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Abstract— Multi-chip scheduler implementation in IQ switches
are suited to reduce the hardware complexity in very large,
high-speed, switches. However, this implies introducing a RTTs
(Round Trip Time) among input and output selectors used
to determine a matching due to inter-chip latency. This delay
requires modifications to scheduling algorithms to allow a fully
distributed implementation while keeping good performance. We
propose a novel multicast scheduler, named IMRR, an extension
of a previously proposed multicast scheduling algorithm named
mRRM, making it suitable to a multi-chip implementation, and
examine its performance by simulation.

I. INTRODUCTION AND RELATED WORK

Despite the fact that synchronous slotted 1Q (Input-Queued)
switches have been proposed as an innovative architecture
for high-speed switches many years ago, the interest of the
research community in this type of architectures is still sig-
nificant. Indeed, IQ switches are suited for several application
domains, such as traditional routers/switches, SANs (Storage
Area Networks), and HPC (High-Performance Computing)
interconnects; in most of these application domains, a large
number of ports and high line rates are dominant. Although
multicast traffic has not yet became a significant portion of
the current Internet traffic, its support is anyhow fundamental
in routers/switches. Indeed, broadcast traffic is important in
Ethernet switches both to support applications that rely on
LAN broadcast capability, e.g., ARP, as well as to internally
distribute forwarding tables; in SANs, multicast enables data
replication, possibly on physically separated site, to improve
reliability.

To obtain performance close to output queued switches, IQ
switches rely on a VOQ (Virtual Output Queued) architecture
at inputs for unicast traffic, as shown in Fig.1: in an N x N
switch, data, named cells in this paper since we consider
synchronous slotted operation, are stored at each input port in
N separate queues, depending on cell destination. The optimal
queue architecture for multicast traffic [1], that completely
avoids HoL blocking for multicast flows, requires a number
of queues which grows exponentially as 2%V with the number
N of inputs/outputs, and a complex packet re-enqueuing
scheme. Being this solution unpractical and due to the fact that
currently multicast traffic is a small portion of data traffic, most
researchers have proposed the use of a single FIFO queue for
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multicast traffic [2], [3]. Other studies propose an architecture
with K < N queues and show some performance benefits due
to the reduced HoL blocking [4], [5], [6].

The most challenging problem in IQ architectures is the
definition of a proper scheduling algorithm: to transfer fixed-
size cells from VOQs to output ports, at every time slot,
a matching between inputs and outputs must be determined
to avoid output and input contention, since no buffers are
available at output ports and no internal speedup is available in
the switching fabric and in memory access speed. The task of
the centralized scheduler is to collect information from input
queues, to determine a matching and to configure the switching
fabric in each time slot to connect input VOQs to outputs.
Increasing high rates imply shorter time slots, thus requiring
simple scheduling algorithms, especially in switches with a
large number of ports. Several heuristic algorithms have been
proposed for unicast [7], [8], [9], [10], [11] and for multicast
traffic [2], [3], [4], [5], [6].

Output 0

—

Input (N-1) Output (N-1)
voa Crossbar put(
LINE CARD Crossbar
configuration
Scheduler
Fig. 1. IQ architecture with a centralized scheduler and VOQ architecture

at inputs for unicast traffic.

A very popular solution to determine a heuristic matching
is to devise parallel, iterative matching algorithms based on
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a three-phase (request-grant-accept) [9], [10] or two-phase
(request-grant) [2], [3], [11] scheme. In three-phase schemes,
in the request phase, inputs issue requests to outputs. In the
grant phase, outputs solve request contentions independently,
by choosing a single request to grant. Finally, inputs solve
contentions independently by accepting one among multiple
received grants. In two phase schemes, each input issues a
single request only to a given output. As such, no accept
phase is needed, since no grant contention may arise at inputs.
However, a proper request must be chosen at each input and
request contention must be solved as in three-phase schemes.
Iterations are in general fundamental to improve the matching
and obtain good performance, especially for unicast traffic. As
such, the three-step or two-step procedure is repeated several
times within a time slot.

Request and grant contentions in three-phase schemes, as
well as the choice of the request to send and request con-
tentions in two-phase schemes, are typically solved using N
input and N output selectors (labeled IS and OS respectively
in the remainder of the paper), exploiting a round-robin
mechanism based on pointers kept at inputs and outputs: the
input (output) selector chooses the first eligible output (input)
in a round robin fashion, starting from the position indicated
by the pointer.

The centralized single-chip implementation of scheduling
algorithms is largely dominant; however, scalability problems
may arise for very large high-speed switches [13]. When
looking at multi-chip implementations, device separation im-
plies that decision taken by input/output selectors belonging
to different devices are known only after an inter-chip latency,
named RTT (Round Trip Time) in the remainder of the paper.
RTTs may be significant with respect to the time slot. Indeed,
at high speed the time slot is rather short (13ns at 40Gbit/s for
a 64bytes packet) if compared with inter-chip communication
latencies which include propagation delays, data serialization
and pin sharing which may be required to overcome the I/O pin
count limit. As such, as shown in Fig. 2, information critical
i) to determine the matching, ii) to update the pointers and
iii) to issue new requests, is delayed by the inter-chip latency,
causing performance degradation.

input status update
and selection

input )
selector .
| | | |
reques/t;f
! RTT !
=% =
3 \ g\rant :
\ \ \ \ \ >
output = - t
selector ! .
output selection
and status update
Fig. 2. Round trip time between input and output selectors.

Scheduling algorithms to deal with the inter-chip latency

issue were previously proposed for unicast traffic [13], [14].
To the best of our knowledge, no studies were proposed to
solve the scheduling problem for multicast traffic. Although
one possible way to support multicast traffic is to replicate
multicast cells at inputs and treat them like unicast cells, we
disregard this approach in this paper, if not for comparison
purpose. Indeed, a speed increase at input ports would be
required to support data replication, and a poor bandwidth
utilization of the switching fabric [1] can be obtained even in
very simple scenarios; indeed, a broadcast flow at line speed
incoming in a single input cannot be supported efficiently
due to the no-speedup requirement of IQ switches, which
limits the throughput to 1/N in an N x N IQ switch.
The interesting multi-hop approach proposed in [12], which
permits to distribute input load to several inputs and obtain
high throughput efficiency, has a major drawback in terms of
large delays at low-medium loads, a problem which is further
exacerbated by the RTT induced by the inter chip latency
penalty in multi-chip implementations.

We propose extensions/modifications/improvements to pre-
viously proposed multicast scheduling algorithms to cope with
performance degradation induced by RTTs, without increasing
too much the scheduler complexity. More precisely, we in-
troduce a novel scheduler, named IMRR (Improved Multicast
Round Robin), which is an extension of a previously proposed
scheduler named mRRM (Multicast Round Robin) [2] We
show by simulation that IMRR provides good performance
for uniform multicast traffic and for multicast traffic pattern
known to be difficult to schedule.

The remainder of the paper is organized as follows: Sec-
tion II states the problems, challenges and solutions for
multi-chip scheduler implementation. Section III describes
previously proposed scheduling algorithms and the newly
proposed IMRR scheme. Section IV presents performance
results obtained by simulation. Finally, Section V ends the
paper and suggests possible future research directions.

II. MULTI-CHIP IMPLEMENTATION

Let us focus on iterative schedulers, based on three-phase
or two-phase information exchange among inputs and outputs.
These schedulers adopt OSs (Output Selectors) to choose
among multiple requests received by inputs and ISs (Input
Selectors) to select a proper request to issue in a given time
slot and to choose among multiple grants received by OSs.
Scheduler distribution over several chips entails partitioning
the selectors used to determine a heuristic matching over
physically separated devices. In a single-chip implementation,
all selectors are tightly coupled and decisions taken at inputs
(outputs) are immediately available to outputs (inputs). When
dealing with multi-chip implementations, the communication
latency between devices implies that algorithms devised to
run under the hypothesis of having all the scheduling state
information available may not be optimal. Indeed, information
needed to update the pointer status or to issue new requests
may be known with a delay of some tens of cell time.
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Performance degradation and loss of fairness were already
shown to be a possible problem in this multi-chip scenario.

DLO DL1 DL2 DL3

Fig. 3. Distribution levels of a centralized multi-chip scheduler: DLO is a
monolithic, single-chip implementation, DL3 is a fully distributed multi-chip
implementation.

Different levels of selectors distribution could be envisioned,
which yield to a different number of physically separated
devices, as shown in Fig. 3. The first obvious solution to
reduce the scheduler complexity, labeled distribution level
DL1, is to implement the scheduler in two separate devices,
each containing respectively N input and N output selectors.
This allows to roughly divide by two the scheduler hardware
complexity. Another extreme, labeled distribution level DL3,
is to distribute the selectors over 2N separate devices, each
device implementing one selector. This is referred to as fully
distributed solution, which permits a hardware complexity
reduction by a factor of N. As an intermediate step, in [13]
a further possible solution is proposed: the N input selectors
are physically separated in N devices, whereas all N output
selectors are implemented in a single device. This solution has
a major drawback: it reduces the hardware complexity by a
factor of two only. However, having the output selectors in a
single device permits coordination among output selectors with
no delay. This permits to implement schedulers with more iter-
ations in a single cell time, thus preserving good performance
for increasing RTTs; however, this limits scheduler scalability.
As such, we focus on schedulers suited to a fully distributed
multi-chip scenario (distribution level DL3).

III. MULTICAST SCHEDULING ALGORITHMS

We define the fanout set of a multicast cell as the set
of outputs to which the cell should be transferred. The cell
fanout is the number of outputs in the fanout set. A multicast
scheduler may not be able to transfer a multicast cell in a
given time slot to all outputs in the cell fanout set, since some
outputs may be matched to other inputs by the scheduler. In
this case, to enhance performance, most multicast schedulers
try to send a copy of the multicast cell to the largest available
set of outputs; this is often named fanout splitting discipline.
Fanout splitting disciplines may leave a residue, i.e., a copy
of the multicast cell that must reach the subset of output ports
that were not matched to the given input port in previous time
slots.

We focus on two previously proposed multicast scheduling
algorithms, selected due to their ease of implementation and
good performance: WBA (Weight-Based Algorithm) [3] and

mRRM [2]. Both rely on a single FIFO queue at each
input for multicast. We briefly remind the WBA and mRRM
scheduler behavior referring to a scenario where RTT=0 for
simplicity. Both schedulers are based on a two-phase request-
grant algorithm.

WBA assigns weights to input cells based on their age and
fanout at the beginning of every cell time. Once weights are
assigned, each OS chooses the heaviest input among those
subscribing to it. More precisely, at the beginning of every
cell time, each IS computes the weight of the new multicast
cell/residue at its HOL based on the age of the cell (the
older, the heavier), and the fanout of the cell (the larger,
the lighter). Then, each IS sends this weight to all outputs
that the cell/residue at its HOL wishes to reach. Each OS
grants to the input with the highest weight, independently
of other outputs, breaking ties with a random choice. Note
that a positive weight should be given to age to avoid input
starvation. However, to maximize throughput, fan-out are
weighted negatively. Several weight assignments algorithm can
be adopted (see [3] for details). In this paper we use the weight
definition chosen in the simulator available on the Web site
at http://klamath.stanford.edu/tools/SIM/: The cell weight is
equal to the number of inputs minus the cell fanout plus the
cell age.

Multicast Round Robin (mRRM) was designed to be simple
to implement in hardware. A single pointer to inputs is
collectively maintained by all outputs. Each output selects the
next input that requests it at, or after, the pointer, following a
round robin order. At the end of the cell time, the single pointer
is moved to one position beyond the first input that is served.
However, the single pointer update rule at OSs of mRRM
does not permit a fully distributed multi-chip implementation,
since output selectors need to be aware of other output selector
choice to update the pointer value and this would imply a delay
equal to the RTT for pointer update rule that would break the
mechanism.

A. Improved Multicast Round Robin

Direct extensions of WBA and mRRM can be envisioned
to deal with RTTs among input/output selectors induced by
multi-chip implementation. Since grants are received at IS with
a delay of RTT slots, a multicast cell is at the head-of-the-line
for at least RTT slots. To avoid issuing multiple requests for
the same cell, thus wasting resources, a number of queues
equal to RTT+1 is needed. ISs choose the queue from which
the request is issued according to a round-robin fixed scheme
among input queues. As such, at most one request per input
queue is issued in each RTT. OSs keep working as in the basic
WBA and mRRM scheme.

Further extensions can be envisioned and are studied later
when presenting simulation results. Indeed, the single FIFO
scheme when RTT=0 and its direct extension to RTT+1 FIFO
queues when RTT > 0 does not solve the issue of HoL
blocking for multicast flows. As such, in some experiments,
we introduce a limited number of & = 2 FIFO queues at each
input and k£ = 2x (RTT+1) for RTT> 0. In this case, whereas
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output selectors operate as in the basic scheme, input selectors
choose one among the k& queues according to queue weights
for WBA and to a round-robin scheme for mRRM.

The introduction of more queues at inputs, either to deal
with RTTs or to reduce the HoL blocking, introduces the
issue of multicast flow assignment to queues. Although several
possible assignment strategies were studied in the past [5],
[6], in this paper we simply adopt a packet-by-packet load
balancing scheme among available queues. We are aware that
this may introduce out-of-sequence delivery, but we prefer to
avoid studying assignment scheme in this initial work and
concentrate on the issue related to dealing with RTTs.

Let us now describe the IMRR (Improved Multicast Round
Robin) scheduler, initially disregarding issues related to RTT
for simplicity when a single FIFO queue is available. The
same concept of preferential input is kept as in the mRRM
algorithm: at each time slot, all output selectors keep a single
pointer to a preferential input. However, the pointer update rule
is stateless; regardless of the granted cell, at each time slot, the
pointer is increased (modulo N) according to a round robin
scheme. This is fundamental to guarantee that the scheduler
can run in the fully distributed case, since no coordination
among output scheduler is required. Input selectors issue a
request containing a weight equal to the fanout of the selected
cell. Output selectors choose the request from the preferential
input, if any, otherwise they grant the request corresponding
to the smallest fanout.

When more than one queue is present at inputs to avoid
HoL (i.e., k = 2 queues for RTT=0 and k& = 2x(RTT+1)
queues for RTT> 0), input selectors issue a request for the
cell with largest weight, the weight being queue length plus
cell fanout.

IV. PERFORMANCE RESULTS

We show performance results based on simulation runs
exploiting a proprietary simulation environment developed in
C language. Statistical significance of the results are assessed
by running experiments with an accuracy of 1% under a confi-
dence interval of 95%. We compare IMRR with the previously
presented extensions of mRRM and WBA, with a random
(RND) scheduler, and with the multi-copy approach, where
multicast cells are replicated at inputs and treated as unicast
cells. In the multi-copy approach, the unicast SRR scheduler
[14] is run, given its good performance and adaptability to the
fully distributed multi-chip scenario.

The switch has N = 16 inputs and outputs running at the
same speed; cells are generated according to an i.i.d. Bernoulli
process, i.e., at each time slot, an input port receives a cell with
probability p, 0 < p < 1, equal to the input load. Later, we also
consider packet arrivals, i.e., trains of cells willing to reach the
same output, the number of cells being drawn from a uniform
distribution ranging from 1 to 16 cells. Performance indices
are either average delays vs normalized switch throughput or
maximum achievable normalized throughput in overload.

In terms of traffic distribution among input and output
ports, we initially consider both i) a uniform scenario, in

which all input (and output) ports are equally loaded and
the fanout set of a new cell is generated randomly, according
to a uniform distribution, ii) a gathered scenario, where the
traffic is gathered over few (M = 5) active input ports and
equally distributed over all N = 16 output port. In the gathered
scenario, the fanout set is chosen according to a non-uniform
binomial distribution, with mean fanout h,, = 3.66. More
precisely, the probability Py of choosing a fanout set of size
fris Ppo= N/hp () (hon/N) (1 = hyp/N)N =T, This is a
traffic pattern well known to be hard to schedule [5]. Indeed,
when all inputs are equally loaded, the maximum sustainable
traffic leads to a normalized input load which is at most
1/E[f], E[f] being the average cell fanout size. If instead the
traffic is gathered among few inputs, the normalized input load
for sustainable traffic can approach 1, so that the efficiency
in serving cells queued at the inputs becomes important
on performance. Note that the considered gathered traffic
scenario is far from being unrealistic. Multicast applications
often generate sustained and long-lasting flows, that may only
engage few inputs and several outputs at a given router or
switch.

In both uniform and gathered traffic scenarios, unicast traffic
is not given any special attention and is treated as a special case
of multicast traffic with fanout set equal to one. To analyze
switch behavior in a more realistic environment which includes
a significant percentage of unicast traffic, we also examine two
mixed traffic scenarios, the first one comprising a variable mix
of unicast and broadcast traffic only, the second one in 50%
of unicast and 50% of multicast traffic load the switch.

IMRR performance are reported as solid lines with circles,
the modified version of WBA is plotted using dotted lines
with triangles, whereas the modified version of mRRM is
identified by dashed lines with diamonds; the multi-copy
approach is plotted with a solid line with crosses, and the
random scheduler with squares. White symbols refer to the
case of a single FIFO for RTT=0 and RTT+1 queues for
RTT> 0, whereas black symbols are used for £k = 2 FIFOs
for RTT+0 and k = 2 x (RTT+1) FIFOs for RTT> 0.

In Fig4 we report delays as a function of the switch
throughput for variable RTTs under uniform multicast
Bernoulli traffic with cell arrivals. Only the multi-copy ap-
proach permits to obtain 100% throughput; however, the price
to be paid is a significant increase in the average delay at low-
medium loads when RTT=0. When increasing RTT to 4 time
slots, all algorithms show similar delay performance. No major
differences are evident among multicast schedulers, apart from
a slight throughput increased obtained by the proposed IMRR
when using k FIFO queues per RTT. The RND scheduler
performs worse, as expected.

Despite its good performance in the uniform scenario, recall
that the multi-copy approach is reported only as a reference
case; indeed, it cannot be used in practice, since, for example,
it is unable to sustain a broadcast flow overloading a single
input. Indeed, when studying the performance of the switch
under gathered traffic in Fig.5, the throughput limitation of
the multi-copy approach becomes evident. In this scenario,
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the proposed IMRR approach provides improved throughput
especially when using k& = 2 FIFO queues per RTT. The
WBA scheduler, despite its higher complexity, is unable to
exploit k = 2 FIFO queues to obtain performance benefits. The

02 04 06 08

Percentage of broadcast traffic

mRRM ---¢---
WBA - N
IMRR —eo—

227

1
2 095
=
on
=
S
£ 09

02 04 06 08 1

Percentage of broadcast traffic

Fig. 6. Performance comparison for uniform traffic and a variable percentage of unicast and broadcast traffic only.

RND scheduler still presents the worse performance among the
multicast schedulers (excluding the multi-copy approach).

IMRR shows good throughput performance also when
considering the traffic scenario with unicast and broadcast
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Fig. 7. Performance comparison for uniform traffic: 50% unicast and 50% multicast traffic.

traffic only, reported in Fig.6. When broadcast traffic becomes
dominant, all algorithms show similar, good, performance.
However, when unicast traffic becomes more significant, dif-
ferences among algorithms become evident even when using a
single FIFO queue per RTT, and IMRR outperforms the other
algorithms.

In Fig.7 we report delays as a function of the switch
throughput when considering the scenario in which 50% of the
traffic is uniform multicast and 50% is uniform unicast. Also
in this case IMRR provides throughput benefits with respect
to WBA and mRRM both when RTT=0 and RTT > 0.

In summary, IMRR presents equivalent or better perfor-
mance than other previously proposed multicast schedulers.
IMRR does not require the computation of any delay based
metrics, a rather complex task in today high-speed switches.
Furthermore, it is suited to a fully distributed implementation.
Besides this additional constraint, IMRR shows good perfor-
mance both in the traditional case of monolithic implementa-
tion as well as when considering RTT induced by the multi-
chip implementation of multicast schedulers.

V. CONCLUSIONS

We deal with the problem of fully distributed multi-chip
scheduling implementation in input queued switches. Multi-
chip implementation implies that i) decisions taken by input
and output selectors should be independent, being the selectors
realized in different devices and ii) any information exchange
among selectors implies a RTT delay, which may be larger
than few tens of slot time.

The proposed modified multicast scheduler, named IMRR,
is suited to a fully distributed multi-chip implementation, and
shows performance improvements with respect to previously
proposed multicast schedulers directly adapted to the multi-
chip scenario. Unfortunately, all algorithms show increased
average delays at low loads for increasing RTTs, a problem
that would be nice to study and solve in the future.
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