα = 0 for all α ∈ C where C ⊆ L = {α : ‖α‖ = 1}.

Let’s consider c1,0. From Proposition 4 we have that X1 takes the values in Ωs

where s = 4. From Proposition 7, X1 will be centered on F if, and only if, the

remainder

H(ζ ) = P(ζ ) mod Φ4(ζ )

is identically zero. We have Φ4(ζ ) = 1 + ζ 2 see [7] and so we can compute the

remainder

H(ζ ) = n(1,0),0 −n(1,0),2 +(n(1,0),1 −n(1,0),3)ζ

The condition H(ζ ) identically zero translates into

{

n(1,0),0 −n(1,0),2 = 0

n(1,0),1 −n(1,0),3 = 0

Let’s now consider c2,0. From Proposition 4 we have that X2
1 takes the values in

Ωs where s = 2. From Proposition 7, X2
1 will be centered on F if, and only if, the

remainder

H(ζ ) = P(ζ ) mod Φ2(ζ )

is identically zero. We have Φ2(ζ ) = 1 + ζ see [7] and so we can compute the

remainder

H(ζ ) = n(2,0),0 −n(2,0),1

If we repeat the same procedure for all the α such that ‖α‖ = 1 and we recall that

nα,h = ∑
ζ∈Dα

h

yζ

orthogonal arrays OA(n,42,1) become the positive integer solutions of the following

integer linear homogeneous system
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

















1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0

0 1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0

0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0 1

1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 −1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0 0 0

0 0 0 0 −1 −1 −1 −1 0 0 0 0 1 1 1 1

















































y00

y10

y20

y30

y01

y11

y21

y31

y02

y12

y22

y32

y03

y13

y23

y33































=































0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0































Using 4ti2 we find 24 solutions that correspond to all the Latin Hypercupe Designs

(LHD).

4.2.2 OA(n,62,1)

As in the previous examples, using Proposition 2 we have that the coefficients of the

corresponding counting functions must satisfy the conditions cα = 0 for all α ∈ C

where C ⊆ L = {α : ‖α‖ = 1}.

Let’s consider c1,0. From Proposition 4 we have that X1 takes the values in Ωs

where s = 6. From Proposition 7, X1 will be centered on F if, and only if, the

remainder

H(ζ ) = P(ζ ) mod Φ6(ζ )

is identically zero. We have Φ6(ζ ) = 1−ζ +ζ 2 see [7] and so we can compute the

remainder

H(ζ ) = n(1,0),0 −n(1,0),2 −n(1,0),3 +n(1,0),6 +(n(1,0),1 +n(1,0),2 −n(1,0),5 −n(1,0),6)ζ

If we repeat the same procedure for all the α such that ‖α‖ = 1 and we recall that

nα,h = ∑
ζ∈Dα

h

yζ

orthogonal arrays OA(n,62,1) become the integer solutions of an integer linear ho-

mogeneous system AR = 0 where the matrix A is built as in the previous case of

OA(n,42,1). Using 4ti2 we find 620 solutions that correspond to all the LHD.
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4.3 Sudoku designs

As shown in [6], a sudoku can be described using its indicator function. Here we

report a very short synthesis of Section 1.3 of that work.

A p2 × p2 with p prime sudoku design can be seen as a fraction F of the full

factorial design D :

D = R1 ×R2 ×C1 ×C2 ×S1 ×S2

where each factor is coded with the p-th roots of the unity. R1 and R2, C1 and C2,

S1 and S2, represent the rows, the columns and the symbols of the sudoku grid,

respectively.

The following proposition (Proposition 5 of [6]) holds.

Proposition 13. Let F be the indicator function of a fraction F of a design design,

F = ∑α∈L bα Xα . The fraction F corresponds to a sudoku grid if and only if the

coefficients bα satisfy the following conditions:

1. b000000 = 1/p2, i.e. the ratio between the number of points of the fraction and the

number of points of the full factorial design is 1/p2;

2. for all i j ∈ {0,1, . . . , p−1}:

a. bi1i2i3i400 = 0 for (i1, i2, i3, i4) 6= (0,0,0,0),
b. bi1i200i5i6 = 0 for (i1, i2, i5, i6) 6= (0,0,0,0),
c. b00i3i4i5i6 = 0 for (i3, i4, i5, i6) 6= (0,0,0,0),
d. bi10i30i5i6 = 0 for (i1, i3, i5, i6) 6= (0,0,0,0)

i.e. the fraction factorially projects onto the first four factors and onto both sym-

bol factors and row/column/box factors, respectively.

From this Proposition, we define C as the union of C1, C2, C3 and C4, where

C1 = {(i1i2i3i400) : (i1, i2, i3, i4) 6= (0,0,0,0)}
C2 = {(i1i200i5i6) : (i1, i2, i5, i6) 6= (0,0,0,0)}
C3 = {(00i3i4i5i6) : (i3, i4, i5, i6) 6= (0,0,0,0)}
C4 = {(i10i30i5i6) : (i1, i3, i5, i6) 6= (0,0,0,0)}

The problem of finding Sudoku becomes equivalent to find C -compatible counting

functions, that are (i) indicator functions and (ii) that satisfy the additional require-

ment b0 = 1/p2.

4.3.1 4×4 Sudoku

We use the conditions C to build both the matrices Ã and B̃. Ã has 78 rows. With

respect to B̃, that corresponds to the margins that must be constant, if we recall

Proposition 12 we obtain 64 constraints, all corresponding to 4-margins.
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To find all sudoku we use 4ti2, specifying the upper bounds for all the 65 vari-

ables. The upper bounds for yζ ,ζ ∈ D must be equal to 1. If we use Ã, the upper

bound for λ must be set equal to #F

s
≡ 16

2
= 8, while if we use b̃ the upper bound

for ρ must be set equal to sm−kb0 ≡ 22 1
4

= 1.

We find all the 288 different 4×4 sudoku as in [6]. We point out that to solve the

problem using Ã the total time was 31.59 minutes, while using B̃ the total time was

only 58.04 seconds on the same computer.

If we admit counting functions with values in {0,1,2} and #F ≤ 32 we find

55,992 solutions.

5 Sampling

Sometimes, given a set of conditions C we are interested in picking up a solution

more than in finding all the generators. The basic idea is to generate somehow a

starting solution and then to randomly walk in the set of all the solutions for a certain

number of steps, taking the arrival point as a new but still C -compatible counting

function.

5.1 Sampling one solution

We can combine the previous results on strata (or equivalently on margins) with

Markov Chain Monte Carlo Methods to sample one solution. We show the meth-

ods on some examples with indicator functions but it can be extended to counting

functions.

Let’s consider OA(n,33,2) and let’s suppose that we are searching for an orthog-

onal array with 9 design points and no replications. It means that we are interested in

an indicator function whose values yζ ,ζ ∈ D satisfy the following system of linear

equation

BY = 1 (4)

where B, Y and 1 have the standard meaning (see Section 4.1.2).

We now use standard simulated annealing to find one solution of our system [9].

We define the function V that, for every indicator function defined over the design

D , counts the number of equations of the linear system 4 that are satisfied. In the

case under study there are 27 equations so V can take any integer values between 0

and 27. We describe the algorithm:

1. randomly choose an indicator function Y (0) with 9 points and let i = 1;

2. let Y (i) = Y (0) and compute V (Y (i));
3. randomly choose one point ζ1 between the points of D for which Y (i) is equal

to 1 and another point ζ2 between the points of D for which Y (i) is equal to 0.
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Generate Y (1) that will be equal to Y (i) with the values corresponding to ζ1 and

ζ2 exchanged.

4. let i = i+1, compute V (Y (1) and move to Y (1), that is let Y (i) = Y (1) with proba-

bility equal to min
{

1,exp(V (Y (1) −V (Y (0))
}

, otherwise stay at Y (i)

5. repeat steps 2 and 3 until a solution Y ∗ for which Y ∗ = 27 is found or when i

reaches the maximum number of allowed iteration

We have implemented this algorithm using SAS/IML. We have found a solution

in 2,702 iterations (a couple of seconds on a common laptop).

We have also experimented the algorithm on

• OA(9,34;3); we found one solution in 2,895 iterations;

• 4×4 sudoku; we found one solution in 2,852 iterations;

• 9×9 sudoku; we did not find any solution in 100,000 iterations;

With respect to the failure to find a solution for the 9×9 sudoku we observe that

we used a standard version of the simulated annealing algorithm. We expect that

the use of specific elements of the problem could lead to a significant improvement

of the performances of the algorithm. We conclude this section observing that the

algorithm can also be used to explore the set of solutions simply replacing stop when

an optimal solution is found with store the optimal solution and continue since the

maximum number of iterations is reached.

5.2 Moves

Let’s use the previous results on strata to get a suitable set of moves. We will show

this procedure in the case in which all the factors have the same number of levels s,

S prime, but it can also be applied to the general case. In Section 4 we have shown

that counting functions must satisfy the following set of linear equations

AY = λ1

where A corresponds to the set of conditions C written in terms of strata.

It follows that if, given a C -compatible solution Y , such that AY = λ1, we search

for an additive move X such that A(Y +X) is still equal to λ1, we have to solve the

following linear homogenous system

AX = 0

with X = (xζ ),ζ ∈D , xζ ∈Z and yζ +xζ ≥ 0 for all ζ ∈D . We observe that this set

of conditions allows to determine new C -compatible solutions that give the same

λ . We know that λ = #F

s
so this homogenous system determines moves that do not

change the dimension of the solutions.

Let’s now consider the extended homogeneous system, where Ã has already been

defined in Section 4,
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ÃX̃ = 0

with X̃ = (x̃ζ ),ζ ∈ D , x̃ζ ∈ Z and ỹζ + x̃ζ ≥ 0 for all ζ ∈ D .

Given Ỹ = (Y,λY ), where Y is C -compatible counting function and λY =
∑ζ yζ

s
,

the solutions of ÃX̃ = 0 determine all the other Ỹ + X̃ = (Y + X ,λY+X ) such that

Ã(Ỹ + X̃) = 0. Y +X are C -compatible counting functions whose sizes, sλY+X , are,

in general, different from that of Y .

5.3 Markov Basis

We use the theory of Markov basis (see for example [3] where it is also available a

rich bibliography on this subject) to determine a set of generators of the moves.

We use the following procedure in order to randomly select a C -compatible

counting function. We compute a Markov basis of ker(A) using 4ti2 [11]. Once we

have determined the Markov basis of ker(A), we make a random walk on the fiber

of Y , where Y , as usual, contains the values of the counting function of an initial

design F . The fiber is made by all the C -compatible counting functions that have

the same size of F . The randow walk is done randomly choosing one move among

the feasible ones, i.e. among the moves for which we do not get negative values for

the new counting function.

In the next paragraphs we consider moves for the cases that we have already

studied in Section 4.

5.4 Orthogonal arrays

5.4.1 OA(n,25,2)

We use the matrix A, already built in Section 4.1.1 and give it as input to 4ti2 to

obtain the Markov Basis, that we denote by M . It contains 5.538 different moves.

Given M = (xζ )∈M we define M+ = max(xζ ,0) and M− = max(−xζ ,0). We have

M = M+ −M−.

As an initial fraction F0, we consider the eight-run regular fraction whose indi-

cator function R0 is

R0 =
1

4
(1+X1X2X3)(1+X1X4X5)

We obtain the set of feasible moves observing that a move M ∈ M , to be feasible,

should be not negative when R0 is equal to zero that means

(1−R0)M
− = 0

We find 12 moves. Analogously an element M ∈ M such that
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(1−R0)M
+ = 0

gives a feasible move, −M. In this case we do not find any of such element.

Therefore, given R0, the set of feasible moves becomes MR0
that contains 12+0

different moves.

We randomly choose one move MR0
out of the 12 available ones and move to

R1 = R0 +MR0

We run 1.000 simulations repeating the same loop, generating Ri as Ri = Ri−1 +
MRi−1

.

We obtain all the 60 different 8-run fractions, each one with 8 different points as

in [2].

Using Ã we obtain the set M̃ that contains 18 different moves.

5.4.2 OA(n,33,2)

Using A as built in the Section 4.1.2, we use 4ti2 to generate the Markov basis

corresponding to the homogeneous system AX = 0. We obtain M that contains 81

different moves.

As an initial fraction we can consider the nine-run regular fraction F0 whose

indicator function R0 is

R0 =
1

3
(1+X1X2X3 +X2

1 X2
2 X2

3 )

We run 1.000 simulations repeating the same loop, i.e. generating Ri as Ri = Ri−1 +
MRi−1

.

We obtain all the 12 different 9-run fractions, each one with 9 different points as

known in the literature and as found in Section 4.1.2.

Using Ã we also obtain the set M̃ that contains 10 different moves.

5.4.3 4×4 sudoku

Using the matrix A built in Section 4.3.1, we run 4ti2 getting the Markov basis M

that contains 34.920 moves.

We randomly choose an initial sudoku

3 2 4 1

4 1 3 2

2 3 1 4

1 4 2 3

The corresponding indicator function is
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F0 =
1

4
(1−R2C1S1S2)(1−R1C2S1) .

Then we extract from M the feasible moves. We obtain a subset MF0
that contains

5 different moves. We repeat the procedure on −M and we obtain other 9 moves.

We randomly choose one move MF0
out of the 5+9 available ones and move to

F1 = F0 +MF0

We run 1.000 simulations repeating the same loop Fi = Fi−1 +MFi−1
.

We obtained all the 288 different 4×4 sudoku.

6 Conclusions

We considered mixed level fractional factorial designs. Given the counting function

R of a fraction F we translated the constraint cα = 0, where cα is a generic coeffi-

cient of its polynomial representation R = ∑α cα Xα , into a set of linear constraints

with integer coefficients on the values yζ that R takes on all the points ζ ∈ D . We

obtained the set of generators of the solutions of some problems using Hilbert Basis.

We also studied the moves between fractions. We characterized these moves as the

solution of a homogeneous linear system. We defined a procedure to randomly walk

among the solutions that is based on the Markov basis of this system. We showed

the procedure on some examples. Computations have been made using 4ti2 [11].

Main advantages of the procedure are that we do not put restrictions on the num-

ber of levels of factors and that it is not necessary to use software that deals with

complex polynomials.

One limit is in the high computational effort that is required. In particular only

a small part of the Markov basis is used because of the requirement that counting

functions can only take values greater than or equal to zero. The possibility to gen-

erate only the moves that are feasible could make the entire process more efficient

and is part of current research.

6.1 History

A preliminary version of this work [4] was presented by R.Fontana at the poster

session of the Transition Workshop, Program on Algebraic Methods in Systems Bi-

ology and Statistics, SAMSI, Research Triangle Park, NC, June 18-20, 2009. Con-

ference presentations of related material will include:

• the Special Session on Advances in Algebraic Statistics, American Mathematical

Society Sectional Meeting, #1057, Lexington, KY, March 27-28, 2010;

• the 45th Scientific Meeting of the Italian Statistical Society, University of Padua,

June 16 -18, 2010.
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7 Appendix: Functions over D

Let’s consider a complex valued function Y defined over D

ζ 3 D 7→ Y (ζ ) ∈ C

It can be represented as a polynomial Y (ζ )= ∑α∈L θα Xα(ζ ) where θα = 1
#D ∑ζ∈D Y (ζ )Xα(ζ ).

Let’s denote by n the lowest common multiple of n1, . . . ,nm, by N the cardinality

of the design D and by ω the primitive of the n-th root of the unity:

n = lcm(n1, . . . ,nm), N = n1 · . . . ·nm, ω = exp(
√

(−1)
2π

n
)

We get

θα =
1

N
∑

ζ∈D

Y (ζ )
s−1

∑
h=0

ωh1
Xα(ζ )=ωh

(ζ )=
1

N

s−1

∑
h=0

ωh ∑
ζ∈D

Y (ζ )1
Xα(ζ )=ωh

(ζ )=
1

N

s−1

∑
h=0

ωhwα,h(Y )

where wα,h(Y ) = ∑ζ∈D Y (ζ )1
Xα (ζ )=ωh(ζ )

It follows

Y (ζ ) = ∑
α∈L

θα Xα(ζ ) =
1

N

s−1

∑
h=0

ωh ∑
α∈L

wα,h(Y )Xα(ζ )

Given ζ ∈ D , ζ = (exp
(

i 2π
n1

a1

)

, . . . ,exp
(

i 2π
nm

am

)

we have

Xα(ζ ) = exp

(

i
2π

n
(

m

∑
j=1

n

n j

a jα j)

)

= ω
∑

m
j=1

n
n j

a j

It follows

Y (ζ ) =
1

N

s−1

∑
h=0

∑
α∈L

ωhwα,h(Y )Xα(ζ ) =
1

N

s−1

∑
k=0

ωk ∑
α∈L

wα,k−∑
m
j=1

n
n j

a jα j
(Y )

If we define

w̃k(ζ ,Y ) = ∑
α∈L

wα,k−∑
m
j=1

n
n j

a jα j
(Y )

we can write

Y (ζ ) =
1

N

s−1

∑
k=0

ωkw̃k(ζ ,Y )

Now we study the conditions under which a set of complex numbers w̃k(ζ ) provides

a representation of a complex valued function defined over D . Let’s define Y as
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Y (ζ ) =
1

N

s−1

∑
k=0

ωkw̃k(ζ )

It holds

wα,h(Y ) = ∑
ζ∈D

Y (ζ )1
Xα (ζ )=ωh(ζ )

The indicator function 1
Xα (ζ )=ωh(ζ ) can be written in polynomial form as

1

n

n

∑
j=0

ω jhX jα(ζ )

It follows

wα,h(Y )= ∑
ζ∈D

(

1

N

n−1

∑
k=0

ωkw̃k(ζ )

)(

1

n

n

∑
j=0

ω jhX jα(ζ )

)

=
1

nN
∑
k

∑
ζ

∑
j

ω
jh+k+ j ∑

m
i=1

n
ni

aiαiw̃k(ζ )

and so we obtain

wα,k−∑
m
i=1

n
ni

aiαi
=

1

nN
∑
r

∑
τ

∑
j

ω
j(k−∑

m
i=1

n
ni

aiαi)+r+ j(∑m
i=1

n
ni

biαi)w̃r(τ) =

1

nN
∑
r

∑
τ

∑
j

ω
r+ j(k−∑

m
i=1

n
ni

(bi−ai)αi)w̃r(τ)

We have

w̃k(ζ ) =

1

nN
∑
r

∑
τ

∑
j
∑
α

ω
r+ j(k−∑

m
i=1

n
ni

(bi−ai)αi)w̃r(τ) =

1

nN
∑
r

∑
τ

∑
α

ωrw̃r(τ)∑
j

ω
j(k−∑

m
i=1

n
ni

(bi−ai)αi)

We observe that

∑
j

ω
j(k−∑

m
i=1

n
ni

(bi−ai)αi) =

{

1 if α is such that k = ∑
m
i=1

n
ni

(bi −ai)αi

0 otherwise

and so the relationship that w̃k(ζ ) must satisfy is

w̃k(ζ ) =
1

nN
∑
r

∑
τ

ωrw̃r(τ)#

{

α : k =
m

∑
i=1

n

ni

(bi −ai)αi

}

If we let
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N(k,ζ ,τ) = #

{

α : k =
m

∑
i=1

n

ni

(bi −ai)αi

}

we finally obtain the conditions that must be satisfied by a set of complex numbers

w̃k(ζ ) to represent a complex valued function defined over D

w̃k(ζ ) =
1

nN
∑
r

ωr ∑
τ

N(k,ζ ,τ)w̃r(τ)
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