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ABSTRACT 

This paper describes the application of a vibration absorber to ameliorate the comfort of 

motorcycle handles. The concept of dynamical absorber is briefly summarised and a frequency 

response function is expressed as the ratio of vibration amplitudes (transmissibility). Some 

practical hints on the tuning strategy are also suggested in order to correctly define the absorber 

and then achieve the most effective vibration reduction. A specifically designed item is then 

presented, with the peculiar characteristic of taking advantage of the damping properties of 

viscoelastic material undergoing shear deformations. An experimental verification of the good 

performances of the absorber is eventually given on the basis of both a modal analysis of a 

motorbike and the testing of its handle on an electrodynamical shaker. 
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INTRODUCTION 

The exposure of men, or parts of their bodies, to vibration has been the subject of 

numerous studies for decades and has conducted to a better understanding of the 

many parameters governing the human response to vibrations. In particular, as 

regards the hand-arm system, vibration can cause changes in tendons, muscles, 

bones and joints, and can affect the nervous system to eventually produce the so-

called Hand-Arm Vibration Syndrome (HAVS). Quantification of the parameters 

affecting the subjective response of different individuals has lead to define 

numerous standards as, for example, the EN ISO 5349-1 and EN ISO 5349-2 

regarding the measurement and evaluation of human exposure to hand-transmitted 

vibrations. Standards focus mainly on the most remarkable effects of hand-held 

power tools, which can in fact affect the well being of workers, but of course give 
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no indication on how to quantify and increase the comfort of a motorcycle handle, 

which is the purpose of this paper. Some significant information can indeed be 

found in literature [1-7] leading, together with the indications of the standards, to 

the conclusion that the frequency range to be investigated extends approximately 

from 50 to 300 Hz. These frequencies not only are in the range felt by the hand 

and the fingers, but can well be excited by the various harmonics due to the 

unbalance of the engine. 

The present work takes start from the observation that most of the motorcycles 

mount a couple of lumped masses fixed at the very end of their handles. The 

fixtures are various and sometimes show the presence of rubber elements but all 

seem to apply the basic idea that, given a certain force acting on the handle, a 

large mass will decrease the acceleration and therefore increase the comfort. 

There is indeed a second, possibly positive, effect of these masses: when the 

dynamic response of the handle is dominated by a single mode, they may shift the 

mode itself to a frequency range barely excited by the engine or felt by the hands. 

The aim of this work is to investigate the possibility of designing a vibration 

absorber tuned to the frequency of maximum discomfort for the biker. 

2. THE VIBRATION ABSORBER 

In this section a brief explanation on the dynamics of the vibration absorber is 

given within the limits of the linear theory albeit it is well known that non-linear 

effects are not always negligible [8]. In Fig. 1 the typical vibration absorber is 

sketched. 

In this model the set formed by mass m1, spring k1 and damper c1 represents the 

vibration mode of the bike handle whose amplitude is to be reduced, and the set 

formed by mass m2, spring k2 and damper c2 is properly the vibration absorber. 

Under the hypothesis that the motion of the base is tieyty  0)( , the steady state 

responses of the two masses are harmonic functions too in the form tiAetx )(1  

and tiBetx )(2  where A and B are complex constants. The equations of motion 

of the two masses are: 
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with 1i  and 01010 yciykf  . 

 

The presence of the damping, which is of great benefit in practical applications, is 

here masking the effect of the dynamic absorber on the motion of the masses but, 

with c1=c2=0, it is straightforward to write 
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The denominator reveals, of course, the presence of two resonances whilst the 

numerators demonstrate the possibility of bringing to zero the amplitude of 

vibration A of mass m1, i.e. the handle of the bike in this model, with a 

corresponding limited amplitude B of the second mass. 

It is interesting to note that both A and B are influenced by the ratio of the masses 

but in a form not simple to study, especially if the effects of damping are to be 

included. A detailed discussion of the effects of 2c , under the hypothesis 01 c , 

is presented in the classical text by Den Hartog [9] and more recently in [10]. An 

indication of these combined effects can be given by the curves in Fig. 2 showing 

the consequences of varying mass m2 on the Frequency Response Functions 

(FRFs) A/y0 and B/y0, with constant damping ratios   02.02 1111  mkc  

  05.02 2222  mkc and 21    

The curves in Fig. 2 (all of them calculated in order to have 21   ) indicate that 

a positive effect of increasing the mass m2 is the reduction of both the A and B 

amplitudes around 1 . On the contrary negative features are given by the rise of 

the response of the first mode and the large values achieved by B, especially 

evident with small masses and possibly causing harmful effects on the fatigue life 

of the component. 

 



4 

3. DESIGN OF THE ABSORBER 

The absorber, whose principal features have been so far described, has to be 

designed to fit on an actual handle. The starting point is the knowledge of the 

resonance frequency of interest 1  which is usually associated to the first bending 

mode of the handle and can be measured with good accuracy. For a sport 

motorcycle the handle itself can be modelled as a clamped-free straight beam 

whose characteristic properties are the length 1L , the area moment of inertia of 

the cross-section 1I  and the material elastic modulus 1E .  

 

Fig. 2 Trasmissibilities of the dynamic absorber with m2 increasing. (a) Solid lines: A/y0; dashed 

line: FRF of the original sdof system; (b) B/y0; k1= 1.26x10
5
 N/m, m1=0.06 kg, ω2= 230 2π rad/s, 

m2/m1=1/10, 1/5, 1/2  
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According to the most common configuration of hollow circle section, the flexural 

stiffness 1k  of such a beam is: 
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with ER , IR  respectively indicating the external and internal radii of the beam. Of 

course it is not always possible to rely on a model as simple as the clamped-free 

straight beam to simulate the behaviour of an actual handle. For example in off-

road motor cycles the handlebar is usually bent and connected to the front fork by 

means of silent blocks. Anyway, given any particular handle, the geometric and 

material parameters are all fixed and may yield the stiffness 1k , possibly by a 

finite elements model. 

With 2

1  and 1k , the equivalent mass 1m  is quickly computed thus allowing for 

the definition of the damping coefficient 1c , given the damping factor 1 . The 

damping factor, which is usually of the order of some percent, has of course to be 

extracted from the response function of the handle, either in the frequency or in 

the time domain, by any of the numerous possible techniques [11]. In this 

particular case the authors have implemented a frequency domain least squares 

fitting of the autospectra of the accelerations, based on a single degree of freedom 

model with viscous damping.  

 

The mode shape revealing large displacements of the handles is in fact well 

separated in frequency and can safely be assumed to be scarcely influenced by 

other resonances. 

The second stiffness is determined on the basis of the sketch of Fig. 3. 

The material, with elastic modulus E2 and shear modulus G2, can be thought to be 

of rubber or viscoelastic type and is supposed to undergo shear deformations so 

that its stiffness is: 
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The shear coefficient  , written for an hollow circle, is 
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where  is the Poisson’s ratio and EI RRm  . 

When designing this component it is important to keep its length 2L  as short as 

possible in order to avoid its bending. This would cause two main effects: the first 

is that the dynamic absorber would not be tuned to the desired frequency because 

of the replacement of the shear by the bending stiffness. The second is that the 

resulting damping would be smaller and would limit the performance of the 

absorber in the frequency bands around the two resonances. This fact can be better 

understood if one takes into consideration the two typical layouts in which a 

viscoelastic material is usually arranged, the free and the constrained layer [12, 

13]. In the free layer configuration the material undergoes flexural deformations 

whilst in the constrained configuration shear deformations are predominant and, 

given the same quantity of material, give rise to a larger damping effect. 

On the other hand if 2L  is too short the resulting stiffness 2k  can reach very high 

values: this fact can make the tuning of the absorber a difficult task because mass 

2m  is determined with the ratio 2

222 km  . It must in fact be stressed that mass 

2m  depends on its volume and can not be chosen arbitrarily: for a fixed external 

radius, large masses would require long lengths and this would increase the 

possibility of having bending vibrations instead of the desired shear behaviour. 

The final choice of the dimensions and the material must therefore be a 

compromise of opposite requirements and the curves in Fig. 4 can be of help, 

showing how the bending stiffness approaches the shear value. 

The longitudinal behaviour of the component has not been taken into 

consideration in view of our particular application. The handle is in fact so stiff 

along its axis that the acceleration in this direction has negligible entity and does 

not need any further attenuation. 

The damping coefficient 2c  depends on the nature of the material and, for a 

typical viscoelastic rubber, can be supposed to give a damping factor 2  of (at 
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least) some percent points. 

The absorber so far described has been assembled by using both home made and 

standard elements according to the sketch of Fig. 5. The elastic element 2k  is a 

standard anti-vibration mount made from a couple of screws bonded to a 

compounded natural rubber disk and can simply be retrieved on many commercial 

catalogues. On the left side it is screwed to 3m , which is in turn screwed to the 

handle and constitutes the interface between the absorber and the motorcycle; on 

its right side 2k  is fixed to a steel cylinder which constitutes mass 2m . Both 2k  

and 2m  can simply be dismounted and modified in order to correctly tuning the 

system at the desired frequency. 

 



8 

4. EXPERIMENTAL TEST 

To verify the performances of the assembly some tests have been conducted at 

first on an actual motorcycle and then on its right handle. A four-cylinder sport 

motorcycle was installed on a rolling road and various run-ups from 2000 to 

12500 rpm were executed in its 6
th

 gear. The rate of the engine speed ramp of the 

engine was not controlled but the rider was able to repeat the same run-up with 

good accuracy just after a few trials. The system was instrumented with 21 triaxial 

accelerometers and a simultaneous sampling of all the channel were performed to 

allow for a modal analysis. The time-frequency representation of the acceleration 

data (cascade diagram) clearly indicates that some modes of the structure are well 

excited by the first and/or second order unbalance of the engine, depending on 

their frequency range.  

 

Fig. 6 The experimental mode shape at about 100 Hz f the motorycle; the dashed lines represent 

the undeformed structure 

 

It was not possible to directly measure the excitation forces produced by the 

engine so that an output-only modal analysis was performed in the frequency 

domain by two distinct methods, namely the RFPz [14] and the peak amplitude 

[11]. The results of this investigation reveals, among the others, the presence of a 

mode at about 100 Hz (Fig. 6) with large displacements of the handles. It may be 
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of interest to remark that this frequency can be excited by both the 1
st
 and 2

nd
 

order unbalance at 6000 rpm and 3000 rpm respectively. 

A second mode involving the handlebar is at about 140 Hz but is not considered 

in this discussion because it gives rise to much smaller accelerations and 

displacements and is not to be considered cause of such a great annoyance as the 

previous one. 

The right handle was soon after removed from the motorcycle and rigidly 

mounted on the moving table of an electrodynamical shaker (Fig. 7) transmitting 

in the vertical (z) direction a flat spectrum excitation in the band from 50 to 400 

Hz with a sine sweep in four minutes. This tests confirmed the results of the 

modal analysis with a resonance at about 100 Hz (Fig. 8, solid line) of the FRF 

between point 4 and point 1 (transmissibility). 

The same handle without its standard end mass (point 5, Fig. 7), which is 

normally fixed by a rigid rubber element and weights almost 200 g, has a 

resonance at about 240 Hz (Fig. 8, dashed line). As expected the contribution of 

this component is characterised by an inertial effect: the frequency moves from 

240 Hz to 100 Hz and the resonant peak becomes sharper and higher. In fact, 

given the same stiffness k and damping c of the structure, the damping ratio  

which governs the shape of the FRF, decreases with mass increasing. 

The physical assembly of the absorber drawn in Fig. 5 was eventually mounted on 

the handle: in Fig. 9 the arrow indicates the rubber element acting as stiffness 2k , 

with 3m  and 2m  clearly visible (also the accelerometer contributes to mass 2m  for 

a total of about 55 grams). The FRF of the handle is plotted in Fig. 10 in three 

configurations: no mass (dashed line), with mass 3m  (dotted line) and with the 

vibration absorber (solid line and crosses). The frequency of interest is now at 

about 170 Hz, i.e. at the resonant frequency of the handle with fixture 3m  (dotted 

line), and even when the absorber is not correctly tuned (solid line with its 

minimum at 200 Hz) the frequency response of the handle is lower then the 

original one (dashed line). When the tuning is forced at about 170 Hz by simply 

adding some grams to 2m , the maximum vibration amplitude still decreases and 

is reached at about 115 Hz, not far from the resonance of the handle with its 

original mass (Fig. 8, solid line) but with a much lower amplitude.  
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Also the presence of second mode of vibration at about 250 Hz is not a major 

drawback, especially when considering its very low amplitude. 

 

5. COMMENTS 

From the previous section it may be remarked that the presence of the absorber is 

positive also when its tuning is not accurate and this fact is confirmed also by the 

numerical results in Fig. 11. Even when 2k  varies from 0.67 to 1.5 times its ideal 

value 2

12m , thus changing the tuning of the system, the vibration amplitudes of 
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mass 1m  are lower than the original one (dashed line). These curves even show 

that in order to keep both the resulting resonant peaks limited to low values it is 

better not to tune the absorber on frequency 1  but to choose a lower 2 . 

 

Fig. 10 Esperimental response of the handle with or without the absorber. Dashed line: handle; 

dotted line: handle with fixture; solid line: handle with absorber; crosses: tuned absorber 

 

 Fig. 11 also gives important information on the effectiveness of the proposed 

solution at various temperatures. Although the elastic modulus of rubber type 

materials decreases with temperature, its variation is usually not so remarkable to 
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lead to a complete mistuning of the absorber. To confirm this assertion the 

absorber alone has been tested in an environmental chamber and in fact its 

resonant frequency 2  varied less than 10% in the temperature range 0-30 °C. 

The limited sensitivity of the absorber to mistuning is encouraging also in view of 

the fact that the right and left handles can not be perfectly equal: their slightly 

different resonances can nonetheless be largely limited by the same combination 

of 2m , 2k  and 2c . 

Finally Fig. 12 displays the valuable effects of increasing the damping factor 2  

from 2% to 5% to 10%. Damping, as expected, gives great benefits but even in the 

worst and not very realistic case ( 2 =2%) a loss of about 4 dB is achieved. 
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The curves in figures 11 and 12 have been drawn with 1 =2% but show a similar 

behaviour (with lower amplitude values) also when the damping is larger, which 

is the case for example of the mode at 240 Hz in Fig. 8. 

It is essential to stress that the whole discussion presented this paper is based on 

the assumption that a single mode has to be limited in amplitude so that the 

application of a vibration absorber can be a convenient choice. But any absorber is 

effective only on a single resonance so that a modal analysis of the structure has 

to be performed with the aim of selecting the mode shape generating the most 
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annoying disturbance for hands and arms. 

6. CONCLUSIONS 

This work discusses the application of the concept of vibration absorber to 

motorcycle handles. Some aspects of the system behaviour are theoretically dealt 

with and evidence is given on the influence of damping, added mass and 

mistuning. The guidelines for designing an absorber based on the shear 

deformation of a (visco)elastic material has been presented and its features 

discussed. A practical, although primitive, realisation of such a device as been 

tested under controlled laboratory conditions and proved effective and simple to 

tune at the desired frequency. It may be worth to point out that the description of 

the system performances is based on the reduction of the vibration amplitude of a 

single resonance so that a preliminary modal analysis is important to visualize the 

mode shapes of the system. Future work should be devoted to predict the fatigue 

life of the rubber element (spring) of the absorber and to perform road tests in 

order to verify the benefits on handle comfort in real life conditions. 
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