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Direct Data-Driven Filter Design For Automotive Controlled Suspensions

F. Ruiz, M. Taragna, M. Milanese

Abstract— This paper investigates the filter design problem
for automotive controlled suspensions when no mathematical
model of the system is available, but a set of initial experiments
can be performed, where also the variable to be estimated
is measured. The problem of designing suitable linear time-
invariant filters is here investigated, focusing the attention on
the estimation of the relative vertical speed between chassis and
wheel, using the data provided by two accelerometers measur-
ing the chassis and wheel accelerations. Disturbances and noises
are supposed to be norm-bounded and optimality refers to the
minimization of the induced norm from disturbances to the
estimation error. A Set Membership formulation is followed
and, for classes of filters with exponentially decaying impulse
response, an approximating set is determined guaranteed to
contain all the solutions to the optimal filtering problem. A
method is proposed for designing almost-optimal filters with
finite impulse response, whose worst-case estimation error is
at most twice the lowest achievable one. Numerical simulations
using standard “benchmark” road profiles illustrate the effec-
tiveness of the proposed solutions.

Keywords—filter design from data, controlled suspensions,
Set Membership estimation, automotive control.

I. INTRODUCTION

The design of controlled suspension systems for road

vehicles aims to enhance the vehicle performances with

regard to comfort and road handling. Such performance re-

quirements have received, in the last two decades, a growing

interest witnessed by an intense research activity developed

from both industrial and academic sides (see e.g. [1] and

the references therein). Vehicles suspensions serve several

conflicting purposes: in addition to counteracting the body

forces resulting from cornering, acceleration or braking and

changes in payload, suspensions must isolate the passenger

compartment from road irregularities. For driving safety, a

permanent contact between the tires and the road should

be assured. Passive suspension systems built of springs and

dampers have serious limitations. Their parameters have to

be chosen to achieve a certain level of compromise between

road holding, load carrying and comfort, under wide variety

of road conditions. This motivated extensive researches on

active and semiactive suspension systems.

In the case of semiactive suspensions, many different

control algorithms have been proposed, such as the well

established “two state” Sky-Hook (see e.g. [1]) and “clipped”
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strategies (see e.g. [2]), or Model Predictive Control tech-

niques (see e.g. [3]). The computation of the control move

requires to know, at each sampling time, the state of the

suspension system. Assuming a rigid chassis, the most usual

configuration of sensors for semiactive suspensions requires

five accelerometers: three of them measure the vertical

accelerations of the chassis (sprung mass) corners, while

the other two measure the vertical accelerations of the front

wheels (unsprung masses). Thus, an estimate of the system

state has to be provided. Sprung and unsprung masses speeds

can be obtained by suitable filtering actions of accelerometer

signals. In particular, in order to remove DC offset effects,

speeds are obtained by filtering the measured accelerations

by means of suitable bandpass filters as described in [4].

Positions are then obtained via pseudo-integration of the

estimated speed signals as proposed in [5]. A decoupled

observer technique as described in [6] can be used to obtain

an estimate of the tire deflection. However, the design of

suitable observers for this specific application (see e.g. [6],

[7]) is a still open research problem.

When the vehicle vertical dynamics are not completely

known, a data-driven approach to the filtering problem can be

followed, originating from an important practical considera-

tion. In many applications, it is possible (if not mandatory) to

perform a set of initial experiments, where also the variable

to be estimated is measured. In the data-driven approach,

the information provided by the initial set of experiments is

fully exploited for the filter design and replaces the system

description required by the model-based approaches. The

usual way to deal with the measurements in the data-driven

approach is to adopt a two-step procedure:

1) A model of the process is identified from prior infor-

mation (physical laws,...), making use of measurements

that include the variable to be estimated;

2) On the basis of the identified model, a filter is designed

whose output is an estimate of the variable of interest.

Indeed, the filter in step 2 should be designed with some

robust technique, that allows to account for the unavoidable

discrepancies between the process and the model identified

in step 1.

An alternative approach has been proposed in [8], [9],

where the data needed in step 1 of the two-step procedure

are used to directly design the filter, thus avoiding the model

identification. The advantages of this direct design approach

with respect to the two-step procedure have been put in evi-

dence in [8] within an stochastic framework, while [9] deals

with this direct design approach within a Set Membership

framework. In [10], the behavior of filters designed from
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data, using both direct and two-step methodologies, were

evaluated for a quarter-car suspension system following an

stochastic approach.

In this paper, a new direct design approach is investigated,

focusing the attention on the estimation of the relative verti-

cal speed between chassis and wheel, using the data provided

by two accelerometers measuring the chassis and wheel

vertical accelerations. Assuming norm-bounded disturbances

and following a Set Membership formulation, for classes

of filters with exponentially decaying impulse response, an

approximating set is determined that guarantees to contain

all the solutions to the optimal filtering problem and a linear

almost-optimal filter is designed, with guaranteed worst-

case performances when applied to new data. Different

simulations are carried out using standard “benchmark” road

profiles employed in industrial tests, in order to evaluate

the estimation quality and to verify the overall approach

feasibility.

II. DIRECT DATA-DRIVEN FILTER DESIGN

FOR UNCERTAIN LTI SYSTEMS

Consider a discrete-time, linear, time-invariant, dynamic

system S, initially at rest, described in state-space form as:

xt+1 = Axt + Bwt

yt = C1x
t + Dwt

zt = C2x
t

where, for a given time instant t ∈ N: xt ∈ R
n is the

unknown system state, with x0 = 0; yt ∈ R
ny is a known

(measured) output; w t ∈ R
nw is an unknown one-sided

input (i.e., wt = 0 ∀t < 0, w0 �= 0), including process
disturbances and measurement noises; zt∈ R is the variable

to be estimated; A, B, C1, C2 and D are constant matrices

of suitable dimensions.

In this paper, a deterministic description of disturbances

and noises is adopted, considering that the input w is

unknown but bounded in a given norm, and the aim is to

design a filter that provides an estimate of z that minimizes
the worst-case gain from w to the estimation error, measured
in some norm. To this purpose, let us recall the definition of

p-norm for a one-sided discrete-time signal s = {s0, s1, . . .},
st ∈ R

ns and p ∈ N:

‖s‖p

.
=

[

∞
∑

t=0

ns
∑

i=1

|st
i|

p

]
1
p

, p < ∞

‖s‖∞
.
= max

t=0,..,∞
max

i=1,..,ns

|st
i|

and the (q, p)-induced norm of a linear operator T :

‖T‖q,p = sup
‖s‖

p
=1

‖T (s)‖q , p, q ∈ N

While the system S is supposed to be known in the liter-
ature on worst-case filtering, in most practical applications

this is not the case and a model of S is typically identified
from measurements y and z̃ = z + v collected during an
initial experiment of finite length N , being v an additive
noise on z. In the present paper, these initial data y and z̃
are used to directly design a filter that provides an estimate

of z using new measurements y, with (possibly) minimal
estimation error.

In the following, the system S is unknown, but its pair

[A,C1] is supposed to be detectable. The further information
on S, used for the direct filter design, is represented by the
measured data, collected in the following column vectors:

Y = [y0; y1; . . . ; yN−1] ∈ R
Nny

Z̃ = [z̃0; z̃1; . . . ; z̃N−1] ∈ R
N

The disturbance column vector

W = [w0; w1; . . . ; wN−1] ∈ R
Nnw

and the measurement noise vector

V = [v0; v1; . . . ; vN−1] ∈ R
N

are unknown but with known bounds:

‖W‖p ≤ δ

‖V ‖q ≤ ǫ

It has to be pointed out that, without loss of generality,

‖W‖p ≤ 1 can be assumed if the matrices B and D of

the dynamic system S are properly scaled. For this reason,
δ = 1 will be considered in the sequel of the paper.
In order to allow the user to suitably design the filter, let us

consider the following H∞ subset containing systems with

bounded and exponentially decaying impulse response:

K(L, ρ, μ) = {G∈H∞ : ‖ht
G‖∞≤L ∀t∈ [0, μ],

‖ht
G‖∞≤Lρt−μ ∀t ≥ μ, t∈N

}

where the triplet (L, ρ, μ) is a design parameter, with L > 0,
0 < ρ < 1, μ ∈ N, hG =

{

h0
G, h1

G, . . .
}

is the filter impulse

response with ht
G ∈ R

ny and ny is the dimension of the filter

input. This set represents a filter design choice, allowing the

user to require acceptable effects of the fast dynamics of the

filter, occurring in the first instants of the impulse response,

and an exponentially decaying bound on the slow dynamics

due to the dominating poles.

Within the above context, the following filtering problem

can be defined.

Optimal filtering problem: given scalars L > 0, 0 <
ρ < 1 and integers μ, p and q, find an optimal filter Go ∈
K(L, ρ, μ) such that the estimate ẑGo

= Go(y) achieves a
finite gain

γo = inf
Go∈K(L,ρ,μ)

sup
‖w‖

p
=1

‖z − ẑGo
‖q

The set of all the solutions to this problem is given by:

Go(L, ρ, µ) =

{

G ∈ K(L, ρ, µ) : sup
‖w‖

p
=1

‖z − ẑG‖q = γo

}

No results are available in literature about the construc-

tion of the set Go(L, ρ, μ), even when S is known. The

purposes of the proposed methodology are to determine a

tight approximation of this set considering finite experiment

length and to select from it a filter with guaranteed worst-

case performances, by suitably exploiting the information

provided by the noisy dataset (Y ,Z̃) and the noise bound ǫ.
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A. Direct data-driven filtering

In this subsection, the optimal filtering problem is inves-

tigated and a tight approximation of the set Go(L, ρ, μ) is
provided considering an initial experiment of finite length

N .
Consider the following filter set:

Definition 1: Feasible Filter Set

FFS =

{

G ∈ K(L, ρ, μ) :
∥

∥

∥
Z̃ − ẐG

∥

∥

∥

q
≤ γo + ǫ

}

where ẐG = [ẑ0
G; ẑ1

G; . . . ; ẑN−1
G ] ∈ R

N is the estimate

vector provided by G when applied to data Y .

This set contains all the filters consistent with the bounds on

disturbances and noises, the information coming from the

dataset (Y, Z̃) and the design triplet (L, ρ, μ). Moreover, by
choosing N sufficiently high, the FFS turns out to be the

tightest set guaranteeing to contain Go(L, ρ, μ), as stated in
the following lemma.

Lemma 1 ([11]): Let the dataset (Y, Z̃), the scalars

L, ρ, ǫ and the integer μ be given. Then

Go(L, ρ, μ) ⊆ FFS
In the present data-driven approach, the worst-case gain

γo is unknown since the system matrices are not known.

In order to choose a suitable value of γo, an hypothesis

validation problem is initially solved where one asks if, for

given model class K(L, ρ, μ) and finite data length N , the
assumption on γo leads to a non-empty FFS. However,
the only test that can be actually performed is if such an

assumption is invalidated by the available data, checking if

no filter consistent with the overall information exists. This

leads to the following definition.

Definition 2: Let the dataset (Y ,Z̃), the scalars L, ρ, ǫ and
the integer μ be given. Prior assumption on γo is considered

validated if FFS �= ∅.

The fact that the prior assumption is consistent with the

present dataset (Y, Z̃) does not exclude that it may be in-
validated by future data. Indeed, values much lower than the

true γo may be validated if the actual disturbance realization

occurred during the initial experiment is far from the worst-

case one. In the next subsection, a validation test is presented

allowing one to determine an estimate of γo.

When a filter F ∈ K(L, ρ, μ) has been obtained by
means of a design algorithm, it is obviously of interest to

evaluate, for any measured output y, the difference between
the estimate ẑF provided by F and the estimate ẑG provided

by an optimal filter G ∈ Go(L, ρ, μ). This can be measured
by the term

sup
‖y‖

q
=1

‖ẑG − ẑF ‖q = ‖G − F‖q,q

being G−F the LTI dynamic system with input y and output
ẑG − ẑF .
The induced norm ‖G − F‖q,q depends on the particular

G that is considered. However, it cannot be computed
exactly, since on the basis of the available information it
is only known from Lemma 1 that G ∈ Go(L, ρ, μ) ⊆ FFS.
For this reason, its tightest upper bound is given by:

‖G − F‖q,q ≤ sup
G∈Go(L,ρ,μ)

‖G − F‖q,q ≤ sup
G∈FFS

‖G − F‖q,q

thus leading to the following definition.

Definition 3: Worst-case filtering error of a given filter

F ∈ K(L, ρ, μ):

E(F ) = sup
G∈FFS

‖G − F‖q,q

Then, the following optimality criterion can be defined.

Definition 4: A filter Fo ∈ K(L, ρ, μ) is optimal if

E(Fo) = inf
F∈K(L,ρ,μ)

E(F )
.
= r(FFS)

where r(FFS) is the so-called radius of information.

An optimal filter Fo is a Chebyshev center of FFS and it

is the closest filter to any element of FFS. The radius of
information is the smallest worst-case filtering error that can

be guaranteed on the basis of the overall information and

the design choice. It is well known in the Set Membership

literature that optimal filters are hard to be determined.

This motivated the interest in deriving algorithms having

lower complexity, at the expense of some degradation in

the accuracy of the designed filter. A good compromise is

provided by the following family of filters.

Definition 5: A filter FI is interpolatory if FI ∈ FFS.

Any interpolatory filter is consistent with the overall infor-

mation. An important well-known property of these filters

is that E(FI) ≤ 2 r(FFS). Due to such a property, these
filters are called 2-optimal or almost-optimal.

If the worst-case filtering error E(F ) can be computed, it
is possible to evaluate a bound on the worst-case estimation

error guaranteed by a filter F for any possible disturbance,

according to the following result.

Lemma 2 ([11]): Let the system S be asymptotically sta-
ble. For any given filter F ∈ K(L, ρ, μ), the estimate ẑF =
F (y) guarantees

sup
‖w‖

p
=1

‖z − ẑF ‖q ≤ γo + E(F ) ‖Sy‖q,p

where Sy is the LTI dynamic subsystem of S such that y =
Sy(w).

The above lemma shows that the worst-case estimation error

depends on ‖Sy‖q,p
, that has to be somehow estimated from

the available information.

B. Direct data-driven design of almost-optimal filters

As often happens in Set Membership approaches, op-

timal data-driven filter design appears to be difficult. In

this subsection, an almost-optimal filter is designed as a

suitable interpolatory one. This requires to look for filters in

FFS, which is a difficult task because FFS is an infinite

dimensional set. For this reason, FIR filters are used hereafter

to approximate any filter F ∈ K(L, ρ, μ) and the search in
FFS is transformed into a search in a finite dimensional

space.

Because of the well-known capabilities of FIRs to approx-

imate asymptotically stable systems, these filters are looked

for inside the following model class of finite fading memory

systems:

Km(L, ρ, μ) =
{

F ∈ K(L, ρ, μ) : ht
F = 0, ∀t > m

}
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where L > 0, 0 < ρ < 1, μ ∈ N, m ∈ N such that

m ≥ μ and ht
F ∈ R

ny . It is obvious that Km(L, ρ, μ) ⊂
K(L, ρ, μ), ∀m ∈ N.

Given a system G, let Gm be its truncation, i.e., the FIR

filter having the same first m + 1 impulse response samples
of G: hGm =

{

h0
G, h1

G, . . . , hm
G , 0, 0, . . .

}

. Let m ∈ N be

such that m ≥ μ, and q = 2 or q = ∞. For any given
system G ∈ K(L, ρ, μ), its truncation Gm guarantees

‖G − Gm‖q,q ≤ ηm

where ηm = ny
Lρm+1−µ

1−ρ
is the so-called truncation error of

G through Gm. The sequel of the paper will be focused on

the cases q = 2 and q = ∞.
The problem of checking the prior assumption validity,

i.e., to check if FFS is non-empty according to Definition 2,
is now considered.

Theorem 1 ([11]): Let the dataset (Y ,Z̃), the scalars
L, ρ, ǫ, the integers μ andm be given. Let ν∗ be the solution

to the optimization problem:

ν∗ = min
F∈Km(L,ρ,μ)

∥

∥

∥
Z̃ − TyHF

∥

∥

∥

q
(1)

where TyHF is the estimate of Z provided by a FIR filter

F , with HF = [h0
F ;h1

F ; . . . ;hm
F ] ∈ R

(m+1)ny the column

vector of the first m + 1 coefficients of F and the matrix

Ty ∈ R
N×(m+1)ny defined as follows:

• if m < N , then Ty = Tm
y is the block-Toeplitz matrix

formed by the samples yt, t = 0, 1, . . . , N − 1.
• if m ≥ N , then Ty = [TN−1

y 0N×(m+1−N)ny
].

Then:

i) A sufficient condition for prior assumption being vali-

dated is
ν∗ ≤ γo + ǫ

ii) A necessary condition for prior assumption being vali-

dated is
ν∗ ≤ γo + ǫ + ηm ‖Y ‖q

iii) If m ≥ N − 1 is chosen, a necessary and sufficient
condition for prior assumption being validated is

ν∗ ≤ γo + ǫ

Note that the gap between the necessary and sufficient

conditions i) and ii) can be made as small as desired by

increasing m and becomes negligible when ηm ‖Y ‖q � ν∗.

Indeed, no gap exists just for m = N − 1.
Theorem 1 can be used for choosing the model class

Km(L, ρ, μ). In fact, if the gap between the conditions i)
and ii) is negligible, the function

ν∗(L, ρ, μ) = min
F∈Km(L,ρ,μ)

∥

∥

∥
Z̃ − TyHF

∥

∥

∥

q

individuates, for a given value of μ ∈ N, a surface in the

space (L, ρ, γo +ǫ) separating validated values of (L, ρ, γo +
ǫ) from falsified ones. Clearly, the triplet (L, ρ, γo + ǫ) has
to be chosen in the validated region with some “caution”

(i.e., not too near the separation surface, as illustrated in

the following section) and exploiting the information on

the experimental setting. Useful information on L, ρ and
μ values is provided by the impulse responses of filters

designed by means of “untuned” algorithms which do not

make use of prior assumptions, such as projection or standard

prediction error algorithms. Moreover, the value of ǫ can be
obtained by evaluating the instrumentation accuracy.

The aim of the design procedure here developed is to

choose a filter in FFS that guarantees a small worst-case

estimation error on future data. Let us consider the filter F ∗

given by the following algorithm:

F ∗ = arg min
F∈Km(L,ρ,μ)

∥

∥

∥
Z̃ − TyHF

∥

∥

∥

q
(2)

that is, F ∗ is the model class element that achieves ν∗

as solution to the optimization problem (1). The following

theorem shows the properties of F ∗.

Theorem 2 ([11]): If ν∗ ≤ γo + ǫ, the filter F ∗ is

interpolatory (i.e., F ∗ ∈ FFS) and then almost-optimal.
Moreover, if the system S is asymptotically stable, the

estimate ẑF∗ = F ∗(y) guarantees

sup
‖w‖

p
=1

‖z − ẑF∗‖q ≤ γo + E(F ∗) ‖Sy‖q,p

≤ γo + 2r(FFS) ‖Sy‖q,p

Remark The algorithm (2) involves a convex optimization

problem with linear constraints on the FIR filter coefficients

due to the model class Km(L, ρ, μ). In the case q = 2,
the cost function is quadratic and the problem can be

efficiently solved using quadratic programming techniques.

In the case q = ∞, the problem is a minimax and it can be
solved efficiently using linear programming techniques (see,

e.g., [12]).

III. EXPERIMENTAL SETUP

In this work, the direct data-driven filter design
methodology is applied to the vertical dynamics of a
road vehicle. The used model is a quarter-car semiactive
suspension system, having the structure depicted in Figure 1.
The chassis and the wheel are modeled as rigid bodies and
static linear characteristics are assumed for the suspension.
The variables describing the system are the chassis vertical

Fig. 1. Quarter-car suspension schematic

position ξc, the wheel vertical position ξw, the road profile
wr and the damping force wd. The quarter-car model
dynamics are given by the following set of differential
equations:

Mcξ̈c = −Kc (ξc − ξw) − βc

(

ξ̇c − ξ̇w

)

+ wd

Mw ξ̈w = Kc (ξc − ξw) + βc

(

ξ̇c − ξ̇w

)

− Kw (ξw − wr) − wd

(3)
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where Mc is the sprung mass (chassis), Mw is the unsprung
mass (tire, wheel and other suspension components),Kc is
the suspension spring constant, Kw is the tire stiffness
coefficient and βcis the suspension damping coefficient.The
parameter values used in the simulations are Mc = 432.82
kg, Mw = 40 kg, Kc = 17200 N/m, Kw = 200000 N/m and
βc = 3000 Ns/m. These values have been taken from [3].
The damping force is assumed to be generated by a semi-
active suspension system and can be written as wd(t) =

−β(t)
[

ξ̇c(t) − ξ̇w(t)
]

, where the damping coefficient β(t) is

variable. In this work, the widely used semiactive suspension
control technique known as “On-Off Sky-Hook” control (see
e.g. [13]) is used, where the damper is adjusted at maximum
or minimum damping to provide the following force:

wd =

⎧

⎨

⎩

wd

(

ξ̇c − ξ̇w

)

if ξ̇c

(

ξ̇c − ξ̇w

)

≥ 0

wd

(

ξ̇c − ξ̇w

)

if ξ̇c

(

ξ̇c − ξ̇w

)

< 0

The quarter-car model (3) has been implemented in Simulink,

choosing a sample time Ts = 1/512s. Six experiments
have been performed, all with a length of 13.7 seconds
(7000 samples). Each experiment corresponds to the system
response to a “benchmark” road profile, subject to zero initial

conditions, as described in [3]. The considered road profiles

are among those used for the on-road tuning of the CDC-

Skyhook (continuous damping control) system. These road

profiles allow to test different dynamic conditions of the

vehicle, in terms of frequencies and amplitudes:

• Random (shortened as RR): random road,

• Motorway (shortened as MW): level road,

• Pavé (shortened as PV): road with small amplitude

irregularities,

• English Track (shortened as ET): road with irregularly

spaced sequences of bumps and holes,

• Short Back (shortened as SB): impulsive road,

• Drain Well (shortened as DW): negative impulsive road.

IV. DIRECT DATA-DRIVEN FILTER DESIGN

FOR ACTIVE SUSPENSIONS

In this section, the direct data-driven filter design method-

ology is applied to estimate the vertical dynamics of a road

vehicle. Assuming p = q = 2, an H∞ filter is here designed

to estimate the relative vertical speed between the chassis and

the wheel, using the chassis and wheel vertical acceleration

measurements.

For the filtering design problem the model is considered

unknown with the road profile wr and the damping force wd

as unknown but bounded inputs. The assumption about the

damping force is motivated by the fact that in a semiactive

suspension systems this force is no directly manipulable but

is a consequence of an applied command, usually a current,

and the relative speed between chassis and wheel (see e.g.

[3]). Then, the damping force is not directly measurable and

is strongly correlated with the system state, thus it can not

be modeled as an stochastic process.

The accelerations ξ̈c and ξ̈w are the measured outputs,
corrupted by additive noise. The relative vertical speed

ξ̇cw = (ξ̇c − ξ̇w) is the variable to be estimated, that can be
measured only on an initial experiment where it is corrupted
by an additive noise. This leads to the following variables of

the data-driven filtering framework developed in the present
paper:

y =

[

ξ̈c + w1

ξ̈w + w2

]

, w =

⎡

⎢

⎣

w1

w2

wr

wd

⎤

⎥


, z = ξ̇cw, z̃ = ξ̇cw + v

The measurements are affected by noises w1, w2 and v, that
are i.i.d. zero-mean normal sequences, such that the noise-to-

signal ratios are equal to 2%. In particular, the noise vector
V is bounded as ‖V ‖2 ≤ ǫ = 0.44.

The complete dataset has been partitioned as follows:

• filter design dataset: data y and z corresponding to the
experiment with a Pavé road profile;

• validation dataset: data y corresponding to the experi-
ments with the other five road profiles. This set is used

for testing the accuracy of the estimates on data not

involved in the filter design.

The prior assumption validation on γo has been analyzed

for different model classes K(L, ρ, μ) with p = q = 2. In
order to obtain a negligible gap between the necessary and

the sufficient conditions of Theorem 1, the value of m has

been chosen such that ηm ‖Y ‖2 ≤ ν∗/100 is guaranteed.
The values of L, ρ, μ have been assessed according to the
procedure discussed in the Section II. Standard prediction

error algorithms have been applied to the filter design dataset,

in order to obtain some information about the model class

parameters. The impulse responses of filters of orders 2 to 7,

provided by the MATLAB pem routine and plotted in Figure

2, suggest L = 14 · 10−3, ρ = 0.92 and μ = 5 as possible
initial choice.

Starting from these values, the surface ν∗(L, ρ, μ) separating
validated values of (L, ρ, γ + ǫ) from falsified ones has

been computed using Theorem 1 for different values of

μ. A reasonable choice of the model class parameters is

L = 0.007, ρ = 0.8 and μ = 10. Figure 3 shows some
sections of the surface ν∗(L, ρ, μ) for μ = 10. Since the
value ν∗(0.007, 0.8, 10) = 0.69, the value 0.75 appears a
reasonable choice for the term γ+ǫ, that guarantees a bound
γ = 0.31 on the worst-case estimation gain, since the bound
ǫ = 0.44 is assumed as prior information on the noise vector
V . As a consequence of the selected values, m = 54 is the
FIR order.

The interpolatory filter F ∗ has been obtained using the

identification algorithm (2) on the filter design dataset. The

quality of the estimates provided by F ∗ has been assessed

by evaluating the actual ratios between the disturbances

and the estimation errors on the different experiments of

the validation dataset, as reported in Table I. These ratios

are not higher than twice the estimated worst-case gain

γ = 0.31 that would be obtained with a filter designed
using the model information. For comparison, filters Fut

n , of

orders n ∈ [2, . . . , 7], have been obtained using “untuned”
prediction error methods on the filter design dataset and their

performances on the validation dataset are also reported.
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Fig. 2. Estimated filter impulse responses (solid lines) and possible bounds
for the model class K(L, ρ, µ) using: L = 14 ·10−3, ρ = 0.92 and µ = 5
(dashed lines); L = 7 · 10−3, ρ = 0.8 and µ = 10 (dash-dotted lines).
Up, impulse response from measured chassis acceleration to relative speed.
Down, impulse response from measured wheel acceleration to relative speed.

TABLE I

ESTIMATION ERROR TO DISTURBANCE RATIO ON THE VALIDATION

DATASET

Filter RR MW ET SB DW mean
F ∗ 0.49 0.60 0.59 0.45 0.60 0.55

F ut
2 3.35 1.86 2.16 3.52 2.75 2.73

F ut
3 0.76 0.83 0.82 0.73 0.86 0.80

F ut
4 1.07 0.96 0.98 1.14 1.10 1.05

F ut
5 1.27 1.03 1.05 1.28 1.17 1.16

F ut
6 0.80 0.83 0.82 0.75 0.85 0.81

F ut
7 0.76 0.82 0.81 0.75 0.84 0.79

V. CONCLUSIONS

A direct filter design methodology has been presented

for uncertain LTI dynamic systems, where the information

provided by an initial set of experiments is exploited and the

identification of a model of the data generating process is

avoided. The filter design problem for automotive controlled

suspensions has been considered, focusing the attention on

the estimation of the relative vertical speed between chassis

and wheel, using the data provided by two accelerometers

measuring the chassis and wheel accelerations. A Set Mem-

bership formulation is followed and, for classes of filters

with exponentially decaying impulse response, a method
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Fig. 3. Section of the surface ν∗(L, ρ, µ) for µ = 10, separating validated
values of (L, ρ, γ + ε) from falsified ones

is proposed for designing almost-optimal filters with finite

impulse response, whose worst-case estimation error is at

most twice the lowest achievable one. Numerical simulations

using standard “benchmark” road profiles illustrate the effec-

tiveness of the proposed solutions.
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