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Abstract—The intima-media thickness (IMT) of the com-
mon carotid artery is a widely used clinical marker of severe 
cardiovascular diseases. IMT is usually manually measured on 
longitudinal B-mode ultrasound images. Many computer-based 
techniques for IMT measurement have been proposed to over-
come the limits of manual segmentation. Most of these, how-
ever, require a certain degree of user interaction.

In this paper we describe a new, completely automated layer 
extraction technique (named CALEXia) for the segmentation 
and IMT measurement of the carotid wall in ultrasound imag-
es. CALEXia is based on an integrated approach consisting of 
feature extraction, line fitting, and classification that enables 
the automated tracing of the carotid adventitial walls. IMT is 
then measured by relying on a fuzzy K-means classifier. We 
tested CALEXia on a database of 200 images. We compared 
CALEXia’s performance with those of a previously developed 
methodology that was based on signal analysis (CULEXsa). 
Three trained operators manually segmented the images and 
the average profiles were considered as the ground truth. The 
average error from CALEXia for lumen-intima (LI) and me-
dia-adventitia (MA) interface tracings were 1.46 ± 1.51 pixel 
(0.091 ± 0.093 mm) and 0.40 ± 0.87 pixel (0.025 ± 0.055 mm), 
respectively. The corresponding errors for CULEXsa were 0.55 
± 0.51 pixels (0.035 ± 0.032 mm) and 0.59 ± 0.46 pixels (0.037 
± 0.029 mm). The IMT measurement error was equal to 0.87 
± 0.56 pixel (0.054 ± 0.035 mm) for CALEXia and 0.12 ± 0.14 
pixel (0.01 ± 0.01 mm) for CULEXsa. Thus, CALEXia showed 
limited performance in segmenting the LI interface, but out-
performed CULEXsa in the MA interface and in the number 
of images correctly processed (190 for CALEXia and 184 for 
CULEXsa). Based upon two complementary strategies, we an-
ticipate fusing them for further IMT improvements.

I. Introduction

The atherosclerotic process refers to the deposit of 
lipids in the artery wall. The increase of the artery 

walls thickness causes a reduction of the lumen with pos-
sible vascular problems. The increase in the intima-media 
thickness (IMT) of the carotid artery is one of the earlier 
clinical signs of an ongoing atherosclerotic process [1]. It 
has been shown that atherosclerosis increases the risk of 
several pathologies, ranging from myocardial infarction to 
stroke [2].

The IMT measurement is usually performed by relying 
on ultrasound images. The ultrasound technique produces 
images with lower spatial resolution and signal-to-noise 
ratio when compared with other imaging modalities, such 
as angiography, multi-slice computer tomography (cT), 
and magnetic resonance imaging (MrI). However, angiog-
raphy and cT expose the patient to radiation and require 
injection of contrast agents, whereas MrI is time consum-
ing and technically challenging [3]. In addition, X-ray an-
giography, cT, and MrI have high associated costs com-
pared with ultrasound. Because ultrasound devices are 
cheap, portable, real-time, and use no ionizing radiation, 
IMT is usually measured on B-mode ultrasound images in 
clinical practice.

Manual measurement of the IMT by expert sonogra-
phers is highly reliable but time consuming. also, results 
depend on the expert, with associated subjectivity. There-
fore, manual segmentation is impractical in large stud-
ies where standardization of the protocol is required and 
where the number of patients is very high.

different techniques have been proposed to perform 
automated IMT segmentation. some techniques were 
intended as computer-aided systems to help the opera-
tor in the measurement process [4] and required human 
interaction. Methods based on edge-detectors [5] usually 
require the manual selection of the carotid artery in the 
image frame. dynamic programming techniques [6] are of-
ten device-dependent and require retraining when the im-
age characteristics change. snake-based algorithms [7], [8] 
have a problem in initialization: the snake cannot reach a 
satisfactory convergence if its initial contour is placed far 
from the artery layers. Therefore, most of the snake-based 
methodologies are driven by the user. Human intervention 
precludes real automation and biases the results.

recently, Golemati et al. proposed an automated tech-
nique for the carotid segmentation and IMT measurement 
which was based on the Hough transform [9]. This al-
gorithm could locate the common carotid artery (cca) 
both in longitudinal and transverse images without any 
user interaction. The challenge with this technique is that 
only vessels appearing as horizontal and straight can be 
correctly identified and processed. However, B-mode im-
ages depicting a curved cca or an inclined vessel are 
common in clinical practice. another characteristic of this 
methodology is the need for human interaction to calcu-
late the IMT.

In 2007, the authors developed a completely user-inde-
pendent technique for the carotid artery wall segmenta-
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tion [10]. our methodology (cUlEXsa: completely user-
independent layer extraction based on signal analysis) was 
effective in processing both normal and diseased carotids, 
but suffered from the problem of noise and image arti-
facts. This resulted in a failure rate of about 15% of the 
images. Moreover, being based on local statistics, real-time 
implementation was impossible because of computational 
cost. nevertheless, segmentation performances were sat-
isfactory. When compared with manual tracings made by 
experts, the system gave segmentation errors lower than 
1 pixel (corresponding to about 0.06 mm) on the lumen-
intima (lI) and media-adventitia (Ma) boundaries. The 
error on the IMT measurement was about 56 μm [10], [11]. 
The final segmentation step of cUlEXsa is snake-based; 
hence, cUlEXsa shares most of the limitations that affect 
the other snake-based methodologies.

To overcome the limitations of this technique, in 2009 
we developed a completely automatic method for the cca 
localization in longitudinal B-mode images [12]. We named 
this technique calEXia (completely automatic layer ex-
traction based on integrated approach). This unique meth-
odology was based on an integrated approach consisting 
of feature extraction, line fitting, and classification. We 
tested calEXia on a 200-image database and validated 
its performance against human tracings. We showed that 
calEXia can trace the near and far adventitial layers 
with average errors of about 70 μm for the near adventi-
tia and 170 μm for the far adventitia. The major advan-
tages of this novel technique are: 1) user-independence, 2) 
reduced computational cost, 3) suitability for normal as 
well as pathological images, and 4) the correct process-
ing of any anatomy of the cca (i.e., curved, inclined, or 
diseased vessels).

The aim of this study was twofold: 1) to extend 
calEXia for IMT measurement and validation; and 2) 
to compare calEXia with cUlEXsa on the same image 
database and to set a standard of care for IMT measure-
ment in a clinical setting. Thus, our goal was to develop 
a robust utility for cca segmentation and IMT measure-
ment in diverse pathological cases.

II. Materials and Methods

A. Image Database and Recording Equipment

B-mode images of the common tract of the carotid ar-
tery were acquired by an aTl HdI500 device (aTl Ultra-
sound, seattle, Wa) equipped with a linear probe (code 
l12–5) with 38 mm aperture, 192 elements, and working 
in the frequency range of 5 to 12 MHz. all the images were 
acquired at a frequency of 10 MHz. Focal position was ad-
justed according to the depth of the cca and resulted in 
a range of 2.5 to 5 cm. considering a ultrasound propaga-
tion velocity equal to 1550 m/s, the resultant wavelength 
was equal to 155 μm. all the images were log-compressed 
and transferred to a computer via a dIcoM communi-
cation module. Because clinicians adjusted the scanning 

depth to anatomy during acquisitions, we resampled all 
the images at a standard density of 16 pixels/mm [8], [13]. 
axial resolution on the digitized image was thus equal 
to 0.0625 mm. all the images were coded by a 256-level 
grayscale (8-bit). We did not impose a standard gain set-
ting for all the acquisitions; in fact, the sonographer was 
instructed to adjust the gain settings according to his ex-
pertise and to best practice. This was done to test the 
strength of our techniques on real acquired data.

our testing database consisted of 200 images acquired 
from 150 consecutive patients (age 50 to 83 years; mean 
± standard deviation = 69 ± 16 years) of the neurology 
division of the Gradenigo Hospital, Torino, Italy. ninety 
subjects were males. all of the subjects were symptom-
atic and were referred to the neurology division either 
for neurological or cardiovascular disorders. all of the 
subjects were instructed about the study and signed an 
informed consent form prior to being submitted to the 
ultrasound examination. The Institutional committee of 
the Gradenigo Hospital approved this study.

B. Architecture of CULEXsa

cUlEXsa is a completely user-independent algorithm 
for extracting the layers of the artery wall. It is a two-step 
procedure based on signal analysis that:

 1)  automatically traces the near (adn) and far (adF) 
adventitia profiles;

 2) starting from the detected far adventitia, it adopts a 
gradient-based segmentation followed by a snake re-
finement to trace the lumen-intima (lI) and media-
adventitia (Ma) boundaries.

The detailed structure of cUlEXsa has already been de-
scribed [10], [11]. recently, we also demonstrated that 
cUlEXsa is effective in detecting the cca in normal as 
well as pathological images and that its performances are 
independent of the ultrasound oEM scanner used for data 
acquisition [14].

We summarize the overall functioning of cUlEXsa as 
follows:

 1)  The automated procedure for the recognition of the 
cca in the image is based on local statistics. ca-
rotid characteristics can be thought of as a mixture 
model with varying characteristics. This is because 
a) pixels belonging to the vessel l are characterized 
by low mean intensity and homogeneous neighbor-
hood; b) pixels belonging to the adventitia layer are 
characterized by a high mean intensity and a homo-
geneous neighborhood; c) all remaining pixels should 
have average mean intensity and non-homogeneous 
neighborhood. Therefore, for each pixel of the image, 
we compute the mean and standard deviation of a 
10 × 10 neighborhood. Mean values and standard 
deviation values are grouped into a histogram, where 
each class has a width equal to 0.02 [14]. We dem-
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onstrated that pixels belonging to the carotid lumen 
have mean intensity lower than 0.08 and standard 
deviation lower than 0.14 [14].

 2)  once the bi-dimensional histogram has been cal-
culated, the image is scanned column-wise. For 
each column, by using the signal envelope of the 
intensity profile, we first detect the adF layer, 
which is the brightest local maximum that can 
be found starting from the bottom of the image 
(i.e., from the highest row-index). Then, we search 
for a minimum local intensity whose neighborhood 
mean intensity is lower than 0.08 and standard de-
viation is lower than 0.14. This point was assigned 
to the l. at this point, the row-index is decreased 
and the first local intensity maxima is taken as 
the adn. The sequence of all the detected points 
forms the adn, adF, and l profiles. an example 
of cUlEXsa automated detection of the cca is 
shown in Fig. 1.

 3)  only the pixels between the adF and the l profiles 
(with reference to Fig. 1) are considered. For each 
column of the image, using the gradient approach 
we performed a first estimate of the lI and Ma pro-
files. The two higher intensity maxima of the gradi-
ent were considered as the initial guess of the lI and 
Ma interfaces. The sequence of the detected points 
in all the columns formed the initial guess of the lu-
men lI and Ma profiles.

 4)  Finally, the lI and Ma profiles are refined by using 
a snake algorithm. We adopted the classical formula-
tion of the energy function as proposed by Williams 
and shah [15]. The same formulation has been widely 
used in other studies [7], [8], [16]. Based on previous 
experience [10], we choose the following smoothing 
coefficients for the snake parameters: α(s) = 0.1 and 
β(s) = 0.01.

Fig. 2 shows a sample of cUlEXsa segmentation of a 
cca image. Full details can be seen in [10], [11].

C. Architecture of CALEXia

calEXia was developed as a generalized architecture 
for vessel wall segmentation. In this study, we specifical-
ly developed the segmentation of the distal (far) cca 
wall, where the measurement of the IMT is more reliable. 
calEXia consists of two parts:

 1)  a module that automatically locates the cca in the 
image;

 2)  a segmentation procedure that automatically traces 
the lI and the Ma contours of the distal (far) wall 
once cca has been localized.

Part 1 of calEXia architecture is the tracing of the 
distal and proximal adventitia layers. an example of the 
calEXia recognition procedure of the cca shown in 
Fig. 3. The original B-mode image [Fig. 3(a)] is considered 
column-wise after a heavy downsampling of the columns 
number. For each column, the algorithm finds qualified 
local intensity maxima that are located on the adventitial 
walls. These points are called seed points [seed points are 
overlaid on the grayscale image shown in Fig. 3(b)]. To 
estimate the location of the adventitial walls, seed points 
are then linked to form line segments. line segments are 
then connected if they are closed, adjacent, and aligned, 
therefore avoiding over-segmentation of the adventitial 
walls. line segments that do not lie over features of the 
image are discarded. This ensures that only highly echo-
genic image features are recognized. Valid line segments 
for the image in Fig. 3(a) are shown in Fig. 3(c) (they 
are denoted ls1, ls2, and ls3). among all the valid line 
segments, the procedure finds the pair that has the higher 
probability of enclosing the vessel lumen: if the pixel com-
prised between the two line segments are of low intensity 
and homogeneous, then the line segments correspond to 
the adventitia layers of the artery. In Fig. 3(c), the correct 
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Fig. 1. automated common carotid artery detection performed by 
cUlEXsa. The algorithm traces the profiles of the near (adn) and far 
(adF) adventitia. It also traces the course of the vessel lumen (l).

Fig. 2. Image segmentation performed by cUlEXsa: cUlEXsalI de-
notes the lumen-intima tracing; cUlEXsaMa denotes the media-adven-
titia tracing.



line segments are ls1 and ls2. The identified line seg-
ments become the final tracings of the adventitia layers 
[Fig. 3(d)]. The mathematical aspects of the first part of 
calEXia are detailed in [12].

The innovative aspect of this study is the usage of 
calEXia as a segmentation technique (i.e., its comple-
tion with part 2, as described previously). The segmenta-
tion strategy consists of the following steps:

 1)  To attenuate the effect of noise, we low-pass filter 
the image by using a 5 × 5 pixel Gaussian kernel 
with zero mean and standard deviation equal to 1.

 2)  We identify a region of interest (roI) starting from 
the traced far adventitia profile [indicated by adF 
in Fig. 4(a)]. The width of the roI is taken equal 
to the support of the adF tracing. The upper limit 
of the roI is calculated by moving the points of 
the adF boundary 20 pixels (1.25 mm) in the ver-
tical direction (i.e., toward the cca lumen). The 
lower limit of the roI is calculated by shifting the 
adF points 10 pixels (0.625 mm) downward (i.e., to-
ward the bottom of the image). We chose these shift 
values to ensure that the roI comprised a portion 
of the cca lumen and the tissues underneath the 
cca. This roI definition is robust even in presence 
of curved vessels. an example of the resultant roI is 

shown by the area enclosed by the white dashed line 
in Fig. 4(b).

 3)  We process only the pixels in the roI. The roI is 
considered column-wise. For each column we extract 
the signal envelope corresponding to the vertical in-
tensity profile. In Fig. 4(c), the white dashed line 
indicates a column of the roI and the black line in 
Fig. 4(d) represents the signal envelope. We consider 
only the pixels between the row-index 0 and the row-
index corresponding to the position of the adventi-
tial layer [in Fig. 4(d) the adF position is indicated 
by the vertical black dashed line. The corresponding 
row-index is 37].

 4)  The points of the signal envelope comprised between 
0 and the adF are clustered by using a fuzzy K-
means classifier. We fix the number of classes equal to 
three, ideally: artery lumen, intima-media complex, 
and adventitia layer. The classifier uses a Euclidean 
distance metric. Initialization is done by feeding the 
gray level intensity values along the signal envelope 
as input. artery lumen, intima and media layers, 
and adventitial layer can be easily identified by sort-
ing the center value of each class. The pixels at the 
boundaries between the clusters are considered as 
the markers of the lI and Ma interfaces. The black 
dots in Fig. 4(d) overlaid on the signal envelope in-
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Fig. 3. overview of the calEXia segmentation strategy for common carotid artery (cca) localization. (a) original B-mode image of the common 
tract of the carotid artery (JV is the jugular vein). (B) White dots represent the seed points detected on the image. These points are local intensity 
maxima. They constitute the basis for tracing line segments. (c) line segments after fitting. ls1, ls2, and ls3 represent the line segments that the 
procedure traced starting from the seed points. (d) Final tracings of the near and proximal (adn) and of the far and distal (adF) adventitia. This 
final tracing is derived from the line segments in (B) after classification.



dicate the position of the detected lI and Ma in-
terfaces.

 5)  steps 3 and 4 are repeated for all the columns of the 
roI. If the classifier fails to find 3 contiguous regions 
in a given column, then we discard that column. The 
sequence of the identified lI and Ma markers con-
stitute the final segmentation of the cca wall. The 
final profiles are then regularized by a B-spline. The 
result of the segmentation process for the image in 
Fig. 4(a) is shown in Fig. 5.

The two approaches we developed are based on completely 
different strategies. In cUlEXsa we exploit the local sta-
tistics of the image pixels to automatically discriminate 
between lumen pixels and tissue pixels. Pixels are consid-
ered as possibly belonging to the carotid lumen if their 
intensity is low and if other low-intensity points surround 
them. When the algorithm scans the intensity profile of 
each column, the local statistic is recalled as a stopping 
criterion: in fact, the markers of the adventitia walls are 
found as local maxima provided lumen pixels separate 
them. Therefore, our local statistics is basically inspired 
by the artery morphology and by the human perception of 
the carotid artery in the ultrasound frame. This enables 

the automated localization of the cca in the B-mode 
image. The cUlEXsa segmentation process is based on a 
combination of gradient and snake paradigms.

on the other hand, the calEXia strategy is based on 
an integrated approach of feature extraction, line fitting, 
and classification. The feature extraction procedure is 
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Fig. 5. Image segmentation performed by calEXia. The image is the 
same as in Fig. 4(a). calEXialI represents the lumen-intima tracing. 
calEXiaMa represents the media-adventitia tracing.

Fig. 4. schematic representation of segmentation performed by calEXia. (a) original image with far adventitia tracing (adF). The adF represent 
the starting point of the segmentation procedure. (B) automatic roI tracing based on the adF profile. The roI width is the same as adF tracing. 
The upper limit of the roI is set by shifting the adF profile 20 pixels (1.25 mm) upward. The lower limit of the roI is set by shifting the adF 
profile 40 pixels (2.5 mm) downward. (c) The previously extracted roI is the only portion of the image that is segmented. The pixels are considered 
column-wise (the white dashed line indicates one column of the roI). (d) The signal envelope of the intensity profile calculated along the white 
dashed line in (c). The horizontal axis reports the index row (i.e., the depth of the image, depth increases toward the right end of the graph). The 
vertical axis reports the signal envelope amplitude in arbitrary units. The vertical dashed line marks the position of the far adventitia. The black 
circles represent the boundaries between lumen-intima (lI) and media-adventitia (Ma) detected by the fuzzy K-means classifier.



needed to select what we called seed points. These points 
constitute the basis of both the automated cca localiza-
tion and of the segmentation. seed points are local inten-
sity maxima with specific characteristics (intensity value 
and breadth of the intensity curve) that are on the carotid 
walls (and specifically on the adventitia layer, which is the 
most echogenic part of the artery wall). True seed points 
are selected among candidates by using intelligent ap-
proaches based on linear discriminators that were trained 
in a previous study [12]. By connecting the seed points 
and classifying the resulting line segments, the adventitia 
layers of the cca can be easily traced. Using fuzzy logic, 
we performed the segmentation of the lI and Ma bound-
aries in calEXia.

Therefore, although they are both completely user-in-
dependent techniques, cUlEXsa and calEXia exploit 
totally different image features. This study compares their 
performance in terms of cca segmentation and IMT 
measurement.

D. Performance Evaluation Metrics

We developed a graphical user interface for three ex-
pert operators (a physician, a technician, and a neurolo-
gist), which they used independently to segment all of the 
200 images in the testing database [11]. We considered as 
ground truth (GT) to be the average profile of the human 
tracings.

considering the ith image in the database, we defined 
the segmentation error for each column c of the image as
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CALEXia LI LI

CALEXia
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CALEXia GT
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i

c c c
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where e
CALEXiaLI

i  and e
CALEXiaMA

i  represent calEXia’s ab-
solute segmentation errors for the lI and Ma interfaces, 
respectively; CALEXiaLI

i  and CALEXiaMA
i  represent the 

lI and Ma profiles as traced by calEXia; GTLI
i  and 

GTMA
i  represent the lI and Ma GT profiles; and c is an 

index spanning the columns of the image. Using this no-
menclature, we mathematically represented the errors for 
the cUlEXsa algorithm as

 
e

e
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CULEXsa
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CULEXsa GT
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i i i

i

c c c

c
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( )

= -
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where CULEXsaLI
i  and CULEXsaMA

i  represent the lI and 
Ma profiles as traced by cUlEXsa.

We also adopted the percent statistic algorithm to test 
whether the computer-generated boundaries differ from 
manual tracings as much as the manual tracings differ 
from one another. This test was proposed by chalana et 
al. [17] and then modified by alberola-lòpez et al. [18]. 
The basic idea is that if the computer-generated boundary 
behaves like a human-generated boundary, it must have 
the same probability of falling within the inter-observer 

range as the manual segmentation. For each tracing Ci, we 
computed the distance Dij from any other contour Cj. as 
proposed in previous studies, we used the average distance 
metric [18]. let Dm be the maximum distance between any 
two tracings (i.e., Dm = maxi,j{Dij} for i ≠ j). a tracing 
falls in the inter-observer range if the distances separating 
it from the others tracings are all lower than Dm. assum-
ing the human tracings as independent and identically dis-
tributed, the probability p of the computer-generated 
boundary falling into the inter-observer range is equal to 
p = (n − 1)/(n + 1), where n + 1 is the total number of 
tracings (i.e., n human tracing and 1 computer-generated 
boundary; in our study n = 3) and n − 1 is the number of 
contours minus the two contours with distance Dm. defin-
ing Xj as the event “the computer-generated tracing lies 
within the inter-observer range for the jth image,” then Xj 
is a random variable with Bernoulli distribution of param-
eters p and q = 1 − p. Because we have a database consist-
ing of n = 200 images, the variable Z X Njj

N= =å /1  can 
be considered as normally distributed with mean value 
equal to p and standard deviation equal to pq/N. Because 
we are trying to determine whether the computer-generat-
ed tracing falls outside the inter-observer range more often 
than the human tracings, we seek the one-sided confidence 
interval for the variable Z, i.e., the θ value for which P(p 
− Z > θ) = α, where 1 − α is the significance level. It was 
shown that q a= -pq Nz/ 1  [18], where z1−α is the value 
of a normal standard variable leaving an area equal to 1 
− α to its right. Therefore, the acceptance region for this 
test is where the critical value Z0 is greater than p − θ.

Finally, the IMT measurement was defined for the au-
tomated techniques and for the manual segmentations as 
follows:
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where CALEXia IMT
i  and CULEXsa IMT

i  are the IMT mea-
surements of calEXia and cUlEXsa and  GTIMT

i  is the 
IMT measurement derived by ground truth profiles.

With the mathematical expression of IMT given in (3), 
we defined the IMT measurement errors for calEXia and 
cUlEXsa as 

 
e

e
CALEXia IMT IMT

CULEXsa
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IMT
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CU

i i i

i

c c GT c

c

( ) ( ) ( )
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= LLEXsa IMT
i

IMT
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 (4)

where e
CALEXia IMT

i  and e
CULEXsa IMT

i  represent the calEXia 
and cUlEXsa absolute IMT measurement error for the 
ith image. The index c spans the columns of the image.

III. results and data analysis

In the following, we illustrate the segmentation per-
formance of calEXia and compare it with cUlEXsa. 
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of the 200 images, calEXia could not correctly identify 
the cca in 10 images (5% of the images). We previously 
discussed the possible problems of calEXia in automatic 
detection of the artery [12]. In these 10 images, calEXia 
detected the jugular vein instead of the carotid artery; 
these images were removed from the database.

cUlEXsa could not process 16 images out of 200 (8% 
of the images) because of excessive noise that precluded 
a proper identification of the far adventitia layer. Eight 
images were among the images that calEXia could not 
process. Therefore, we removed 18 images from the data-
base and tested our algorithms on n = 182 images.

A. Near and Far Carotid Profiles and Segmentation Error

For each image, we first computed the common support 
between GT, calEXia, and cUlEXsa. Then, we calcu-

lated the absolute segmentation errors in 50 equally spaced 
points. Thus, we obtained 9100 absolute error values for 
each interface and for each technique according to (1) and 
(2). Fig. 6 depicts the errors of the lI interface: the distri-
butions of the calEXia error e

CALEXiaLI

i( ) are reported by 
Fig. 6(a), whereas Fig. 6(b) reports the distribution of the 
cUlEXsa errors e

CULEXsaLI

i( ). The horizontal axis repre-
sents the error expressed in pixels, the vertical axis reports 
the relative frequency as a percentage. The mean error for 
the lI interface is equal to 1.46 ± 1.51 pixels for calEX-
ia and to 0.55 ± 0.51 pixels for cUlEXsa.

Fig. 7 reports the errors for the Ma interface. The dis-
tribution of the calEXia errors e

CALEXiaMA

i  is shown in 
Fig. 7(a); whereas Fig. 7(b) depicts the cUlEXsa errors 
e

CULEXsaMA

i . The mean error for the Ma interface is equal 
to 0.40 ± 0.87 pixels for calEXia and 0.59 ± 0.46 pixels 
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Fig. 7. absolute segmentation error distributions of the Ma profiles for calEXia and cUlEXsa. The 9100 error values (50 points × 182 images) 
are grouped in classes of 1 pixel each. The horizontal axis reports the absolute error in pixels. The vertical axis reports the relative frequency (i.e., 
the number of points falling in each class expressed as a percentage of the total number of error values). (a) distribution of e

CALEXiaMA

i . (b) distribu-

tion of e
CULEXsaMA

i .

Fig. 6. absolute segmentation error distributions of the lI profiles for calEXia and cUlEXsa. The 9100 error values (50 points × 182 images) are 
grouped in classes of 1 pixel each. The horizontal axis reports the absolute error in pixels. The vertical axis reports the relative frequency (i.e., the 
number of points falling in each class expressed as a percentage of the total number of error values). (a) distribution of e

CALEXiaLI

i . (b) distribution 

of e
CULEXsaLI

i .



for cUlEXsa. Table I summarizes the mean absolute seg-
mentation errors for the lI and Ma interfaces expressed 
in pixels and millimeters for calEXia and cUlEXsa.

on the lumen-intima (lI) interface, the segmentation er-
ror of calEXia e

CALEXiaLI

i( ) is greater than that of cUlEX-

sa e
CALEXiaLI

i( ) (paired student’s t-test, P < 0.05). The seg-

mentation of the lI interface is the most critical to 
calEXia. This is due to the fact that the fuzzy K-means 
classifier, which we use to mark the transitions between lu-
men and intima [Fig. 4(d)], underestimates the lI position. 
The calEXia average error on the lI interface is the only 
case in which we experienced segmentation errors greater 
than 1 pixel. The histogram is shown in Fig. 6(a) clearly 
demonstrates that the errors on the lI interface are between 
1 and 2 pixels in about 70% of the 9100 points. To test pos-
sible improvement on the lI interface tracing, we experi-
mented with different classifiers. In some cases, a better esti-
mation of the lI position caused a detriment in the estimation 
of the Ma position. This paper reports the optimal perfor-
mance achieved. some efficient classifiers require the selec-
tion of a threshold or critical value, but because complete 
automation a fundamental requirement of calEXia, we pre-
ferred to rely on the automation ensured by K-means.

We found that in about 7% of the columns of the roI, 
the K-means classifier could not cluster the signal enve-
lope in three contiguous classes. Because the average roI 
extension is about 300 columns, we had to discard on 
average 20 columns per roI. In the worst case, 15% of 
the columns were discarded (corresponding to about 45 
columns). Even considering column downsampling, we 
discarded less than 5 columns from a total number of 30 
in the worst case. Therefore, the low number of K-means 
failures did not influence the accuracy of the system. Pres-
ently, we are working on trying to improve this part of the 
algorithm by adding intelligent and adaptive procedures 
to the clustering of each signal envelope.

For the media-adventitia (Ma) interface, calEXia 
showed an average error (0.40 ± 0.87 pixels) lower than 
cUlEXsa (0.59 ± 0.46 pixels). Fig. 7 shows the superior 
performance of calEXia on the Ma interface.

Fig. 8 shows samples of calEXia and cUlEXsa trac-
ings: the top row [Fig. 8(a) and 8(b)] shows samples in 
which cUlEXsa outperforms calEXia; the bottom row 
[Fig. 8(c) and 8(d)] shows samples in which calEXia 
outperforms cUlEXsa. The left column [Fig. 8(a) and 
8(c)] shows the lI segmentation; whereas the right col-
umn [Fig. 8(b) and 8(d)] shows the Ma. In Fig. 8(a), 
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TaBlE I. Mean absolute Errors and standard deviations calculated on the Image database for 
the Two segmentation Techniques. 

Errors Units calEXia cUlEXsa

lumen-Intima (lI) pixel 1.46 ± 1.51 0.55 ± 0.51
mm 0.091 ± 0.093 0.035 ± 0.032

Media-adventitia (Ma) pixel 0.40 ± 0.87 0.59 ± 0.46
mm 0.025 ± 0.055 0.037 ± 0.029

Intima-Media Thickness (IMT) pixel 0.87 ± 0.56 0.12 ± 0.14
mm 0.054 ± 0.035 0.01 ± 0.01

The number of images used is 182. The first two rows report the mean absolute error for the lI interface; 
the next two rows report the mean absolute error for the Ma interface. The last two rows report the IMT 
calculation errors. The axial resolution is 0.0625 mm/pixel.

Fig. 8. comparative samples of calEXia (dashed lines) and cUlEXsa (dotted lines) segmentation compared with GT (continuous lines). The top 
row contains images in which cUlEXsa outperforms calEXia; in the bottom row calEXia outperforms cUlEXsa. The left column [(a) and (c)] 
cmopares lI tracings (white lines); the right column [(B) and (d)] compares Ma (black lines). (a) cUlEXsa outperforms calEXia in lI tracing. 
(B) cUlEXsa outperforms calEXia in Ma tracing. (c) calEXia outperforms cUlEXsa in lI tracing. (d) calEXia outperforms cUlEXsa in 
Ma tracing.



the lI profile traced by cUlEXsa (white dotted line, 
cUlEXsalI) is very close to ground truth (white con-
tinuous line, GTlI), whereas the calEXia tracing (white 
dashed line, calEXialI) is clearly placed below GTlI. 
In Fig. 8(b), calEXia underestimates the Ma boundary 
and its tracing (black dashed line, calEXiaMa) is placed 
below the ground truth (black continuous line, GTMa), 
whereas cUlEXsa (black dotted line, cUlEXsaMa) trac-
es a Ma contour almost overlapped to GTMa. In Fig. 8(c) 
cUlEXsalI is placed below GTlI whereas calEXialI is 
overlapped to ground truth; in Fig. 8(d) because of the 
high echogenicity of the adventitia layer, cUlEXsaMa is 
underestimated and calEXiaMa is better traced.

B. Percent Statistic Test

considering n = 3 and n = 182; we obtained P = 0.5 
and θ = 0.073. Therefore, considering α = 0.05, the per-
cent statistic test is passed when Z0 > 0.427. calEXia 
showed a Z0 score equal to 0.425 for the lI interface and 
of 0.578 for the Ma interface. cUlEXsa showed Z0 scores 
of 0.499 for the lI and 0.564 for the Ma.

calEXia did not pass the percent statistic test when 
tracing the lI profile. as we will discuss in the following, 
this is due to the algorithm’s underestimation of the lI in-
terface. all of the remaining Z values were higher than the 
critical value. In all of these cases we can conclude that, 
from a statistical point of view, our techniques behave like 
a human operator in segmenting the carotid wall. More 
specifically, this test revealed that the distance of the com-
puter-generated tracings from the average of the human 
operators is not statistically higher than the inter-observer 
variability, i.e., the variability of independent expert op-
erators segmenting the image database.

C. IMT Measurement Error

For each image, we calculated the error in the IMT 
measurement according to (4). again, we first computed 

the common support between the GT, calEXia, and 
cUlEXsa tracings, and then we calculated the IMT error 
in 50 equally spaced points per image. We computed 9100 
values of e

CALEXia IMT

i  and e
CALEXia IMT

i . Fig. 9 reports the 

histograms of the distribution of e
CALEXia IMT

i  and e
CALEXia IMT

i . 
The mean error for calEXia is 0.87 ± 0.56 pixels, where-
as that of cUlEXsa is 0.12 ± 0.14 pixels. The average 
errors are, for both the techniques, less than 1 pixel. The 
IMT error values are reported in the third row of  
Table I.

cUlEXsa offers better performances than calEXia, 
showing a lower mean IMT error (paired student’s t-test, 
P < 0.05). The reason for this result is the imperfect seg-
mentation of the lI interface traced by calEXia. It can 
be noted, in fact, that the shape of the histogram in Fig. 
9(a) is similar to that of Fig. 6(a). The segmentation error 
on the lI profile is reflected in the IMT estimation and 
makes the mean IMT error slightly lower than 1 pixel.

IV. discussion

In this study, we characterized the performances of a 
new and completely automated technique for the segmen-
tation of the cca wall in longitudinal ultrasound images 
(calEXia). This novel technique is based on an integrat-
ed approach consisting of feature extraction (required for 
seed points detection), line fitting (required to validate 
and connect line segments among them), and classifica-
tion (used to select the correct line segments, as shown 
in Fig. 3). calEXia showed robustness and effectiveness 
in automatically recognizing the cca in the ultrasound 
image [12]. The principal aim of this paper is to show the 
extension of calEXia that enables the carotid distal wall 
segmentation and computation of IMT measurement.

among all the available techniques to perform auto-
mated IMT measurement, we chose to benchmark against 
a previous methodology we developed (cUlEXsa). We 
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Fig. 9. absolute IMT error distributions for calEXia and cUlEXsa. The 9100 error values (50 points × 182 images) are grouped in classes of 1 
pixel each. The horizontal axis reports the absolute error in pixels. The vertical axis reports the relative frequency (i.e., the number of points falling 
in each class expressed as a percentage of the total number of error values). (a) distribution of the e

CALEXia IMT

i . (b) distribution of the e
CULEXsa IMT

i .



made this choice for two reasons. The first is that nei-
ther technique requires any user interaction to perform 
the image segmentation. after the images are acquired in 
dIcoM format, both techniques yield lI, Ma. and IMTs 
without the need of human intervention.

The second reason that we benchmarked against 
cUlEXsa is that both the techniques were developed for 
working independently on data sets that were healthy 
carotids or on carotids with increased IMT value. In fact, 
we already demonstrated that our techniques could effec-
tively process unhealthy diseased vessels [11], [12], [14], 
[19].

another similarity between calEXia and cUlEXsa 
is that performance does not depend on the scanner set-
tings. In clinical practice, the sonographer adjusts the 
system gains according to the specific patient. differ-
ent gains result in different contrast and brightness of 
the images. Being based only on relative thresholds, 
the performance of our techniques does not depend on 
the scanner type or settings. We already demonstrated 
that cUlEXsa’s performance does not depend on the 
ultrasound scanner used to acquire the images [14]. The 
calEXia algorithm is based on an initial seed points 
detection and line segments tracing steps that require 
training [12]. To test the influence of the training set used 
on the system performance, we split the 200-image data 
set into 13 subsets of 15 randomly selected images each. 
Each subset (or trial run) was used to train calEXia, 
thus resulting in 13 differently trained calEXia sys-
tems. We computed the performance of each trial run and 
compared them. We showed that no trial run produced 
performance statistically different from the others. The 
overall system error, measured according to (4), ranged 
from 0.81 pixels to 0.93 pixels. Therefore, calEXia also 
showed a good robustness to the training set used. Be-
cause the database used in this study consisted of images 
acquired from consecutive patients, with scanner settings 
that were different from subject to subject, we can con-
clude that our techniques’ performance is independent of 
the system gains and scanner type.

In terms of lI and Ma segmentation errors, the com-
parison of our results with previously published techniques 
is not straightforward. To our knowledge, the most per-
forming techniques for IMT estimation did not character-
ize the segmentation performances of the single layers. 
cheng et al., who proposed a snake-based technique for 
the IMT measurement [7], characterized the segmentation 
performances of their technique on the lI and Ma inter-
faces by comparing to human tracings on only 6 images. 
However, they only characterized in terms of root mean 
squared error (rMsE). Working with a spatial resolution 
equal to 0.096 mm, the rMsE measured by cheng et al. 
was equal to 0.651 pixel (62.5 μm) for the lI interface 
and 0.402 pixel (38.6 μm) for the Ma interface. We cal-
culated the rMsE for calEXia and found 1.31 pixels 
(81.9 μm) on the lI and 0.32 pixel (20.1 μm) on the Ma 
interface. Thus, our technique showed lower rMsE val-
ues than cheng et al.’s method when segmenting the Ma 

interface, but a higher rMsE error when segmenting the 
lI interface.

Fig. 9 reports the distribution of the IMT measure-
ment errors. again, cUlEXsa offers better performances 
than calEXia, showing a mean IMT error equal to 0.12 
± 0.14 pixel compared with 0.87 ± 0.56 for calEXia 
(paired student’s t-test, P < 0.05). In IMT measurement, 
calEXia is limited by its performance on lI segmenta-
tion, as previously mentioned.

However, the percent statistic test gave encouraging 
results. Particularly, cUlEXsa passed the test for both 
the lI and Ma interfaces, whereas calEXia passed it 
when segmenting the Ma, but not when segmenting the 
lI boundary. In this latter case, however, that the Z0 
score was equal to 0.425, against a critical value of 0.427. 
Therefore, we think that, despite the segmentation errors 
and the bias in the IMT measurement, the techniques are 
promising.

To further investigate the biases in the IMT estima-
tion of the two methodologies, we reported the Bland-
altman plots. Preliminarily, we derived a single value of 
IMT for each image. This value was the average value 
of the 50 IMT estimates made on the image. We did 
the same also for manual tracings. Thus we obtained 
182 IMT values for GT, calEXia, and cUlEXsa. Table 
II reports the average values of IMT measured on the 
sample database. It can be observed that both the tech-
niques under-estimate the IMT value. Fig. 10 reports the 
Bland-altman plots for calEXia vs. GT [Fig. 10(a)] and 
cUlEXsa vs. GT [Fig. 10(b)]. It is possible to observe 
the negative bias of the calEXia estimates with respect 
to GT: Fig. 10(a) shows a mean value on the vertical 
axis equal to −2.35 pixel (about −147 μm). The bias of 
cUlEXsa is greatly reduced and equal to −0.48 pixel 
(−30 μm). The best-performing algorithm that we found 
in literature for IMT estimation showed a bias equal to 
−1 μm [20], even though most of the techniques showed 
bias of about −10 μm [8]. Therefore, our methodologies 
provided IMT estimates with a higher bias. However, the 
cited algorithms required human interaction to select the 
portion of the image from where to start segmenting and 
measuring IMT.

The selection of the image portion in which IMT esti-
mation is to be performed is crucial. In 2009, loizou et al. 
[16] demonstrated that a snake-based segmentation pro-
cedure could be very effective in aiding the human opera-
tor in measuring the intima and media thicknesses. Their 
methodology was intended as a computer aid to athero-
sclerosis assessment. The operator could select the por-
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TaBlE II. Intima-Media Thickness (IMT) Mean Values 
calculated by the calEXia and cUlEXsa Techniques 

compared With Ground Truth (GT). 

calEXiaIMT cUlEXsaIMT GTIMT Units

12.04 ± 6.17 14.09 ± 4.67 14.68 ± 4.71 pixel
0.75 ± 0.39 0.88 ± 0.29 0.92 ± 0.30 mm

The axial resolution is 0.0625 mm/pixel.



tion of the cca distal wall and the algorithm then per-
formed the measurement. This algorithm can therefore be 
thought as semi-automatic. We tested whether the region 
selection could impact the IMT measurement of calEXia 
and cUlEXsa. according to [16], a trained sonographist 
manually selected a rectangular region of interest placed 
on the distal wall, in a region of the image free from back-
scattering, excessive noise, and artifacts. The length of 
the roI was fixed to 9 mm (i.e., 144 pixels) for all the 
images. Then we ran our IMT measurement procedure 
in that region only. The calEXia mean IMT error was 
reduced to 0.33 ± 0.23 pixel (originally it was 0.87 ± 
0.56), whereas cUlEXsa did not show significant per-
formance variations. In this condition, calEXia showed 
performances comparable to other user-driven techniques 
[5], [7], [16], [21].

like all the other proposed methodologies, our tech-
niques also underestimate IMT.

There are two factors limiting the calEXia perfor-
mance: 1) the underestimation of the lI interface (as 
discussed previously), and 2) the segmentation of image 
regions characterized by a very low snr. The solution of 
the two problems is not straightforward. our aim is to im-
prove the segmentation performances without losing the 
versatility of the algorithm. In fact, this is a generalized 
technique that, making use of a superior integrated archi-
tecture, is effective in processing almost any kind of im-
age. The robustness to noise is good, because only 5% of 
the randomly selected images were incorrectly processed. 
our methodology is effective in coping with different anat-
omies, because it can also process carotids that are not 
horizontal in the image, as well as curved arteries.

Finally, the major advantage of calEXia with respect 
to cUlEXsa is the computational cost. Both the algo-
rithms were implemented in MaTlaB environment (The-
Mathworks, natick, Ma) on a dual 2.5-GHz G5 PowerPc 
equipped with 4 GB of raM. The average processing 
time for calEXia was 3 s; that of cUlEXsa was 32 s. 

calEXia, therefore, can be a suitable algorithm for quasi 
real-time processing.

V. conclusions

We developed a completely user-independent algorithm 
for layers extraction of the carotid artery wall in ultra-
sound images. This novel technique (calEXia), which 
represents a further step in carotid automated ultrasound 
image processing, was used to measure the IMT and was 
compared with a previously developed methodology. The 
data analysis of the segmentation and IMT measurement 
errors showed that the tracing of the lI boundary might 
have a scope of improvement. The underestimation of the 
IMT value depends on the quality of the lI tracing. de-
spite having a small challenge estimating lI, calEXia 
out-performed cUlEXsa in segmenting the Ma interface. 
also, we showed that by reducing the IMT measurement 
to a small portion of the image (as usually happens with 
user-driven techniques), performances become comparable 
to previously published non-automated methodologies.

calEXia was developed taking into considerations 
all the variability sources, therefore it may represent a 
generalized and standard methodology toward completely 
automated and accurate IMT measurement. The authors 
are creating new databases from multiple institutions to 
validate their technologies. also, they are working toward 
further improvement of the segmentation performances 
(by the fusion of calEXia and cUlEXsa using greedy 
techniques).
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axis the difference. It is possible to observe a negative mean value, which indicates an underestimation of IMT by the method. (a) calEXia, (b) 
cUlEXsa.
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