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Refined and Advanced Models for Multilayered Plates and
Shells Embedding Functionally Graded Material Layers

E. Carrera, S. Brischetto, M. Cinefra, and M. Soave
Department of Aeronautics and Space Engineering, Politecnico di Torino, Italy

The present work investigates the static response problem of
multilayered plates and shells embedding functionally graded ma-
terial (FGM) layers. Carrera’s unified formulation (CUF) is em-
ployed to obtain several hierarchical refined and advanced two-
dimensional models for plates and shells. The refined models are
based on the principle of virtual displacements. The advanced
models, based on Reissner’s mixed variational theorem, permit
the transverse shear and normal stresses to be “a priori” modelled.
Refined and advanced models are developed in both equivalent
single layer and layer wise multilayer approaches. CUF is also em-
ployed to describe the continuous variation of elastic properties in
the thickness direction for the embedded FGM layers. The numer-
ical results, which are restricted to simply supported plates/shells
loaded by a harmonic distribution of transverse pressure, show that
the use of refined and advanced models, based on CUF, is manda-
tory with respect to the classical theories that are widely employed
for isotropic and one-layered structures. Furthermore, advanced
models lead to a quasi-3D description of the bending problem for
FGM plates and shells. New benchmarks are considered in order
to investigate the possible benefits of introducing FGM layers into
common multilayered structures. It has been concluded that sig-
nificant benefits can be obtained by employing opportune values
for κ-hFGM parameters, where κ is the exponent of the thickness
law for the FGM elastic properties and hFGM is the thickness of the
embedded FGM layers.

Keywords functionally graded materials, plates, shells, Carrera’s
unified formulation, equivalent single layer, layer wise,
refined models, advanced models.

1. INTRODUCTION
Functionally Graded Materials (FGMs) are multiphase com-

posites where the volume fraction of phases continuously varies
through one or more directions. They are composite materi-
als with a microscopically inhomogeneous character [1]. The
concept of functionally graded materials was first proposed in
1984 by materials scientists in the Sendai area (Japan) as a

Received 1 July 2008; accepted 1 February 2009.
Address correspondence to Erasmo Carrera, Department of Aero-

nautics and Space Engineering, Politecnico di Torino, Corso Duca degli
Abruzzi, 24, 10129 Torino, Italy. E-mail: erasmo.carrera@polito.it.

means of preparing thermal barrier materials [2]. Birman and
Byrd [3] have presented a review on the principal developments
in functionally graded materials, with emphasis on the recent
works published since 2000. Diverse areas, relevant to vari-
ous aspects concerning theory and applications of FGMs, were
dealt with in this paper: homogenization of particulate FGMs,
heat transfer issues, stress, stability and dynamic analyses,
testing, manufacturing and design, applications, and fracture
[4, 5]. Continuous changes in the composition, microstructure
and porosity of these materials result in gradients in these prop-
erties such as mechanical strength and thermal conductivity. Due
to these features, FGMs can be employed in several applications
[6]: as an alternative to composite materials, for a new con-
cept of sandwich structures, as thermal protection components
and thermal protection systems, for wear-resistant coatings and
electrically insulating joints, and as material for components in
biomedical applications and the computer circuit industry. This
large number of applications implies the necessity of an ex-
haustive analysis of structures embedding functionally graded
materials. In recent years, several works have been devoted to
the development of accurate structural models for FGM plates
and shells.

Kashtalyan [7] has proposed a three-dimensional elasticity
solution for a simply supported functionally graded plate
subjected to a transverse mechanical loading; the developed
approach made use of the Plevako general solution [8] of the
equilibrium equations for inhomogeneous isotropic media. This
three-dimensional solution has been extended to sandwich plates
by Kashtalyan and Menshykova [9]: the use of a functionally
graded core in the sandwich panel design permits an increase
in the resistance of such panels to delamination. Pan [10] has
developed a three-dimensional solution for anisotropic, linearly
elastic and functionally graded composite laminates under
simply supported edge conditions and subjected to a mechanical
load. The solutions were expressed in an elegant formalism
that resembles the Stroh formalism [11], and the composite
laminates can be made of multilayered, functionally graded
materials with their properties varying exponentially in the
thickness direction. The proposed solution extended Pagano’s
solutions [12, 13] to functionally graded materials. Elastic
solutions for axisymmetric rotating disks, made of functionally
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604 E. CARRERA ET AL.

graded material with variable thickness, have been given in [14].
The material properties and disk thickness profile were assumed
to be represented by two power-law distributions; both analyt-
ical and semi-analytical solutions are given under free-free and
fixed-free boundary conditions. Zenkour [15] has proposed a
generalized shear deformation theory for the static response of
a simply supported, functionally graded rectangular plate sub-
jected to a transverse uniform mechanical load. A third-order
shear deformation theory has been developed by Ferreira et al.
[16] for the static analysis of an FGM plate made of two isotropic
constituents; collocation multiquadric radial basis functions
were used. Ramirez et al. [17] decided to study the static
analysis of FGM plates, considering the variable properties in
the layer by means of a discrete layer approach. Chi and Chung
[18] have extended the classical lamination theory, previously
developed for classical laminated plates, to functionally graded
plates; several results about the finite element method were
given in the second part of the aforementioned paper [19]. Other
interesting works about the mechanical analysis of FGM struc-
tures also consider dynamic analysis, see for example Qian et
al. [20], where static and dynamic deformations of functionally
graded plates have been considered by means of a higher-order
shear and normal deformable plate theory and a local meshless
Petrov-Galerkin method [21]. A three-dimensional solution for
the vibration of FGM plates has been given in [22], Batra and
Jin [23] have developed a first order shear deformation theory
via the finite element method for the same kind of problem.

The present work proposes the static analysis of one-layered
and multilayered plates and shells embedding FGM layers. Sev-
eral refined and advanced hierarchical two-dimensional mod-
els have been developed using Carrera’s Unified Formulation
(CUF) [24]. Refined models, based on the Principle of Virtual
Displacements (PVD) [25], consider the displacements as pri-
mary variables. Advanced or mixed models, which make use
of Reissner’s Mixed Variational Theorem (RMVT) [26], a pri-

ori consider both displacements and transverse shear/normal
stresses [27]. The obtained models have the order of expan-
sion in the thickness direction, for the primary variables, as a
free parameter, and these can be modelled in both Equivalent
Single layer (ESL) and Layer Wise (LW) form. CUF [24, 25],
which was originally developed for multilayered anisotropic
plates and shells, has been extended to the static mechanical
analysis of FGM plates in [28] and [29] using PVD and RMVT
variational statements, respectively. Both refined and advanced
models have been applied to static sandwich plate analysis in
[30], in order to investigate the effects of different FGM cores
embedded between a ceramic and a metallic face. The first part
of this paper investigates the importance of refined and advanced
models for structures embedding FGM layers. The superiority
of these models is clearly demonstrated, compared with classi-
cal two-dimensional models such as the Classical Lamination
Theory [31–33] and the First order Shear deformation Theory
[34, 35]. Then, some benchmarks are proposed to investigate
the benefits of introducing some FGM layers into common mul-
tilayered or sandwich plates and shells. In addition to the results
given in [30], the shell geometry is also investigated and new
FGM configurations are considered for the core in sandwich
structures.

2. GEOMETRICAL RELATIONS
A thin shell is defined as a three-dimensional body bounded

by two closely spaced curved surfaces, where the distance be-
tween the two surfaces must be small compared to the other
dimensions. The middle surface of the shell is the locus of the
points which lie midway between these surfaces. The distance
between the surfaces measured along the normal to the middle
surface is the thickness of the shell at that point [36]. Shells may
be seen as generalizations of a flat plate [37]; conversely, a flat
plate is a special case of a shell with no curvature, see Figure 1.

FIG. 1. Example of a multilayered plate (on the left) and a multilayered spherical shell (on the right).
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MODELS FOR MULTILAYERED PLATES 605

In the case of shells with constant radii of curvature, the
geometrical relations are written in the following matrix form:

∈k
pG = [∈k

αα,∈k
ββ,γk

αβ

]T = (
Dk

p + Ak
p

)
uk, (1)

∈k
nG = [

γk
αz,γ

k
βz,∈k

zz

]T = (
Dk

np + Dk
nz + Ak

n

)
uk, (2)

where, for each layer k, the vector of displacement components
is uk = (uk, V k,wk). The explicit form of the introduced arrays
is:

Dk
p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂α

Hk
α

0 0

0
∂β

Hk
β

0

∂β

Hk
β

∂α

Hk
α

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Dk
np =

⎡
⎢⎢⎢⎢⎢⎣

0 0
∂α

Hk
α

0 0
∂β

Hk
β

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

Dk
nz =

⎡
⎢⎢⎣

∂z 0 0

0 ∂z 0

0 0 ∂z

⎤
⎥⎥⎦ . (3)

Ak
p =

⎡
⎢⎢⎢⎢⎢⎣

0 0
1

Hk
αRk

α

0 0
1

Hk
βRk

β

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, Ak
n =

⎡
⎢⎢⎢⎢⎢⎣

1

Hk
αRk

α

0 0

0
1

Hk
βRk

β

0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

.

(4)

In the proposed differential arrays (Eq. (3)), the symbols ∂α,
∂β and ∂z indicate the partial derivatives ∂

∂α
, ∂

∂β
, and ∂

∂z
, re-

spectively. The matrices in Eq. (4) are the algebraic geometrical
contributions for shells. The parameters Hk

α and Hk
β are:

Hk
α =

(
1 + zk

Rk
α

)
, Hk

β =
(

1 + zk

Rk
β

)
. (5)

Geometrical relations for shells degenerate into geometrical re-
lations for plates when the radii of curvature Rk

α and Rk
β are

infinite. Therefore, the parameters Hk
α and Hk

β equal 1, and the
orthogonal curvilinear coordinates (α, β, z) degenerate into the
rectilinear ones (x, y, z).

3. CARRERA’S UNIFIED FORMULATION
Carrera’s unified Formulation (CUF) is a technique which

handles a large variety of plate/shell models in a unified manner
[24]. According to CUF, the governing equations are written
in terms of a few fundamental nuclei which do not formally
depend on the order of expansion N used in the z direction

and on the description of variables (LW or ESL) [25, 27]. The
application of a two-dimensional method for plates and shells
permits to express the unknown variables as a set of thickness
functions depending only on the thickness coordinate z and the
correspondent variables depending on the in-plane coordinates
α and β. So that the generic variable f (α, β, z), for instance
displacement or transverse stresses, and its variation δf (α,β, z)
are written according to the following general expansion:

f (α, ß, z) = Fτ(z) f τ(α, ß),

δ f (α, ß, z) = Fs(z)δ f s(α, ß), with τ, s = 1, . . . , N. (6)

Bold letters denote arrays, (α, β) are the in-plane coordinates
and z the thickness one. The summing convention with repeated
indexes τ and s is assumed. The order of expansion N goes
from first to higher order values, and depending on the used
thickness functions, a model can be: ESL when the variable
is assumed for the whole multilayer and a Taylor expansion is
employed as thickness functions F (z); LW when the variable
is considered independent in each layer and a combination of
Legendre polynomials are used as thickness functions F (z). In
CUF the maximum order of expansion N in z direction is fourth.
In the present work displacements can be modelled in ESL or
LW form, transverse stresses are always modelled in LW form.

3.1. Equivalent Single Layer Approach
The displacement u = (u, v, w) is described according to ESL

description if the unknowns are the same for the whole plate, see
Figure 2. The z expansion is obtained via Taylor polynomials,
that is:

u = F0u0 + F1u1 + · · · + FNuN = Fτuτ, (7)

v = F0v0 + F1v1 + · · · + FNvN = Fτvτ, (8)

w = F0w0 + F1w1 + · · · + FNwN = Fτwτ, (9)

with τ = 0, 1, . . . , N ; N is the order of expansion that ranges
from 1 (linear) to 4:

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN . (10)

Equations (7)–(9) can be written in a vectorial form:

u(α, ß, z) = Fτ(z)uτ(α, ß), δu(α, ß, z) = Fs(z)δus(α, ß),

with τ, s = 0, . . . , N. (11)

First order Shear Deformation Theory (FSDT) [34, 35] is ob-
tained from an ESL model with N = 1, simply imposing con-
stant transverse displacement w through the thickness. Classical
Lamination Theory (CLT) [31–33] is obtained from FSDT via
an opportune penalty technique which imposes an infinite shear
rigidity. It is important to remember that all the ESL theories
which have transverse displacement constant or linear through
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606 E. CARRERA ET AL.

FIG. 2. Equivalent single layer theories (on the left) and layer wise theories (on the right) in multilayered plates with an FGM core.

the thickness direction, show Poisson locking phenomena; this
can be overcome via plane stress conditions imposed in consti-
tutive equations [38, 39].

The proposed ESL models do not consider the typical zigzag
(ZZ) form of displacements in z direction, which is typical
of multilayered structures with transverse anisotropy [40]. A
remedy to this limitation can be the introduction of an opportune
zigzag function in the ESL displacement model, in order to
recover the ZZ form of displacements without the use of LW
models. A possible choice for the zigzag function is the so-
called Murakami Zig-Zag Function (MZZF) [41, 42]. MZZF can
be simply added to displacement model and gives remarkable
improvements in the solution by satisfying the typical ZZ form
of displacements in multilayered structures.

The MZZF Z(z) is defined according to:

Z(z) = (−1)kζk, (12)

with the not dimensioned layer coordinate ζk = (2zk)/hk , where
zk is the transverse thickness coordinate and hk is the thickness
of the layer, so −1 ≤ ζk ≤ 1. Z(z) has the following properties:
it is piece-wise linear function of layer coordinates zk; Z(z)
has unit amplitude for the whole layers; the slope Z′(z) =
dZ/dz assumes opposite sign between two-adjacent layers. Its
amplitude is layer thickness independent [42].

3.2. Layer Wise Approach
When each layer of a multilayered structure is described

as independent plates/shells, a Layer Wise (LW) approach is
considered [27, 43]. The displacement uk = (uk, vk, wk) is de-
scribed for each layer k, in this way the ZZ form of displace-
ment in multilayered transverse-anisotropy structures is easily
obtained. The recovering of ZZ effect via Layer Wise models
is detailed in [27, 43] and in Figure 2. The z expansion for
displacement components is made for each layer k:

uk = F0 uk
0 + F1 uk

1 + · · · + FN uk
N = Fτ uk

τ , (13)

vk = F0 vk
0 + F1 vk

1 + · · · + FN vk
N = Fτ vk

τ , (14)

wk = F0 wk
0 + F1 wk

1 + · · · + FN wk
N = Fτ wk

τ , (15)

with τ = 0, 1, . . . , N,N is the order of expansion that ranges
from 1 (linear) to 4. k = 1, . . . , Nl where Nl indicates the
number of layers. The Eqs. (13–15) written in a vectorial form
are:

uk(α, ß, z) = Fτ(z)uk
τ(α, ß), δuk(α, ß, z) = Fs(z)δuk

s (α, ß),

with τ, s = τ, b,γ and k = 1, . . . , Nl, (16)

where t and b indicate the top and bottom of each layer k,
respectively; γ indicates the higher orders of expansion in the
thickness direction: γ = 2, . . . , N .

An advanced model considers as primary variables both
displacements uk = (uk, vk, wk) and transverse shear/normal
stresses σk

nM = (σk
αz,σ

k
βz,σ

k
zz) [29]. The displacements can be

modelled as ESL, ESL+MZZF and LW, and this choice permits
to define the considered advanced model as ESL, ESL + MZZF
or LW, respectively; the transverse shear/normal stresses σk

nM

are always LW (the subscript M means that the stresses are a pri-
ori modelled and not obtained from the constitutive equations).
The LW model for stresses is:

σk
αz =F0σ

k
αz0 + F1σ

k
αz1 + · · · + FNσk

αzN = Fτσk
αzτ, (17)

σk
βz =F0σ

k
βz0 + F1σ

k
βz1 + · · · + FNσk

βzN = Fτσk
βzτ, (18)

σk
zz =F0σ

k
zz0 + F1σ

k
zz1 + · · · + FNσk

zzN = Fτσk
zzτ, (19)

The Eqs. (17)–(19) written in a vectorial form are:

σk
nM (α, ß, z) = Fτ(z)σk

nMτ(α, ß),

δσk
nM (α, ß, z) = Fs(z)δσk

nMs(α, ß), with τ, s = t, b,γ

and k = 1, . . . , Nl. (20)

The thickness functions Fτ (ζk) and Fs(ζk) have now been
defined at the k-layer level, they are a linear combination of
Legendre polynomials Pj = Pj (ζk) of the j th-order defined in
ζk-domain (ζk = 2zk

hk
with hk local coordinate and hk thickness,

both referred to kth layer, so −1 ≤ ζk ≤ 1). The first five
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Legendre polynomials are:

P0 = 1, P1 = ζk, P2 =
(
3ζ2

k − 1
)

2
, P3 = 5ζ3

k

2
− 3ζk

2
,

P4 = 35ζ4
k

8
− 15ζ2

k

4
+ 3

8
, (21)

their combinations for the thickness functions are:

Ft = F0 = P0 + P1

2
, Fb = F1 = P0 + P1

2
,

Fγ = Pγ − Pγ−2 with γ = 2, . . . , N. (22)

The chosen functions have the following interesting properties:

ζk = 1 : Ft = 1; Fb = 0; Fr = 0 at top, (23)

ζk = −1 : Ft = 0; Fb = 1; Fr = 0 at bottom. (24)

The use of such thickness functions, thanks the property re-
marked in Eqs. (23) and (24), permits to easily write the Inter-
laminar Continuity for the transverse stresses:

σk
nMt = σk+1

nMb with k = 1, . . . , (Nl − 1), (25)

that means: in each interface the top value of the layer k equals
the bottom value of the layer (k + 1). The same property can be
used for displacements in Layer Wise form, in order to impose
the compatibility conditions:

uk
t = uk+1

b with k = 1, . . . , (Nl − 1). (26)

4. CONSTITUTIVE EQUATIONS
Constitutive equations in case of refined models are the well-

known Hooke law [43]:

σk
pC = Qk

pp (z) εk
pG + Qk

pn (z) εk
nG, (27)

σk
nC = Qk

np (z) εk
pG + Qk

nn (z) εk
nG. (28)

Eqs. (27) and (28) are the Hooke law written in the problem
reference system and split in in-plane and out-of-plane compo-
nents. The vectors for the stresses are σk

pC= [σk
αα,σk

ββ,σk
αβ]T

and σk
nC = [σk

αz,σ
k
βz,σ

k
zz]

T . In the case of functionally graded
materials, the matrices of elastic coeffcients depend. βzzz on

the thickness coordinate z. The four sub-arrays are:

Qk
pp (z) =

⎡
⎢⎢⎣

Qk
11 (z) Qk

12 (z) Qk
16 (z)

Qk
12 (z) Qk

22 (z) Qk
26 (z)

Qk
16 (z) Qk

26 (z) Qk
66 (z)

⎤
⎥⎥⎦ ,

Qk
pn (z) =

⎡
⎢⎢⎣

0 0 Qk
13 (z)

0 0 Qk
23 (z)

0 0 Qk
36 (z)

⎤
⎥⎥⎦ ,

Qk
np (z) =

⎡
⎣ 0 0 0

0 0 0
Qk

13(z) Qk
23(z) Qk

36(z)

⎤
⎦

k

,

Qk
nn (z) =

⎡
⎢⎢⎣

Qk
55(z) Qk

45(z) 0

Qk
45(z) Qk

44(z) 0

0 0 Qk
33(z)

⎤
⎥⎥⎦ .

(29)

In the case of advanced models, the constitutive equations in
Eqs. (27) and (28) must be rearranged because the transverse
shear/normal stresses are a priori modelled (use of subscript M):

σk
pC = Q̂

k

pp (z) εk
pG + Q̂

k

pn (z) σk
nM, (30)

εk
nC = Q̂

k

np (z) εk
pG + Q̂

k

nn (z) σk
nM, (31)

where the new coeffcients are:

Q̂
k

pp (z) = Qk
pp (z) − Qk

pn (z) Qk
nn (z)−1 Qk

np (z) ,

Q̂
k

pn (z) = Qk
pn (z) Qk

nn (z)−1 ,

Q̂
k

np (z) = − Qk
nn (z)−1 Qnp (z) ,

Q̂
k

nn (z) = Qk
nn (z)−1 . (32)

In the case of Functionally Graded Materials (FGMs), the prop-
erties change with continuity along a articular direction of plates
and shells. In the present work elastic properties vary with con-
tinuity along the thickness direction z. The matrix of elastic co-
effcients Q or the matrix of modified coeffcients for the RMVT
case Q̂, are given for a kth FGM layer as:

Q(z) = Q0 ∗ f (z), (33)

Q̂(z) = Q̂0 ∗ g(z). (34)

The functions f (z) and g(z) are general continuous functions of
the thickness coordinate z. The variations in z of these material
properties are described via particular thickness functions, that
are a combination of Legendre polynomials (see [28, 29] and
Eqs. (21) and (22)). For a generic matrix C, which can be Q(z)
for the PVD case and Qˆ (z) for the RMVT case, it is possible to
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write:

C(z) = Fb(z)Cb + Fγ(z)Cγ+Ft (z)C t = Fr (z)Cr , (35)

t and b are the top and bottom values, and γ terms denote
the higher order terms of expansion. The thickness functions
Fr (ζk) have been defined at the k-layer level, they are a linear
combination of Legendre polynomials Pj = Pj (ζk) of the j th-
order defined in Section 3.2.

In the present work a value of r equals 10 has been chosen,
which always guarantees a good approximation of the FGM’s
properties. To obtain the Cr values, it is suficient to solve a
simple algebraic system as shown in Eq. (36) for a generic
component Cij (z):

⎡
⎢⎣

Cij (z1)
...

Cij (zNr )

⎤
⎥⎦ =

⎡
⎢⎣

Fb (z1) · · · Fγ (z1) · · · Ft (z1)
...

...
...

Fb (zNr ) · · · Fγ (zNr ) · · · Ft (zNr )

⎤
⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cijb

...

Cijγ

...

Cijt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)

The values of C(z) and the thickness functions Fr (z) are
known in ten different locations along the thickness of the plate.
By solving the system in Eq. (36), the values Cr are obtained.
The material properties, varying with continuity in the thickness
direction z, can be recovered as illustrated in Eq. (37) and in

Figure 3:

(Cpp(z), Cpn(z), Cnp(z), Cnn(z))

= Fr (z)(Cppr , Cpnr , Cnpr , Cnnr ). (37)

By considering the approximation given in Eq. (37), it is possible
to obtain a general form of constitutive relations for the PVD
and RMVT case, they are valid for both cases of functionally
graded materials and materials with constant properties through
the thickness direction z. For the refined models, the constitutive
equations are:

σk
pC = Fr Qk

pprε
k
pG + Fr Qk

pnrε
k
nG, (38)

σk
nC = Fr Qk

nprε
k
pG + Fr Qk

nnrε
k
nG. (39)

In the case of advanced models, the constitutive equations state:

σk
pC = Fr Q̂

k

ppr εk
pG + Fr Q̂

k

pnr σk
nM, (40)

εk
nC = Fr Q̂

k

npr εk
pG + Fr Q̂

k

nnr σk
nM, (41)

where k = 1, . . . , Nl indicates the considered layers, and r =
1, . . ., 10 is the loop to approximate the FGM properties varying
with the z coordinate. In the case of materials with constant
properties in z, the loop on r index is not necessary and the
material coeffcients are constant.

5. GOVERNING EQUATIONS
Governing equations are here obtained in terms of some few

basic elements called fundamental nuclei. Expanding them by
means of opportune indexes and loops, it is possible to obtain
the matrices of the considered multilayered structures. The use

FIG. 3. Example of assembling on index r for the FGM properties.
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of such nuclei permits to obtain in a unified manner several
refined and advanced models which difier for the chosen order
of expansion in the thickness direction (N ), for the choice of
the modelled variables (PVD or RMVT case), and for the mul-
tilayer description (equivalent single layer (ESL) or layer wise
(LW)). Governing equations are solved in algebraic closed-form
by means of Navier solution, both plate and shell geometries are
considered. Refined models are based on the principle of virtual
displacements (PVD) and only displacements are considered as
primary variables. Advanced models are developed by means
of Reissner’s mixed variational theorem (RMVT) and both dis-
placements and transverse stresses are a priori variables. Details,
here omitted for sake of brevity, can be found in [28] for PVD
case and in [29] for RMVT one.

5.1. Refined Models
In the case of pure mechanical problems, the principle of

virtual displacements (PVD) states as indicated:

∫
V

(
δεT

pGσpC + δεT
nGσnC

)
dV = δLe − δLin. (42)

By considering a laminate of Nl layers, and the integral on the
volume Vk of each layer k as an integral on the in-plane domain
�k plus the integral in the thickness-direction domain Ak , it is
possible to write:

Nl∑
k=1

∫
�k

∫
Ak

{
δεk

pG

T
σk

pC + δεk
nG

T
σk

nC

}
d�kdz

=
Nl∑

k=1

δLk
e −

Nl∑
k=1

δLk
in, (43)

where δLk
e and δLk

in are the external and inertial virtual works
at the k-layer level, respectively. The relative constitutive equa-
tions, written in order to consider the case of some functionally
graded material layers embedded in the structure [28], are those
obtained in Eqs. (38) and (39). By considering a generic layer k

and substituting the Eqs. (38) and (39) in the variational state-
ment of Eq. (43) (subscript C):

∫
�k

∫
Ak

{
δεk

pG

T (
Fr Qk

pprε
k
pG + Fr Qk

pnrε
k
nG

) + δεk
nG

T

× (
Fr Qk

nprε
k
pG + Fr Qk

nnrε
k
nG

)}
d�kdz = δLk

e − δLk
in. (44)

Further steps to obtain the fundamental nuclei are: the substitu-
tion of geometrical relations (subscript G), and the introduction
of Carrera’s unified Formulation (CUF) [24].

In Eq. (44), we can directly substitute the geometrical rela-
tions for shells as proposed in Section 2, in fact those for the
plate geometry are considered as particular cases. By using the
geometrical relations in Eqs. (1) and (2), the variational state-

ment is:

∫
�k

∫
Ak

[((
Dk

p + Ak
p

)
δuk

)T (
Fr Qk

ppr

(
Dk

p + Ak
p

) + Fr Qk
pnr

× (
Dk

np + Dk
nz − Ak

n

))
uk + ((

Dk
np + Dk

nz − Ak
n

)
δuk

)T

× (
Fr Qk

npr

(
Dk

p + Ak
p

) + Fr Qk
nnr

(
Dk

np + Dk
nz − Ak

n

))
uk

]
× d�kdz = δLk

e − δLk
in. (45)

In Eq. (45), by introducing the CUF [24] as proposed in Eq. (6):

∫
�k

∫
Ak

[((
Dk

p + Ak
p

)
Fsδuk

s

)T (
Fr Qk

ppr

(
Dk

p + Ak
p

) + Fr Qk
ppr

× (
Dk

np + Dk
nz − Ak

n

))
Fτuk

τ + ((
Dk

np + Dk
nz − Ak

n

)
Fsδuk

s

)T

× (
Fr Qk

npr

(
Dk

p + Ak
p

) + Fr Qk
nnr

(
Dk

np + Dk
nz − Ak

n

))
×Fτuk

τ

]
d�kdz = δLk

e − δLk
in. (46)

In Eq. (46), in order to obtain a strong form of differential
equations on the domain �k and the relative boundary conditions
on edge �k , the integration by parts is used, which permits to
move the differential operator from the infinitesimal variation of
the generic variable δak to the finite quantity ak [28]. Only the
static case is investigated in this work, so the virtual variation
of the inertial forces δLk

in is not in considered.
By considering the integration by parts, and the governing

equation in the following form:

δuk
s : K kτsr

uu uk
τ = pk

τ, (47)

with related boundary conditions on edge �k:

∏kτsr

uu
uk

τ =
∏kτsr

uu
ūk

τ, (48)

(where pk
us is the mechanical load and uk

τ is the vector of the
degrees of freedom for the displacements) the fundamental nu-
cleus K kτsr

uu for the stifiness matrix and the fundamental nucleus
�kτsr

uu for the uu uu boundary conditions are:

K kτsr
uu =

∫
Ak

[(− Dk
p + Ak

p

)T (
Fr Qk

ppr

(
Dk

p + Ak
p

) + Fr Qk
pnr

× (
Dk

np+Dk
nz − Ak

n

))+(−Dk
np+Dk

nz−Ak
n

)T

× (
Fr Qk

npr

(
Dk

p+Ak
p

)+Fr Qk
nnr

(
Dk

np+Dk
nz−Ak

n

))]
×FsFτHk

αHk
βdz, (49)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
r
i
s
c
h
e
t
t
o
,
 
S
.
]
 
A
t
:
 
1
1
:
2
0
 
2
5
 
N
o
v
e
m
b
e
r
 
2
0
1
0
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∏kτsr

uu
=

∫
Ak

[
IkT

p

(
Fr Qk

ppr

(
Dk

p + Ak
p

) + Fr Qk
pnr

× (
Dk

np + Dk
nz − Ak

n

)) + I kT
nP

(
Fr Qk

npr

(
Dk

p + Ak
p

)
+Fr Qk

nnr

(
Dk

np + Dk
nz − Ak

n

))]
FsFτHk

αHk
βdz. (50)

Ik
p and I k

np are identity matrices to perform the integration by
parts. Details about fundamental nuclei pnp in Eqs. (49) and
(50), in particular their algebraic closed form and the complete
assembling procedure, can be found in [28].

5.2. Advanced Models
In the case of pure mechanical problems, Reissner’s mixed

variational theorem (RMVT) states as indicated:

∫
V

(
δεT

pGσpc + δεT
nGσnM + δσT

nM (εnG − εnC)
)
dV

= δLe − δLin. (51)

The subscript M means a priori modelled variable. By con-
sidering a multilayered structure constituted by Nl layers, the
Eq. (51) can be rewritten as:

N1∑
K=1

∫
�k

∫
Ak

{
δεT

pGσk
pC + δεk

nG

T
σk

nM + δσk
nM

T (
εk

nG − εk
nC

)}

× d�kdz =
N1∑
k=1

δLk
e −

N1∑
k=1

δLk
in. (52)

The relative constitutive equations for the RMVT case have been
given in Eqs. (40) and (41). Substituting these equations in Eq.
(52), by considering the geometrical relations of Section 2, and
substituting CUF [24] as presented in Section 3; for a generic
layer k:

∫
�k

∫
Ak

[((
Dk

p + Ak
p

)
Fsδuk

s

)T (
Fr Q̂

k

ppr

(
Dk

p + Ak
p

)
Fτuk

τ

+Fr Q̂
k

pnrFτσk
nMτ

) + ((
Dk

np + Dk
nz − Ak

n

)
Fsδuk

s

)T

× (
Fτσk

nMτ

)T + (Fsδσ
k
nMs)

T
((

Dk
np + Dk

nz−Ak
n

)
Fτuk

τ

−Fr Q̂
k

npr

(
Dk

p + Ak
p

)
Fτuk

τ − Fr Q̂
k

nnrFT σk
nMτ

)]
× d�kdz = δLk

e − δLk
in. (53)

In Eq. (53), in order to obtain a strong form of differential
equations on the domain �k and the relative boundary conditions
on edge �k , the integration by parts is used [29]. The governing
equations have the following form:

δuk
s : K kτsr

uu uk
τ + K kτsr

uσ σk
nMτ = pk

us, (54)

δσk
nMs : K kτsr

σu uk
r + K kτsr

σσ σk
nMτ = 0. (55)

Along with these governing equations the following boundary
conditions on the edge γk of the in-plane integration domain �k

hold:

∏kτsr

uu
uk

τ +
∏kτsr

uσ
σk

nMτ =
∏kτsr

uu
ū−k

τ +
∏kτsr

uσ
σ̄−k

nMτ

(56)

The fundamental nuclei can be obtained:

K kτsr
uu =

∫
Ak

[(−Dk
p + Ak

p

)
T

(
Fr Q̂

k

ppr

(
Dk

p + Ak
p

))]

×FsFτHk
αHk

βdz, (57)

K kτsr
uσ =

∫
Ak

[(−Dk
p + Ak

p

)T (
Fr Q̂

k

pnr

)

× (−Dk
np + Dk

nz − Ak
n

)]
FsFτHk

αHk
βdz, (58)

K kτsr
σu =

∫
Ak

[(
Dk

np + Dk
nz − Ak

n

) − (
Fr Q̂

k

pnr

)

× (
Dk

p + Ak
p

)]
FsFrH

k
αHk

βdz, (59)

K kτsr
σσ =

∫
Ak

[ − Fr Q̂
k

nnr

]
FsFτHk

αHk
βdz, (60)

The nuclei for boundary conditions on edge γk are:

∏kτsr

uu
=

∫
Ak

[
IkT

p Fr Q̂
k

ppr

(
Dk

p + Ak
p

)]
FsFrH

k
αHk

βdz, (61)

∏kτsr

uσ
=

∫
Ak

[
I kT

p Fr Q̂
k

pnr + IkT

np

]
FsFrH

k
αHk

βdz. (62)

Algebraic closed form of nuclei in Eqs. (57)–(60) and in Eqs.
(61) and (62) are detailed in [29].

5.3. Closed Form Solution
Developing the matrices products in Eqs. (49) and (50), fun-

damental nuclei of dimension [3 × 3] in differential form are
obtained for the PVD case. For the RMVT case, the differential
form of the [3 × 3] fundamental nuclei are obtained by devel-
oping the matrice products in Eqs. (57)–(60) and in Eqs. (61)
and (62).

Navier-type closed-form solutions are obtained via substitu-
tion of harmonic expressions for the displacements and trans-
verse stresses, as well as by considering the following material
coeffcients to be equal to zero: Q16r = Q26r = Q36r = Q45r =
0. The following harmonic assumptions can be made for the
variables, which correspond to simply supported boundary
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conditions:

(
uk

τ,σk
αzτ

) =
∑
m,n

(
Û k

τ, σ̂k
αzτ

)
cos

(
mπαk

αk

)
sin

(
nπβk

bk

)
,

k = 1, Nl (63)
(
uk

τ,σk
βzτ

) =
∑
m,n

(
V̂ k

τ , σ̂k
βzτ

)
sin

(
mπαk

αk

)
cos

(
nπβk

bk

)
,

τ = t, b, � (64)
(
wk

τ,σk
zzτ

) =
∑
m,n

(
Ŵ k

τ, σ̂k
zzτ

)
sin

(
mπαk

αk

)
sin

(
nπβk

bk

)
,

τ = 2, N (65)

where Û k
τ, V̂ k

τ , Ŵ k
τ are the displacement amplitudes, and σ̂k

αzτ,
σ̂k

βzτ, σ̂k
zzτ are the transverse shear/normal stress amplitudes.

m and and n are the in-plane wave numbers in the α and β

directions, a and b are the in-plane plate/shell dimensions, k is
indicative of the layer and Nl is the total number of layers.

The closed algebraic forms of the fundamental nuclei are
given in detail in [28] for the PVD case and in [29] for the
RMVT case.

5.4. Assembling Procedure
By starting from a [3 × 3] fundamental nucleus, the matrix of

the considered multilayer is obtained by expanding via the index
r in the case of FGM layers (see Section 4), via the indexes τ

and s for the order of expansion in the thickness direction (see
Section 3) and via the index k for the multilayer assembling
(equivalent single layer [ESL] or Layer Wise [LW]). Examples
of assembling procedures for a three layered structure with the
internal core in FGM are given in Figures 4 and 5. If there are
no FGM layers, the assembling on index r is not considered
[28, 29]. The ESL and LW assembling procedures are described
in Figure 4. Transverse shear and normal stresses are always
considered in the LW form, therefore the ESL procedures for
nuclei K uσ and Kσu are those given in Figure 5.

5.5. Acronyms
CUF permits several hierarchical two-dimensional models to

be obtained, therefore a system of acronyms has been developed
to indicate such theories. The letter E or L is employed if the
multilayer assembling is in ESL or LW form, respectively. D

indicates displacement formulation based on PVD and M indi-
cates advanced/mixed models based on RMVT. A number from
1 to 4 is added to indicate the order of expansion in the thickness
direction z (from linear to fourth order). Therefore, ED1-ED4

FIG. 4. Three-layered structure with the internal core in FGM. ESL (left) and LW (right) assembling procedures.
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FIG. 5. Three-layered structure with the internal core in FGM. ESL assembling procedure for Kuσ (left) and ESL assembling procedure for Kσu (right).

and LD1-LD4 are the refined models (PVD) in the ESL and
LW approaches, respectively. EM1-EM4 and LM1-LM4 are the
corresponding mixed models based on RMVT. A further letter
Z is added in the ESL theories when MZZF is introduced in
order to obtain the typical ZZ form of displacements; these the-
ories are indicated as EDZ1-EDZ3 and EMZ1-EMZ3. The First
order Shear Deformation Theory (FSDT) is obtained from the
ED1 model by considering a constant transverse displacement
w in the z direction, the Classical Lamination Theory (CLT)
also considers an infinite shear rigidity.

6. RESULTS
The bending response of several multilayered plates and

shells embedding FGM layers is here investigated. First, two
preliminary assessments for plate and shell geometries are given
in order to validate the proposed refined and advanced two-
dimensional models as quasi-3D solutions. In the second part,
the effects of several FGM configurations, in multilayered plates
and shells, are investigated by means of the advanced LM4 the-
ory. The effects of κ (exponent for the FGM law) and hFGM

(thickness of the FGM layers) are also considered.

6.1. Preliminary Assessments
The first assessment considers a sandwich plate with a func-

tionally graded core. The structure is simply supported with

a bi-sinusoidal (m = n = 1) load applied at the top in the
z direction, the amplitude is p̄z = 1 Pa. The plate is square
(a = b = 3 m) with a thickness ratio of a/h0 = 3. The
exact three-dimensional solution is given by Kashtalyan and
Menshykova [9]. The geometry of the plate is clearly indicated
in Figure 6, the global thickness of the plate is h0 =2h, where
h and −h are the top and bottom coordinates of the plate, re-
spectively and hc and −hc are the coordinates of the bottom 4th
layer and the top 1st layer, respectively. The global thickness
of the core is 2hc. The plate has a global thickness h0 =1.0
m, while the thickness of the two faces is hf =0.1h0, and the
thickness of the core is 2hc =0.8h0. The Young modulus of ref-
erence is E0 = 73 GPa with a Poisson ratio ν = 0.3, and the two
faces consequently have a constant shear modulus Gf = G0 =
28.08 GPa (layers 1 and 4). The core can be divided into parts
2 and 3. The value of the shear modulus in the middle refer-
ence surface is indicated with Gc. In layer 2, the exponential
law for the shear modulus is G(z) = G0e

[−γ(z/hc+1)] with hc =
0.4 m and −0.4 ≤ z ≤ 0. For layer 3, the exponential law
is G(z) = G0e

[γ(z/hc−1)] with hc = 0.4 m and 0 ≤ z ≤ 0.4.
Three different cases that correspond to three different shear
modulus ratios Gc/Gf (0.9, 0.999, 1.0), which means values
of the exponent γ equal to 0.105360, 0.001000 and 0.0, re-
spectively, are considered. The Gc/Gf = 1.0 case means a
three layered plate embedding the same material with constant
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FIG. 6. First assessment, sandwich plate with an FGM core. Core-face shear modulus ratio Gc/Gf equals 0.9 on the left and 0.999 on the right.

elastic properties in the thickness direction. A comparison be-
tween the three-dimensional solution [9] and classical, refined
and advanced two-dimensional models is proposed in Table 1
for the no-dimensional transverse displacement w̄ in the mid-
dle of the plate. The 3D solution is obtained for each value of
the shear modulus ratio Gc/Gf , by means of layer wise models
and higher orders of expansion in the thickness direction z (LD4
and LM4 theories). Classical models, such as CLT and FSDT,
give a larger error. Table 2 proposes the transverse normal stress
σzz at the top of the sandwich plate; the reference solution is
given by the boundary loading conditions (a transverse normal
mechanical load applied at the top equals 1.0 Pa). The LD4
and LM4 models achieve the three-dimensional result for each
value of Gc/Gf . The use of advanced models improves the 3D-
convergence speed of layer-wise theories, as clearly indicated
by a comparison of the LD2 and LM2 models in Table 2. Figure
7, for the shear modulus ratio Gc/Gf = 0.9, gives the trans-
verse displacement w̄, the in-plane stress σxy , the transverse
shear stress σxz and the transverse normal stress σzz through the
thickness direction z. The correct evaluation in z is obtained by
means of layer-wise theories and higher orders of expansion.

TABLE 1
First assessment, sandwich plate with an FGM core.

No-dimensional transverse displacement w̄ = w G0
p̄zh0

in the
middle of the plate

w̄(z = 0)

Gc
Gf

0.9 0.999 1.0

3D[9] 1.4227 1.3433 1.3430
LM4 1.4227 1.3432 1.3426
LM3 1.4228 1.3435 1.3428
LD4 1.4227 1.3432 1.3426
LD3 1.4227 1.3432 1.3425
ED4 1.4199 1.3432 1.3424
ED2 1.3067 1.2792 1.2789
FSDT 1.1924 1.1690 1.1687
CLT 1.3513 1.3295 1.3292

The second assessment considers a cylindrical shell panel
with a radius of curvature in the β direction Rβ = ∞ and
radius of curvature in the α direction Rα = 10 m. The angle
� equals π/3, therefore the two dimensions of the panel are
a = π/3 Rα and b = 1 m. The shell is simply supported
with a bisinusoidal mechanical load (m = n = 1) applied at
the top (p̄z = 1 Pa). First, only an FGM layer is considered
where the Young modulus changes according to Zenkour [15]
with a polynomial law E(z) = Em + (Ec − Em)( 2z+h

2h
)κ where

− h
2 ≤ z ≤ h

2 . The FGM is fully metallic at the bottom, where
Em = 70 GPa and fully ceramic at the top, where Ec = 380 GPa;
the Poisson ratio is considered constant and equal to 0.3, and the
exponent κ varies from 1 to 10. In order to test our refined and
advanced models, a quasi-3D reference solution (Ref) for the
FGMs was developed in [28] and [29] employing a layer-wise
model with fourth-order of expansion in the thickness direction
and by dividing the FGM layer into 100 mathematical layers
with constant properties: the method is computationally very
expensive, but it is incisive. Then, a sandwich shell with an FGM
core is investigated, the bottom face is in metallic material with
the Young modulus Em = 70 GPa and the top face is in ceramic

TABLE 2
First assessment, sandwich plate with an FGM core.

Transverse normal stress σzz at the top of the plate. L.C. means
boundary loading conditions

σzz(z = h)

Gc
Gf

0.9 0.999 1.0

L.C. 1.0000 1.0000 1.0000
LM4 1.0000 1.0000 1.0000
LM2 1.0046 1.0067 1.0066
LD4 1.0000 1.0000 1.0000
LD2 1.0119 1.0119 1.0119
ED4 0.9060 1.0026 1.0035
ED3 1.1766 1.2226 1.2271
FSDT 1.1536 1.1723 1.1724
CLT 2.0013 1.9845 1.9842
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FIG. 7. First assessment, sandwich plate with an FGM core. Displacement and stresses through the thickness z for Gc/Gf equals 0.9.

material with Ec = 380 GPa. The core consists of an FGM with
the Young modulus varying in z, according to Zenkour’s formula
[15] (the same material as the one-layered case). The thickness
of each face is hf = 0.1h and the core has hc = 0.8 h. In the
core, the Young modulus E(z) changes in z according to several
values of the exponent κ. A reference solution (Ref) has been
provided with the same method described for the one-layered
case (for details see [28] and [29]). The transverse displacement
w̄, for several thickness ratios Rα/h and exponents κ, is given in
Table 3 for the one-layered FGM shell; the use of refined models
with higher orders of expansion permits a quasi-3D evaluation
of the static response of functionally graded shells. An FGM
sandwich configuration is proposed in Table 4 where the three-
dimensional value of the transverse normal stress at the top is
given by the boundary loading conditions; this value is correctly
achieved by the LM4 model for each value of the thickness ratio
Rα/h and exponent κ.

The two proposed assessments demonstrate that the LM4
model gives a quasi-3D response, in terms of displacements
and stresses, of one-layered and multilayered plates and shells
embedding FGM layers. In the next section, the LM4 model is
used to investigate the effects of introducing some FGM layers
into common sandwich plates and shells.

6.2. Multilayered FGM Plates and Shells
The considered sandwich plate is simply supported with a

bi-sinusoidal (m = n = 1) load of amplitude p̄z = 1 Pa applied
at the top. The plate is square (a = b = 1 m) with a total
thickness h = 0.02 m, therefore the thickness ratio is a/h =
50. Each external face has a thickness hf = 0.1 h; the top face
is in ceramic material with Young modulus Ec = 380 GPa and
Poisson ratio ν = 0.3, the bottom face is in metallic material
with Em = 70 GPa and ν = 0.3. The core has a thickness
hc = 0.8 h and several configurations are employed in order
to investigate the effects of the introduction of FGM layers.
The possible configurations are clearly shown in Figure 8: a
core in Nomex with Young modulus E =1 MPa and Poisson
ratio ν = 0.3 is employed first, then two functionally graded
inter-layers are introduced between the top ceramic face and
the Nomex core, and the bottom metallic face and the Nomex
core. The Young modulus changes according to Zenkour’s law
[15], which has already been given in Section 6.1; according to
this law, several values of the exponent κ can be employed from
Ec = 380 GPa to E =1 MPa at the top, and from Em = 70 GPa
to E = 1 MPa at the bottom. A parameter q = hFGM

hcore
is given to

define the thickness of the employed FGM inter-layers; when
q = 1, the core is completely in FGM and the Young modulus
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FIG. 8. Several configurations of sandwich plate: core in Nomex, core in Nomex with two FGM inter-layers (hFGM/hcore = 0.5 and hFGM/hcore = 0.75),
core in FGM.

TABLE 3
Second assessment, one-layered FGM cylindrical shell.

Transverse displacement w̄ = w × 1010 in the middle of the
shell

w̄(z = 0)

Rα/h 4 10 100 1000

κ = 1 Ref 0.0018 0.0170 52.781 4201.3
LM4 0.0013 0.0170 52.783 4201.4
LD4 0.0013 0.0170 52.783 4201.4
LM2 0.0013 0.0162 52.693 4201.4
LD2 0.0014 0.0162 52.692 4201.4

FSDT 0.0054 0.0170 43.735 3792.2

κ = 4 Ref 0.0032 0.0314 79.739 7081.1
LM4 0.0022 0.0315 79.734 7081.6
LD4 0.0021 0.0315 79.734 7081.6
LM2 0.0028 0.0287 79.345 7081.6
LD2 0.0032 0.0288 79.344 7081.6

FSDT 0.0090 0.0277 65.603 6384.2

κ = 10 Ref 0.0042 0.0404 92.018 9370.8
LM4 0.0022 0.0405 92.033 9373.1
LD4 0.0021 0.0404 92.014 9373.1
LM2 0.0044 0.0359 91.356 9373.0
LD2 0.0049 0.0355 91.304 9373.0

FSDT 0.0121 0.0358 75.561 8436.5

changes with continuity from the bottom (Em = 70 GPa) to the
top (Ec = 380 GPa). When q = 0, the core is completely in
Nomex and no FGM inter-layers are embedded in the structure.
Table 5 gives the maximum value in the z direction for the
transverse displacement w, the in-plane stress σxx and the
transverse shear stress σxz. The investigated cases are: core
completely in Nomex (q = 0), core completely in FGM (q =
1), and several thicknesses of FGM inter-layers embedded
between the two faces and the core in Nomex (q = 0.25, 0.5,
0.75). When the FGM inter-layers are used, several exponents
of Zenkour’s law are investigated (κ = 1, 5, 10). The use of the
core in Nomex gives the largest values for the displacements and
the stresses, while the smallest values are shown when the core
is completely in FGM. The use of a complete FGM core leads
to some problems, such as higher costs and higher weights,
therefore several halfway configurations also have been
investigated: if the thickness of the FGM inter-layers increases,
the maximum values of displacements and stresses decrease.
The displacements, in-plane stresses and transverse stresses for
the sandwich with the core in Nomex are given in Figure 9. The
displacements have the typical ZZ form of classical sandwich
plates. This property is clearly given for the displacement u, and
underlined for the displacement w in Figure 10, since it is not
clearly shown in Figure 9 due to scale problems. The in-plane
stresses are discontinuous at the interfaces between the faces
and the core. The transverse stresses are continuous because
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FIG. 9. Sandwich plate with core in Nomex and/or FGM. Displacements, in-plane stresses and transverse stresses through the thickness z (κ= 1).

an LM4 theory is employed; transverse shear stress σxz has
non-symmetric behavior since the sandwich is asymmetric (the
two faces are different). Using an exponent κ = 1, the effect
of the FGM inter-layers (q = 0.5) and core fully in FGM (q =
1.0) is also investigated in Figure 9: the maximum value of the

displacements and in-plane stresses is reduced and the typical
ZZ effect is damped; the in-plane stresses are now continuous at
the interfaces and the transverse stresses are reduced. Another
important parameter is the employed exponent κ in the FGM
law, shown in Figure 11 for q = 0.25 (left side) and q = 0.75
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TABLE 4
Second assessment, sandwich cylindrical shell with core in

FGM. Transverse normal stress σzz at the top of the shell. L.C.
means boundary loading conditions

σzz(z = h/2)

Rα/h 4 10 100 1000

κ = 1 L.C. 1.0000 1.0000 1.0000 1.0000
LM4 1.0000 1.0000 1.0000 1.0000
LD4 1.0009 1.0000 1.0000 1.0000
LD2 1.0765 1.0257 1.0124 1.0000
EM4 1.4163 1.0952 0.9675 0.9756
ED4 1.4204 1.0959 0.9674 0.9756
ED2 1.0733 1.2953 1.1173 0.8956

EMZ3 2.0956 1.4603 1.2973 1.1088
FSDT 0.0797 0.4464 42.278 776.77

κ = 5 L.C. 1.0000 1.0000 1.0000 1.0000
LM4 1.0000 1.0000 1.0000 1.0000
LD4 1.0010 1.0000 1.0000 1.0000
LD2 1.0845 1.0307 1.0138 0.9998
EM4 1.2988 0.8036 0.6404 0.8164
ED4 1.3011 0.7977 0.6332 0.8159
ED2 1.2457 1.5951 1.3997 0.9338

EMZ3 2.7617 1.5077 1.3505 1.0326
FSDT 0.0934 0.5155 49.864 1149.6

κ = 10 L.C. 1.0000 1.0000 1.0000 1.0000
LM4 1.0000 1.0000 1.0000 1.0000
LD4 1.0010 1.0000 1.0000 1.0000
LD2 1.0856 1.0298 1.0147 0.9998
EM4 1.2027 0.5142 0.3908 0.5989
ED4 1.2179 0.5140 0.3883 0.6029
ED2 1.3376 1.7534 1.5234 1.0486

EMZ3 3.1867 1.6443 1.4872 1.0481
FSDT 0.0987 0.5417 52.575 1320.4

-0.4

-0.2

 0

 0.2

 0.4

 0.177  0.1775  0.178  0.1785  0.179

z

w x 103

LM4

FIG. 10. Sandwich plate with core in Nomex, ZZ from of the transverse
displacement w.

TABLE 5
Sandwich plate, maximum values of displacement and stresses
in the thickness direction z for several values of the thickness

of the FGM inter-layers

q = hFGM

hcore
k wmax σxx,max σxz,max

0 (Nomex) 0.1782 × 10−3 0.1959 × 104 4.8534
0.25 1 0.7162 × 10−4 0.1201 × 104 4.5563

5 0.1013 × 10−3 0.1316 × 104 3.8106
10 0.1097 × 10−3 0.1317 × 104 3.5277

0.50 1 0.2968 × 10−4 0.6478 × 103 3.4667
5 0.5201 × 10−4 0.7959 × 103 2.7398

10 0.5950 × 10−4 0.7667 × 103 2.3350
0.75 1 0.1422 × 10−4 0.4033 × 103 2.3499

5 0.2703 × 10−4 0.4858 × 103 1.9541
10 0.3239 × 10−4 0.2807 × 104 2.2299

1 1 0.9999 × 10−6 0.7804 × 102 1.3090
5 0.1300 × 10−5 0.8876 × 102 1.2146

10 0.1331 × 10−5 0.9289 × 102 1.1661

(right side) where three different values of κ are investigated. It
is clearly indicated how low values of κ reduce the transverse
stresses near the bottom of the plate and increase them near
the top. On the contrary, high values of κ increase the stresses
near the bottom and reduce them near the top. The exponent
κ = 10 is inappropriate for the reduction of in-plane stresses;
κ = 1 gives the continuity of in-plane stresses. The use of FGM
inter-layers is beneficial, but appropriate values of the thickness
(hFGM) and opportune FGM laws (exponent κ) must be
employed.

TABLE 6
Sandwich shell, maximum values of displacement and stresses
in the thickness direction z for several values of the thickness

of the FGM inter-layers.

q = hFGM

hcore
k wmax σαα,max σαz,max

0 (Nomex) 0.1845 0.5690 × 102 0.0307
0.25 1 0.1202 0.3848 × 102 0.0350

3 0.1458 0.4581 × 102 0.0344
10 0.1694 0.5239 × 102 0.0304

0.50 1 0.0894 0.2993 × 102 0.0351
3 0.1234 0.3860 × 102 0.0333

10 0.1591 0.4928 × 102 0.0301
0.75 1 0.0808 0.2558 × 102 0.0516

3 0.1079 0.3384 × 102 0.0338
10 0.1528 0.4737 × 102 0.0302

1 1 0.0220 0.8622 × 101 0.1698
3 0.0301 0.1134 × 102 0.1628

10 0.0379 0.1404 × 102 0.1708
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FIG. 11. Sandwich plate with core in Nomex and FGM inter-layers. Comparison for several values of the exponent κ. Fraction of the FGM thickness: q = 0.25
on the left and q = 0.75 on the right.

The second case considers a cylindrical shell panel with the
same geometry given in the previous section: Rα = 10 m,
Rβ = ∞, a = π/3 Rα, b = 1 m. The shell is simply sup-
ported with a bi-sinusoidal (m = n = 1) load of amplitude
p̄z = 1 Pa applied at the top. The total thickness of the sand-
wich is h = 0.2 m, therefore the thickness ratio is Rα/h = 50.
The sandwich configurations are the same as those given for
the plate case: two external ceramic and metallic faces with the
core either in Nomex, in FGM or in Nomex with inter-layers in
FGMs. The employed FGM law for the Young modulus E(z)
is the same as that described in Zenkour’s law [15]. The con-
clusions already drawn for the plate geometry also are con-
firmed for the shell configuration: the introduction of curvatures
does not modify the beneficial effects obtained from the use of
FGM inter-layers. Table 6 confirms, for several exponent values
(κ = 1, 3, 10), that the introduction of FGM inter-layers reduces
the maximum values of displacements and in-plane stresses, but
this is not confirmed for the transverse stresses as in the plate

case. Obviously, the best configuration is the core completely
in FGM. The displacements, in-plane stresses and transverse
stresses in Figure 12 are given through the thickness direction
z for a value of the exponent κ = 3; a comparison is made for
the core in Nomex, FGM inter-layers (q = 0.25) and the core
completely in FGM. Displacements are reduced by means of
the FGM inter-layers and their ZZ forms are damped; the conti-
nuity of the in-plane stresses is guaranteed if FGM inter-layers
are embedded in the structure. The exponent κ = 3 is not useful
to reduce the maximum value of the in-plane stresses. When
using the FGM inter-layers, the transverse stresses are better
distributed in the thickness direction z. Figure 13 gives two dif-
ferent configurations of FGM inter-layers embedded between
the Nomex core and the faces (q = 0.5 on the left and q = 0.75
on the right): the use of low values of κ is necessary to reduce or
eliminate the in-plane stress discontinuity at the interfaces. On
the contrary, the use of high values of κ is mandatory to reduce
the maximum value of the transverse stress near the top.
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FIG. 12. Sandwich shell with core in Nomex and/or FGM. Displacements, in-plane stresses and transverse stresses though the thickness z (k = 3).
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FIG. 13. Sandwich shell with core in Nomex and FGM inter-layers. Comparison for several values of the exponent k. Fraction of the FGM thickness: q = 0.5
on the left and q = 0.75 on the right.

7. CONCLUSIONS
The present paper has investigated the static response of sev-

eral multilayered FGM plates and shells. First, the advanced
layer-wise theory LM4 has been validated as a quasi-3D solu-
tion in the analysis of such structures. Sandwich plates and shells
have been investigated using this model, in terms of displace-
ments and stresses. The sandwich structures have two external
faces in ceramic and metallic material at the top and bottom,
respectively; the core is in Nomex. New configurations also
consider the core totally in FGM, or with two FGM inter-layers
embedded between the Nomex core and the two external faces.
The use of FGMs leads to an improvement in the response of
such sandwich plates and shells: the in-plane stress disconti-
nuity at the interfaces between the core and the faces can be
reduced or eliminated, the maximum values of displacements
and stresses are reduced with the use of FGM inter-layers. In
order to introduce such FGM layers, some parameters must be
correctly chosen: opportune values of the FGM-layer thickness

(hFGM) and appropriate laws for the FGM elastic properties (ex-
ponent κ) permit remarkable improvements to be obtained in the
static response of such structures. The choice of the FGM-layer
thickness and the elastic property law (κ-hFGM effect) depends
on the variable (displacement, in-plane stresses or out-of-plane
stresses) that one wants to modify and on its position in the
thickness direction z.
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