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ABSTRACT 

 

We study the problem of determining the number of vehicles needed to provide a demand 

responsive transit service with a predetermined quality for the user in terms of waiting time at the 

stops and maximum allowed detour. We propose a probabilistic model that requires only the 

knowledge of the distribution of the demand over the service area and the quality of the service in 

terms of time windows associated of pickup and delivery nodes. This methodology can be much 

more effective and straightforward compared to a simulation approach whenever detailed data on 

demand patterns are not available. Computational results under a fairly broad range of test 

problems show that our model can provide an estimation of the required size of the fleet in 

several different scenarios. 

 

 

KEYWORDS 

 

Public transportation; Probabilistic models; Continuous approximation models; Paratransit 
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1. INTRODUCTION 

 

Demand responsive transit (DRT) systems are a form of flexible public transportation service in 

which the itineraries and the schedules of the vehicles are programmed on the basis of the 

requests of the users. Early DRT systems were designed for the general public, but within some 

years they met with financial problems and had to be discontinued or radically transformed (Lave 

et al., 1996). Nowadays, excluding some flourishing niche services such as airport feeders, 

existing DRT systems are almost exclusively used for dedicated services in eligible categories 

(e.g. disabled and elderly) and are heavily subsidized (Palmer et al., 2004). 

 

In recent years there has been an increasing interest in reconsidering the implementation of these 

services in a broader set of circumstances. Technological advances can now provide Intelligent 

Transportation System devices, such as Automatic Vehicle Location or smart cards for fare 

collection, at a low cost. A large amount of research work has been carried out concerning the 

design of more efficient scheduling and routing algorithms of such systems; two of the latest 

comprehensive reviews can be found in Savelsbergh and Sol (1995) and in Desaulniers et al. 

(2001). Improvements in routing and scheduling may help overcome the economical inefficiency 

that can be usually detected in existing systems. In this case, a “smart” DRT system can be seen 

as one of the possible alternatives to offer a service of acceptable quality when the travel demand 

density is too low to justify fixed route lines. 

 

To make this a feasible option, a set of transportation modeling tools is needed to effectively plan 

the system. Up to now, research efforts have mainly focused on the improvement of different 

aspects related to the service scheduling in order to achieve better efficiencies for the existing 

systems. When considering the tactical and operational decision levels, detailed planning 

activities related to the operation of the service must be carried out typically using mathematical 

programming techniques. However, during the design phase, the extensive datasets needed to 

perform such analyses are usually unavailable. Furthermore, as the system becomes bigger and 

more complex, the computational burden associated with efficient algorithmic procedures 

increases very rapidly. In those cases, the use of approximation models to estimate the costs on 

the basis of a few inputs may be sought. The utility of this kind of technique has already been 
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shown in related research fields, such as in logistic systems (Robusté et al., 1990; Daganzo, 1991; 

Langevin et al., 1996) and for the heuristic solution of the Traveling Salesman Problem (Del 

Castillo, 1999). 

 

In this paper we propose an approach to address one of the critical aspects that must be 

considered on a strategic planning level, that is the determination of the required fleet size for a 

DRT system to meet a given demand level with a predetermined level of service. As will be later 

explained, we define the service level by a time window length specifying the maximum 

deviation from the requested pickup time and the maximum deviation over the direct ride time 

allowing for detours to service other passengers. Quadrifoglio et al. (2005a) use a scheduling 

algorithm embedded in simulation model to study the impact of the time window length on the 

fleet size and total trip miles driven by the vehicles. 

 

The intent of this study is to develop an analytical modeling approach as opposed to a simulation 

model. Unlike standard optimization procedures that require the knowledge of the exact spatial 

and temporal location of the demand points, we propose a methodology in which only the spatial 

and temporal distribution of demand are known. Our methodology makes some simplifying 

assumptions regarding these distributions. We first develop the general model and then introduce 

the simplifying assumptions one by one. We show that these assumptions are not too restrictive 

by comparing our results to the results from simulation.  

 

In the following section a review of the existing research activities in related fields is presented. 

Then the studied DRT system is defined. Section 4 presents the model and Appendix 1 shows its 

possible variants under various simplifying assumptions. Section 5 reports some computational 

experiments that show the effectiveness of our approach, whereas Appendix 2 is devoted to the 

presentation of former research works relevant to the numerical approximation we propose in our 

tests. Finally we discuss the results and suggest directions for future research. 
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2. LITERATURE REVIEW ON RELATED FIELDS 

 

A good deal of research work has been devoted to the investigation of issues similar to ours, and 

it is interesting to compare different approaches in order to draw lessons for our problem. As will 

be shown in the following sections, the proposed methodology relies on a variety of research 

fields. In the following, we will briefly review them, pointing out the common features as well as 

the differences with our approach. 

 

One of the related fields that can provide useful insights for our problem is the abundant literature 

on the modeling of freight distribution systems. The interested reader is referred to Langevin et 

al. (1996) for a more complete review. Here it is however interesting to point out that many of 

these models are based on a handful of theoretical papers concerning the expected length of a 

Travelling Salesman Problem (TSP) tour. The first work in providing an approximate formula is 

due to Bearwood et al. (1959). Eilon et al. (1971) estimate the length of a TSP tour for a fleet of 

vehicles through simulation. In distribution problems it is usually possible to divide the service 

area into several zones each of which is served with one vehicle and each path is estimated using 

the formulas for the TSP tour. This very popular technique, usually called “cluster-first, route-

second”, has been successively used in many papers modelling distribution problems. They can 

take into consideration irregular areas and the most efficient shapes of the zones for cost 

minimization, as well the effect of the depot location (see for example Daganzo, 1984c; Newell 

and Daganzo, 1986; Daganzo, 1987; Langevin and Soumis, 1989; Robusté et al., 1990; Hall, 

1996). Larson and Odoni (1981) provide useful insights for the multiroute problem, whereas a 

generalization of the TSP formula for zones of different shapes is provided in Daganzo (1984a). 

 

Some authors (for example Adebisi and Hurdle, 1982; Aldaihani et al., 2004; Quadrifoglio et al., 

2005b) adapt a model for fixed line bus systems to flexible services (i.e., services in which the 

buses can deviate from their predefined path to serve requests off the route). In those cases the 

decision variable usually considered is the headway between two successive vehicles or the slack 

in the schedule. This kind of service is different from our DRT system (see section 3), since in 

our case there are no predefined paths and so headways cannot be defined. For this reason, a 

model for conventional transit system cannot be used in our case. 
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In the 1970’s due to the diffusion of paratransit services, some researchers proposed different 

methodologies to model simplified variants of a DRT system in order to compare them with 

conventional bus line networks (Ward, 1975). The issue of the design of an integrated urban 

public transportation system was investigated by Batchelder and Kullman (1977). However in 

this case the model for the dial-a-ride system was based on computer simulations calibrated on 

real datasets. Wilson and Hendrickson (1980) focus on performance models, where the decision 

variable is related to the quality of the service, and provide an excellent comparative analysis on 

the different methodologies that have been proposed. They also report from previous unpublished 

research empirical models for the determination of the number of vehicles that were calibrated on 

real data. It is well known that empirical models are difficult to use in a context that is different 

from the one upon which they have been calibrated. 

 

Another modeled system is “many-to-one”, where there are many origins and a single 

destination. In this case the service area is usually divided in several zones and in each of those 

only one vehicle can operate. Each vehicle collects the request in its zone and delivers them to a 

central location. It is straightforward to see that in this case it is possible to decompose the 

problem into several smaller TSP, and to successfully apply the previously mentioned “cluster-

first, route-second” methodologies for the estimation of both the number of vehicles and the 

distance traveled. The decision variable in this case can be the size of the zone or the capacity of 

the vehicle. One of the first applications is reported in Daganzo et al. (1977). Chang and 

Schonfeld (1991) and Chang and Lee (1993) propose an equilibrium model for a many-to-one 

service that takes into account the demand elasticity. 

 

Some research has focused on “many-to-many” systems, where there many origins and 

destinations. Arrillaga and Medville (1973) and Flushberg and Wilson (1976) make use of 

regression models, whereas Lerman and Wilson (1974) and Daganzo (1978) propose stochastic 

models in which the customer’s arrival at a stop is a Poisson distributed queuing process. The 

general drawback of the former approach is the limitation of the validity range depending on the 

datasets used for the calibration, whereas the latter may present problems in the case of 

uncongested systems. Daganzo (1984b) performs a comparison of fixed and flexible transit 
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systems by modeling their costs. In this work, door to door service is a limiting case of a jitney 

service (i.e., the considered routing strategy consists of dispatching vehicles with constant 

headways and the stops without waiting passengers are skipped). An interesting theoretical 

discussion is provided in Stein (1978a, 1978b) where on the basis of a probabilistic analysis a 

class of scheduling rules is suggested. The outcome is that a decomposition algorithm in which 

buses serve a small zone and passengers across different zones have to transfer seems to 

asymptotically outperform systems in which the vehicles can travel in the whole area and a 

customer is inserted on the basis of the cost minimization.  

 

Our goal is to model a many-to-many demand responsive transit service without predefined 

itineraries and schedules. In this case, the fleet has to be dispatched exclusively on the basis of 

the list of requests, like in taxicab systems, the difference being the possibility of serving 

customers with some detours in order to share the ride. We believe that this kind of service is of 

particular interest for the possibility of offering a high quality service with an efficient allocation 

of the resources. To achieve this, we will model a service in which time windows are associated 

with each pickup and delivery point. 

 

Our definition of time window is different from the notion of “time deadline” that can be found 

in previous works, for example concerning hauling services (Hall, 1996). Although Daganzo 

(1987) modeled a distribution problem considering time windows associated with each delivery 

point, the suggested methodology (place each request in a time bin and then proceed with a 

“cluster-first, route-second” approach) is not suitable when temporal constraints are tight as in the 

case we are considering. We need a procedure that is not easily derivable from existing 

methodologies. For example, comparing our problem to the previously discussed ones, we can 

see that in our case it is impossible to model it as a fixed-line service since we cannot define a 

“path” or a “headway” between the vehicles. On the other hand, the joint need of avoiding 

transfers for any pair of pickup and delivery points and of limiting the maximum ride time for 

every customer prevents us from dividing the area into several service zones served by a single 

vehicle, so that also a “cluster-first, route-second” model is not appropriate. 

 

 

 7



3. SPECIFICATION OF THE STUDIED SYSTEM 

 

In the following we will start by partially adopting the operating scenario described by Jaw et al. 

(1986). Our demand responsive transit (DRT) system consists of a fleet of vehicles with no 

predefined schedules. The vehicles travel at a constant speed and cannot idle. We later show 

where relaxing the no idling assumption and considering a more idealized scenario simplifies the 

problem. The service time at the locations is zero and we do not consider capacity constraints 

since in most practical cases they are dominated by time window constraints.  

 

When making a reservation, the customer has to specify the origin and the destination of the trip, 

as well the pickup time. We assume that the coordinates of the pickup and the delivery points are 

random variables drawn from the same distribution. Hence, given this distribution, it is possible 

to compute the distribution of the Euclidean travel distances between any pair of points. Let 

L(A,B) be a random variable from the latter distribution, representing the distance between point 

A and point B. In order to ensure an acceptable quality of the service, the vehicle has to pick up 

the customer no earlier than the pickup time and no later than a specified time interval from the 

pickup time. The vehicles cannot pick up a customer earlier than the pickup time because 

customers may not be there at that time. Also the maximum length of the trip must be somewhat 

limited. To do this, we fix a maximum wait state WS, which is the same for all the customers, and 

we compute a maximum ride time MRTk for each request k. The maximum ride time is defined as 

an increasing function of the direct ride time (i.e., the time needed to serve the request without 

deviations). Since the vehicles travel at a constant speed v, the direct ride time is simply 

v
),PL(D kk  assuming the Euclidean metric, where Pk and Dk are the pickup and the delivery points 

of request k. We can now compute the maximum ride time of each customer in the following 

way, where a and b are two parameters that are specified by the scheduler, with a ≥ 0 and b ≥ 1: 

 

v
),DL(P kk⋅+= ba MRTk  
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The above scheduling constraints related to the maximum wait state and maximum ride time for 

each request k define the quality of the service. The most practical way to take them into account 

in the scheduling process is to define time windows for all the pickup and delivery locations. Let 

EPTk be the earliest pickup time requested by customer k. Then, let (EPTk , LPTk) and (EDTk , 

LDTk) be the time windows associated with the pickup and delivery times for customer k, 

respectively. It is possible to define these time windows on the basis of 
v

),PL(D kk , WS and MRTk 

in several different ways, each method having benefits and drawbacks that are discussed in Diana 

and Dessouky (2004). In this paper we use the following method to compute the time windows 

(see fig. 1). 

 

WSEPTLPT kk +=  

v
),DL(P kk+= kk EPTEDT  

v
),DL(P kkbaEPTMRTEPTLDT kkkk ++=+=  

 

Fig. 1. 

 

Jaw et al. (1986) also consider the possibility of letting the customer specify the delivery time. In 

this case, the pickup time and the time windows are defined in a very similar way. The 

generalization of our methodology in this sense is straightforward. 

 

4. A MODEL FOR ESTIMATING THE REQUIRED NUMBER OF VEHICLES 

 

4.1. The expected number of vehicles  

 

We have a list of n requests scattered in a service area. Our objective is to estimate the number of 

vehicles needed to serve these requests using the DRT system introduced in the previous section. 
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Let rm be the probability of serving a set of m requests out of the n total requests with the same 

vehicle. By the above definition of the time windows, r1 = 1. That is, each request can be satisfied 

if assigned to a vehicle. If for example we state that each vehicle cannot serve more than two 

requests, then there will be on average 22
rn  vehicles that serve two requests and  that 

serve the remainder. The expected total number of vehicles E(z) needed to serve n requests is 

then  

)1( 2rn −⋅

 

)1(
2

)( 22 rnrnzE −⋅+=  

 

If now we suppose that each vehicle can serve three requests, there will be on average 33
rn  

vehicles that serve three requests, )1(
2 32 rrn

−⋅  that serve two requests (where  is the 

joint probability of serving two requests with a vehicle that could not serve three of them) and 

finally  that serve only one request. Thus, the expected number of vehicles is 

)1( 32 rr −

)1)(1( 32 rrn −−⋅

 

)1)(1()1(
23

)( 32323 rrnrrnrnzE −−⋅+−+=  

 

The expected number of vehicles needed to serve n requests can be computed generalizing the 

above equation: 

 

∑ ∏
= +=

−=
n

i
j

n

ij

i r
i
r

nzE
1 1

)1()(     [1] 

 

It can be noted that the succession of the probabilities r1, r2, ..., rn rapidly converges to zero so 

that we need to determine only the first m values, with m << n. In the next section we will discuss 

how we can estimate the values of r2, ..., rm. 
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4.2. The probability of serving m requests with one vehicle

 

4.2.1. The general case  

 

From the definition of our problem, if one vehicle has to serve m requests it will have to visit 2m 

nodes (m pickups and m deliveries). Theoretically speaking there are (2m)! possible visiting 

sequences, and we should compute the probability associated to each one. If we assume that the 

fleet dispatching process seeks for cost minimization, then the scheduler would choose the 

visiting sequence that maximizes the possibility of serving all the m requests. It follows that rm 

would simply be the maximum of all the probabilities of success that are associated to the (2m)! 

possible visiting sequences. However the presence of the pairing constraints (each pickup point 

must be visited before the corresponding delivery point) limits the number of feasible sequences 

(that is, of the sequences that have probability greater than zero) to m

m
2

)!2( . 

 

Let us focus our attention on the easiest case, that is for m = 2. We want to compute the 

probability of success in serving with one vehicle any pair of requests (say, 1 and 2) among the n 

requests waiting to be served. The vehicle must then visit four nodes: the pickup and delivery 

point of the first and of the second request each one having the above defined time window. We 

will indicate these points with P1, D1, P2 and D2 respectively. Considering the pairing constraint, 

the feasible sequences are only the following six: 

 

P1 D1 P2 D2 P1 P2 D1 D2 P1 P2 D2 D1 P2 D2 P1 D1 P2 P1 D2 D1 P2 P1 D1 D2

 

Now, we assume that r2 is equal to the probability of realizing the most likely sequence among 

the above six. Each sequence is determined by three different events: for example, the first one is 

feasible if and only if we can serve first P1 and then D1, D1 and then P2, and P2 and then D2. Since 

in section 3 we assumed that the location of any point is not related to the location of all the 

others, the travel times of these three events are independent. However, the arrival time to P2 is 

dependent on the travel time of the first two legs. In order to simplify the computation of the joint 

probability of the realization of the above sequence (i.e., P1 to D1 to P2 to D2) we assume that it is 
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the product of the probabilities of the single events. This assumption of independence of the 

events related to a sequence overlooks the links between the arrival time at a node and the 

departure time from the same node. It is likely to be a more severe limitation as the time window 

width decreases and the vehicle is running late. 

 

We will refer to the probabilities of the single events in a sequence using the term “elementary 

probabilities” and pdij indicates the probability of success in visiting the pickup point (p) of 

request i and then the delivery point (d) of request j. We will have similarly dpij, ppij and ddij. We 

can now express r2 as a function of those quantities: 

 

(
)121121211221112122

2122121221122212112

,,
,,,max

ddpdppddpdpppddppd
ddpdppddpdpppddppdr

⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅=

  [2] 

 

Considering again the definition of the time windows, we can say that pdii = 1 for every i. To 

determine all the other elementary probabilities we can proceed as follows. As an example, we 

will extensively show the procedure of computing dpij and we will give only the results for the 

other three cases since the steps are very similar. 

 

Since the nodes Di and Pj have a time window, the vehicle can serve both only if the travel time 

v
),PL(D ji  between them is within a certain range. The random variable L(Di,Pj) and the constant 

v have been introduced in section 3. The upper limit of this range is reached if the vehicle visits 

Di at the earliest time and Pj at the latest. If the vehicle is not allowed to idle, there is also a lower 

limit represented by the trip duration when the vehicle visits Di at the latest time and Pj at the 

earliest. Figure 2 shows the relationship between these two limits and the time windows. The 

following equation translates this graphical relationship into a mathematical expression: 

 

⎟
⎠
⎞

⎜
⎝
⎛ +−+≤≤⎟

⎠
⎞

⎜
⎝
⎛ ⋅++−

v
),DL(P

EPTWSEPT
v

),PL(D
v

),DL(P
baEPTEPT ii

ij
jiii

ij  

 

This interval can be rewritten as 
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)(

)(

WSEPTEPTv),DL(P),PL(D

),DbL(P),PL(DaEPTEPTv

ijiiji

iijiij

+−⋅≤+

+≤−−⋅
  [3] 

 

Fig. 2. 

 

For the other three elementary probabilities, the procedure is the same, and it is sufficient to 

change the time windows to be considered. The probability intervals associated to the other three 

elementary probabilities will then be 

 

)()(: WSEPTEPTv),PL(PWSEPTEPTvpp ijjiijij +−⋅≤≤−−⋅  [4] 

)(

)(:

aEPTEPTv),DbL(P),DL(P

),DL(P),DL(PWSEPTEPTvpd

ijiiji

iijiijij

+−⋅≤−

−≤−−⋅
   [5] 

)(

)(:

aEPTEPTv),DbL(P),DL(P),PL(D

),DL(P),DbL(P),DL(DaEPTEPTvdd

ijjjiiji

jjiijiijij

+−⋅≤−+

−+≤−−⋅
   [6] 

 

In the above equations, EPTi, EPTj and L(•,•) are random variables, whereas v, a, b and WS are 

constants. 

 

4.2.2. Problem reduction steps 

 

On the basis of equations [3] to [6], given the distributions of the random variables, it is 

theoretically possible to define the associated probability intervals, and thus the values of the 

elementary probabilities. However, in order to have a computationally tractable problem, it is 

necessary to make some simplifying assumptions concerning these distributions. In the following 

we will assume that EPTi and EPTj are drawn from the same distribution, as well as L(•,•) for 

every value of the argument.  

 

Another issue concerns the number of times we need to apply this procedure to compute all the 

elementary probabilities and the number of sequences to be considered when m is increasing. 
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From equation [2] we see that we need to repeat eight times the above procedure for computing 

these eight elementary probabilities: dp12, pp12, pd21, dd12, dp21, pp21, pd12 and dd21. Furthermore, 

as m increases the number of elementary probabilities that need to be computed explodes. 

 

In appendix 1 we show in detail the approach we propose to reduce the problem of computing the 

elementary probabilities. This consists of two main steps: the redefinition of equations [3] to [6] 

in order to be able to solve them and the reduction of the number of elementary probabilities 

considered. Each of these steps is presented in a separate section of the appendix. More restrictive 

assumptions are needed in order to achieve both these results, and their impact on the model 

applicability is also briefly discussed. The third section of appendix 1 presents the derivation of a 

closed-form equation for computing the probabilities rm. However, this third step in the problem 

reduction process is valid only for a particular case so it is not considered in the computational 

experiments we present in the next section. 

 

5. COMPUTATIONAL EXPERIMENTS 

 

5.1. Distributions of the time intervals between pickup times 

 

In order to implement our model, we need to specify the probability density function of the time 

intervals between two successive pickup times, f(g). We assume Poisson arrivals. Hence, it 

follows that f(g) is an exponential distribution with parameter λ = 1/E(g). Let the distribution 

f(hg) be the time interval between h successive pickup times. Hence, the distribution f(hg) that 

appears in equations [10]-[13] of Appendix 1 becomes a gamma distribution with parameters 

E(g) and h. 

 

5.2. Distribution of the leg lengths in a vehicle route 

 

We also need to specify the probability density function of the distance between two successive 

points in a route served by one vehicle, f(L(•,•)). In the following we will assume a complete 

randomness for the spatial point pattern. This implies that the number of service points in any 

planar region with area A follows a Poisson distribution with parameter λ’ = N/A, N being the 
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number of service points, and that the point coordinates are an independent random sample from 

a uniform distribution. 

 

Even under this assumption, it is not straightforward to represent the probability density function 

of the distance between two successive points of a vehicle route. Appendix 2 reports some 

approximations that are based on previous research results and discusses why they are ill-suited 

to our case. The contents of this section and of appendix 2 are the outcome of some trial-and-

error experiments. 

 

In the following we present the procedure we used to find an approximation for f(L(•,•)), that 

builds on the results presented in appendix 2. In fact, empirical evidence based on the simulations 

suggested a lognormal distribution for f(L(•,•)). In the next section we show some sample plots of 

f(L(•,•)). We next describe our approximation for E(L(•,•)) and VAR((L(•,•)). 

 

Let us start by illustrating the procedure for computing E(L(•,•)). Considering the case limit in 

which there are no time windows, if we do not take into account the precedence constraints our 

problem is reduced to a standard Traveling Salesman Problem (TSP). Previous research showed 

that when the number of points p is large the length TL  of a TSP tour, assuming Euclidean metric 

and a square area A, is 

 

pALT ⋅≈ 75.0  

 

Assuming that in our problem the vehicles are routed like in a TSP, if each vehicle serves m 

requests then it has to visit m pickup and m delivery locations starting and coming back to the 

depot. So, the expected length of the tour would be 

 

1275.0 +⋅≈ mALT  

 

and the mean length L  of each leg, i.e., the mean distance between any two points in the route, is 
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12
75.0

12
1275.0

+
⋅

=
+

+⋅
≈

m
A

m
mAL   [7] 

 

Equation [7] underestimates E(L(•,•)) since it does not take into account the effect of the pairing 

constraint, and for this we modify it as follows. Let us define the operator ρ(rm), that for a given 

rm indicates how many times the elementary probability pdxx is contained in the most likely 

sequence that is used to compute rm itself. For example, considering equation [2], if the most 

likely sequence is the first of the six listed then ρ(r2) = 2; if it is the second then ρ(r2) = 0, if it is 

the last then ρ(r2) = 1 and so on. The tour of the vehicle reaching 2m+2 nodes is composed of 

2m+1 legs. Of these, we can say that ρ(rm) are traveled to serve directly a request. Now we 

assume that for these legs the mean length is only influenced by the pairing constraint. Since the 

pickup and delivery points are drawn from the same distribution, this mean length is simply the 

value shown in the second row of Table 3 in Appendix 2. For the remaining 2m+1-ρ(rm) legs, we 

overlook the effect of the pairing constraint, so that the corresponding mean length is given by 

equation [7]. Hence, the mean length of a leg of the tour is the weighted average of two different 

estimates for E(L(•,•)): 
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In formulating the above equation we assumed that it is possible to take into account the effect of 

the pairing constraint only on a subset of the legs, whereas E(L(•,•)) of the remainder is only 

influenced by the TSP-like routing. It is likely that this distinction is more blurred in reality, so 

that the expected length of all the legs is influenced by both the pairing constraint and the TSP-

like routing in different proportions, but we believe this is a second-order effect that can be 

overlooked as such.

 

In order to compute VAR((L(•,•)), we suppose that f(L(•,•)) has the same coefficient of variance 

CV of the distribution shown in Table 3 in Appendix 2. Keeping the same notation, we compute 
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and then we have 

( )2(•,•))((•,•))( LECVLVAR ⋅=  

 

Thus, we analytically derived the probability density functions f(L(•,•)) and then f(L(•,•)+L(•,•)), 

f(L(•,•)–L(•,•)), and f(L(•,•)+L(•,•)–L(•,•)) were derived through convolution. Finally, polynomial 

approximations were used to solve equations [10]-[13] of Appendix 1 through numerical 

integration. 

 

5.3. Experimental design and results 

 

We consider a square area of 10*10 miles and a planning period of 2 hours. We use a short 

planning period since we are focusing on determining the fleet size during the peak period. The 

aforementioned complete spatial randomness assumption implies that the pickup and delivery 

points are independently and uniformly distributed over the square area. In both cases we used 

the above specified distributions of g and L(•,•) and we varied the number of requests from 12 to 

120 (corresponding to a mean value of g ranging from 10 to 1 minute). 

 

We also considered different time windows. Since in our DRT system the time window width 

directly affects the quality of the service, this sensitivity analysis is the key to assess the trade off 

between a higher quality of service and the corresponding increase of the costs, in terms of a 

greater number of vehicles needed. In order to simplify the presentation of our results and their 

subsequent analysis, in the following we will allow the vehicle to idle but we will keep b = 1. We 

show in Appendix 1 that we could as well consider a system in which either b > 1 or the vehicles 

are not allowed to idle. Furthermore, we set a = WS. These assumptions imply that the pickup and 

the delivery time windows are the same for all the requests. 

 

The lognormal model we introduced in section 5.2 seems to satisfactorily approximate f(L(•,•)) in 

those cases. We report in Figure 3 the plots of the sampled distribution of the leg lengths when 
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we have 120 requests and time windows of 10 and of 30 minutes, together with their respective 

approximation when m = 7. 

 

Fig. 3 

 

As mentioned in section 4.1, when we compute the probabilities of serving 2, 3, ..., m requests 

with one vehicle, we do not need to fix m = n. In fact, the values for ri are decreasing when i 

increases, and the corresponding addends in equation [1] become less and less influential on the 

value of E(z). Thus, we compute the series of probabilities r2, r3, ..., rm until the expected number 

of vehicles cannot be changed by the addends related to the probabilities rm+1, ..., rn. However we 

also tested a more stringent stopping criterion. Since the scheduling horizon is of two hours, we 

impose that the time needed to serve m requests with a vehicle must be less than the deadline of 

delivering the latest request. Hence, we compute the probabilities only until m satisfies the 

following inequality: 

 

v
m2 E(L(•,•)) < m·E(hg)+ TW + 

v
1 E(L(•,•)) 

 

where E(hg) is the expectation of the f(hg) distribution, v is the speed of the vehicles and TW is 

the time window length. 

 

When computing r2, ..., rm, we noticed that the most likely sequence is always the following one: 

P1 D1 P2 D2 ... Pm Dm. This consistently occurred throughout the entire experimental plan. 

However, it depends on the value of the elementary probabilities and cannot be shown to be a 

general rule. Nevertheless, when solving these problems we could always take the above 

sequence as the most likely. This leads to a drastic computational simplification since equation 

[14] of Appendix 1 and its extensions that we use to compute the elementary probabilities are 

reduced to the following form: 

 
1
/

1
/0

−− =⋅= i
in

i
in

i
i dpdppdr  

 

 18



Also the mean leg length formula [8] is simplified following this approach since we have ρ(ri) = i 

for every i = 1,...,m. Hence, equation [8] becomes 

 

E(L(•,•)) 
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The results of the computational experiments are shown in Table 1. In order to benchmark our 

planning model, we compare it to a simulation approach that requires determining the complete 

daily schedule. In the simulation model, requests were generated that followed the above 

mentioned distributions. The requests were scheduled using a parallel regret insertion algorithm 

(Diana and Dessouky, 2004). The regret insertion method allowed us to find the minimum 

number of vehicles required to service all the requests. In order to do this, we performed the first 

run of the algorithm with a very high number of vehicles, and we progressively lowered this 

number in the successive runs until some requests could not be scheduled. 

 

Table 1 

 

In the table it can be seen that the gap between the results from the model and those from the 

simulation, shown in brackets, is almost always less than two vehicles. Only when we have to 

serve 120 requests and the time windows are of 30 minutes do we overestimate the number of 

needed vehicles by over 2.1 in comparison with the simulation results. We believe that this is due 

to the approximation of the leg lengths that we used. We report in Table 2 the values of E(L(•,•)) 

computed from equation [8] and those derived from the schedules of the simulation; it can be 

seen that we overestimate the expected value of the leg lengths with larger time windows when 

we have to serve a higher number of requests. In particular, when we have 120 requests and the 

time windows are of 30 minutes we estimate a mean leg length of 3.72 miles, whereas the one 

from the simulation is 2.70 miles. The model overestimates the mean leg length in this case 

because there is a significant amount of ridesharing when there are a large number of requests 

and a wide time window. With a significant amount of ridesharing our approach in Equation [8] 

under weights the trips that follow the TSP tour versus those that have a longer expected length 

of 0.52·10 = 5.2 miles. In this scenario, only a small number of trips go directly from pickup to 
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delivery. Thus, only a small fraction of trips have a mean length of 5.2 miles. This suggests 

deriving a new weighting scheme in Equation [8] when there is a significant amount of 

ridesharing.  

 

Table 2 

 

Considering that a better approximation of f(L(•,•)) would even improve the model results, we 

believe that the proposed methodology is an effective way to quickly estimate the number of 

vehicles needed to provide a DRT under a fairly broad range of cases (systems with different 

levels of demand and different quality requirements). 

  

6. CONCLUSIONS 

 

In this paper we presented a continuous approximation model to forecast the number of vehicles 

needed to operate a demand responsive transit service. In contrast with current mathematical 

programming techniques, our approach simply requires the knowledge of the demand density 

over the service area since it may be hard or even impossible to have more detailed data in the 

planning phase. Computational results showed that the proposed methodology can provide 

reliable results under different circumstances. A critical point is the approximation of the 

distribution of the leg lengths that can alter the results when the time windows are wide, and 

more research is needed in this point in order to improve the performances of the proposed 

model. 

 

The interest in using an approximation model lies in the possibility for the planner of performing 

sensitivity analyses through the construction of several different scenarios. In this way, the choice 

of the best compromise between quality of service and financial resources is much more 

effective. We believe that an application of particular interest of this model is the study of the 

tradeoff between the number of vehicles needed and the time windows associated with the 

locations, in analogy with what is shown in Table 1. This is a research field that deserves more 

attention and that may be a key issue in developing DRT services that are more cost-effective but 

still satisfying for the customers. 
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The problem that we studied in this paper, as described in section 3, is sufficiently general to 

envision the application of our methodology in different contexts, for example in problems of 

distribution of goods in which there are severe time constraints. Another useful generalization of 

the present work might be the inclusion of the proposed methodology in a demand-supply 

equilibrium model for a general DRT system, similarly to what has been proposed by Chang and 

Schonfeld (1991) and Chang and Lee (1993) for the specific case of a deviation service. 
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APPENDIX 1. COMPUTATION OF THE ELEMENTARY PROBABILITIES 

 

In this appendix we show the computation of the elementary probabilities under different 

assumptions. 

 

A1.1. Distribution of the intervals between adjacent pickup times 
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Let us define a ranking order for the list of requests by ascending EPT. Define a random variable 

g that represents the temporal gap between the two earliest pickup times of the requests k and 

k+1, if k is the index of this ranking order: 

 

kk EPTEPTg −= +1  

 

In the general case, if two requests are at the kth and at the (k+h)th place according this order, we 

can say that the temporal gap between their respective earliest pickup times can be represented by 

the distribution of the random variable ∑ . For simplicity, we well refer to this random 

variable as hg. Since h is not a constant (i.e., the number of demand points is a random variable 

that follows a discrete distribution), we point out that the associated probability density function 

f(hg) is not equal to h·f(g). It is now possible to redefine the elementary probabilities introduced 

in section 4.2 as a function of these interval gaps. Considering again the case m = 2, we have for 

example that for the first of the above listed six feasible sequences the vehicle should start 

visiting the pickup and the delivery node of the same request. The difference of order between the 

requests related to the two nodes is obviously 0 since both are from the same request. So in this 

case h = 0 and we can denote the corresponding probability as pd

=

h

k
g

1

0. When leaving D1, the vehicle 

must arrive to P2. We assume that the time gap between the two requests is (n/2)·g. We denote 

the corresponding elementary probability with dpn/2, which is the probability of picking up the 

(k+n/2)th request after delivering the kth. Defining in the same way all the remaining elementary 

probabilities, equation [2] can be rewritten as follows: 

 

(
)2/02/2/2/2/02/0

2/02/2/2/2/02/02

,,
,,,max

nnnnnn

nnnnnn

ddpdppddpdpppddppd
ddpdppddpdpppddppdr

⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅=

−−−−

−−  [9] 

 

Nine different elementary probabilities appear in this formula. In the general case (that is, for m 

greater than 2), the interval gap is c·(n/m)·g = hg, where c is an integer constant comprised 

between –(m–1) and +(m–1). The number of elementary probabilities that must be determined is 

linearly increasing with m, being equal to (8m–7). They are the following: pp–(m–1)·n/m, ..., pp–n/m, 

ppn/m, ..., pp(m–1)·n/m, pd–(m–1)·n/m, ..., pd–n/m, pd0, pdn/m, ..., pd(m–1)·n/m, dp–(m–1)·n/m, ..., dp–n/m, dpn/m, ..., 
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dp(m–1)·n/m, dd–(m–1)·n/m, ..., dd–n/m, ddn/m, ..., dd(m–1)·n/m. We can see that h assumes a value of zero 

only when there is a request that is served without deviations; in this case the corresponding 

elementary probability pd0 is 1 by definition. In all the other cases (i.e. when h ≠ 0), the definition 

of the elementary probabilities as a function of h allows us to compute more easily their values. 

In fact, assuming b = 1, equations [3] to [6] can be rewritten in this manner:  

 

)()(: WShgv),DL(P),PL(Dahgvdp iijih +⋅≤+≤−⋅  

)()(: WShgv),PL(DWShgvpp jih +⋅≤≤−⋅  

)()(: ahgv),DL(P),PL(DWShgvpd iijih +⋅≤−≤−⋅  

)()(: ahgv),DL(P),DL(P),PL(Dahgvdd jjiijih +⋅≤−+≤−⋅  

 

Assuming b = 1 is useful to transform for each elementary probability the two inequalities in a 

probability interval. In order to have only one interval in the above equations, we could 

alternatively allow the vehicle to idle at every node. As we discussed in section 4.2, the lower 

bound would disappear in this case (if the travel time is too short, then the vehicle could wait at 

the second point until the time window is met) and the assumption of b = 1 could be relaxed. 

 

It is reasonable to assume that the random variables L(Di,Pj) and (hg) are independent, as well 

(L(Di,Pj)+L(Pi,Di)) and (hg), (L(Di,Pj)–L(Pi,Di)) and (hg) and (L(Di,Pj)+L(Pi,Di)–L(Pj,Dj)) and 

(hg). Hence, it is possible to express the elementary probabilities as follows: 
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In the preceding equation with f(•) we indicated the probability density functions of the random 

variables L(Di,Pj), (L(Di,Pj)+L(Pi,Di)), (L(Di,Pj)–L(Pi,Di)), (L(Di,Pj)+L(Pi,Di)–L(Pj,Dj)) and (hg), 

that can be computed using convolution. Theoretically speaking, we could now compute the 

probabilities rm. However, if m is increasing we still have the problem of the number of elements 

to consider in equation [9], that as aforesaid is equal to m

m
2

)!2(  (in the general case there is one 

element for each feasible visiting sequence). The method to cope with this problem is shown in 

the next section. 

 

A1.2. Serving the requests by ascending pickup time 

 

Let us assume that the vehicle serves the requests following the ranking order we introduced in 

the previous section. That is if EPTi < EPTj then node Pi will be visited before Pj. With reference 

to the above shown case for m = 2, we can say that the first three sequences will be feasible if 

request 2 follows request 1 in this ranking order, whereas the last three may occur only if request 

1 follows request 2. Since these two events are mutually exclusive and have the same probability, 

we can then focus our attention on only one case assuming for example that request 1 precedes 

request 2. Thus we will only have to consider these three sequences: 

 

P1 D1 P2 D2 P1 P2 D1 D2 P1 P2 D2 D1

 

and the probability of serving two requests with one vehicle becomes 

 

( )2/02/2/2/2/2/
2
02 ,,max nnnnnn ddpdppddpdppdppdr −− ⋅⋅⋅⋅⋅=   [14] 
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For m = 3, we have 15 sequences to consider in order to compute r3: 
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In the general case, this approach allows us to dramatically reduce the number of sequences to be 

considered, now being 
!2

)!2(
m

m
m  instead of m

m
2

)!2( . This number is still big when m is increasing. 

However, it will be shown later that in most practical cases the maximum m to be considered is 

such that the computation of the corresponding rm can be performed in a reasonable amount of 

computational time. Also the number of the elementary probabilities to be computed is reduced 

with this approach. It can be seen that for m = 2 we need to compute 5 of these, and (4m–3) in the 

general case. They are ppn/m, pd–(m–1)·n/m, ..., pd–n/m, dpn/m, ..., dp(m–1)·n/m, dd–(m–1)·n/m, ..., dd–n/m, 

ddn/m, ..., dd(m–1)·n/m. Furthermore, with a partially different analysis approach, there is the 

possibility of defining the elementary probabilities in such a way that the sequences need no 

more to be enumerated. In this case, it is possible to write a general equation in a compact form to 

compute rm, instead of using an extension of equation [14]. In the following section we will 

discuss this simplified approach. 

 

A1.3. Considering only contemporary requests 

 

Up to now, we tackled the problem of estimating the number of vehicles needed in a DRT system 

following a “global approach”, that is concurrently considering all the requests to be served 

within our analysis period. We believe that this is the method that can give the most accurate 

results, but we have shown that this may lead to some complications when performing the 

calculations. 
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We can also study our problem using a “discrete approach” dividing our analysis period in small 

time intervals. In this case, all the requests whose EPT falls within a given interval can be 

considered having the same EPT that is the central value of the interval. For each cluster of 

requests it is easily possible to determine the number of vehicles that is needed following a 

simplified version of the above methodology. However it might be difficult to assess the number 

of vehicles needed over the entire planning horizon using a discrete approach so we will not 

consider this method in subsequent analyses. We present it here mainly for the purpose of giving 

a simple equation for rm. 

 

If we are considering only a subset of requests that can be considered having the same EPT, then 

it follows that the above defined g random variable is 0. The probability intervals associated to 

each elementary probability become the following: 

 

WSv),DL(P),PL(Ddp iiji ⋅≤+≤0:  

WSv),PL(Dpp ji ⋅≤≤0:  

av),DL(P),PL(DWSvpd iiji ⋅≤−≤⋅−:  

av),DL(P),DL(P),PL(Davdd jjiiji ⋅≤−+≤⋅−:  

 

Since g = 0, the elementary probabilities are no more dependent on h and so we can drop the 

subscript. For any m we will have to consider only 4 elementary probabilities that can be 

computed, given the above probability intervals in the following manner: 

 

∫ ++=
vWS

iijiiiji ),DL(P),PL(Dd),DL(P),PL(Dfdp
0

)()(  

∫=
vWS

jiji ),PL(Dd),PL(Dfpp
0

)()(  

∫ ⋅−
−−=

va

WSv iijiiiji ),DL(P),PL(Dd),DL(P),PL(Dfpd )()(  

∫−
−+−+=

va

va jjiijijjiiji ),DL(P),DL(P),PL(Dd),DL(P),DL(P),PL(Dfdd )()(  

 

Considering again the case m = 2, equation [5] can then be rewritten in the following way: 
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that for a generic value of m becomes 

 

)(max 11

..1

−−−−

=
⋅⋅⋅⋅= iimimi

mim dddppdpppdr . 

 

Combining this equation with equation [1] gives a formula to compute the expected number of 

vehicles needed to serve n requests having the same pickup time, but different pickup and 

delivery locations. 

 

 

APPENDIX 2. DISTRIBUTION OF THE DISTANCES OF RANDOM AND OF 

NEAREST-NEIGHBOR POINTS IN THE SERVICE AREA 

 

In this appendix we discuss the viability of two possible approximations for the distribution of 

the leg lengths in a demand responsive service vehicle route. The first approach is to consider the 

distribution of the distance between any two random points in the service area f(d) that can be 

obtained from the distributions of the coordinates of the points through convolution. Another 

possible strategy is to consider the (s-th) nearest-neighbor distance density f(ds) from a given 

point in the service area. In other words, either the distance d between any two points in the 

service area or between a point and its (s-th) nearest neighbor ds could be used as an 

approximation of the distance between any two points in a vehicle route L(•,•). 

 

Under the complete spatial randomness hypothesis, some results related to the distributions f(d) 

and f(ds) are available in the published literature. Christofides and Eilon (1969) and Eilon et al. 

(1971) derive the expected distance between two random points for different shapes of the 

service area. The distribution of the distances f(d) and their mean E(d) and variance VAR(d) for 

the cases of points uniformly scattered over a unit service area are reported in Table 3. Spatial 

analysis textbooks such as Mathai (1999) report the probability density function f(ds) of the 
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nearest, second-nearest,...,s-th nearest point, assuming Poisson arrivals in a plane. However if we 

consider a finite area, there are boundary effects that alter these latter distributions. In fact, we 

would expect that the value of ds is greater and is increasing when we consider points that are 

nearer the edge. Considering the case of the nearest neighbor (s = 1) and the related distribution 

of the distances d1, Donnelly (1978) determined correction terms through simulation for E(d1) 

and VAR(d1), that are sufficiently accurate when there are more than seven points and the shape 

of the region is sufficiently smooth. We report the expressions for f(d1), E(d1) and VAR(d1) both 

considering and not considering edge effects in Table 4. 

 

Tables 3 and 4 

 

In order to check the possibility of approximating f(L(•,•)) through either f(d) or f(d1), we ran 

some simulations on standard problems (pickup and delivery points uniformly scattered in a unit 

square area). To schedule the vehicles in the simulation, we used a parallel regret insertion 

heuristic (Diana and Dessouky, 2004). The results showed that E(L(•,•)) is about 20% to 40% less 

than the value of E(d) indicated in Table 3, and this gap is increasing when the time windows are 

larger and the density of the requests is higher. This is rather an intuitive result since relaxing the 

scheduling constraints leads to a more efficient routing of the vehicles. On the other hand, E(d1) 

seriously underestimates E(L(•,•)) when there are more than 3-4 requests to serve and the time 

window width is not too loose even if we include the correction terms proposed by Donnelly 

(1978). Also the shape of the sampled distribution is quite different from those reported in Tables 

3 and 4. 

 

To sum up, the considered approximations have proven to be rather poor for our purposes. When 

scheduling the service the vehicles are normally dispatched to the “best” point that satisfies the 

time, precedence, and coupling constraints in order to increase the efficiency of the system. The 

definition of “best” point obviously depends on the heuristic used to schedule the service, but in 

any case this is rather unlikely to be either a random or the nearest-neighbor point. In our case, 

the regret insertion algorithm tries to anticipate the insertion of requests that could be difficult to 

insert in a later stage of the process, as explained in detail in Diana and Dessouky (2004). One 

could argue that using a nearest-neighbor-based heuristic to schedule the service could allow for 
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a better approximation of f(L(•,•)) through f(d1). However the inferiority of the nearest-neighbor 

rule over an insertion-based algorithm when we consider a routing problem with time windows is 

an established result (Solomon, 1987).  
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Fig. 1. Time windows definition 
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Fig. 2. Computation of the elementary probability dpij
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Model, m = 7 

Simulation, TW = 10 min 

Simulation, TW = 30 min 

 

 

Fig. 3. Distribution of the leg lengths from the simulation and from the model when 120 requests 

are serviced and the time window width TW is 10 and 30 minutes 
 

 

 

 

 

 

 

Table 1 

Number of required vehicles from the model and from the simulation (in brackets) when the demand density and 
the time window width is changing 

Time window 10 minutes 15 minutes 20 minutes 30 minutes 

120 requests 22.9 
(21.2) 

18.7 
(18.4) 

17.6 
(16.0) 

17.2 
(13.4) 

60 requests 11.8 
(13.0) 

9.5 
(11.0) 

8.9 
(9.6) 

8.6 
(8.0) 

24 requests 5.2 
(7.2) 

4.1 
(6.2) 

3.7 
(5.8) 

3.4 
(4.4) 

12 requests 2.9 
(4.4) 

2.2 
(3.2) 

1.8 
(3.2) 

1.7 
(2.6) 
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Table 2 

Expected leg length in miles from the model and from the simulation (in brackets) when the demand density and 
the time window width is changing 

Time window 10 minutes 15 minutes 20 minutes 30 minutes 

120 requests 3.97 
(3.51) 

3.89 
(3.27) 

3.81 
(3.03) 

3.72 
(2.70) 

60 requests 4.08 
(3.96) 

3.99 
(3.62) 

3.90 
(3.32) 

3.81 
(2.98) 

24 requests 4.30 
(4.14) 

4.20 
(4.12) 

4.16 
(3.93) 

3.99 
(3.80) 

12 requests 4.45 
(4.58) 

4.22 
(4.33) 

4.22 
(4.33) 

4.09 
(3.78) 

 
 

 

Table 3 

Distribution of the distances between any two points that are uniformly scattered in a unit square 

f(d) 
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E(d) 0.5214 

VAR(d) 0.0615 
 

 

Table 4 

Distribution of the nearest-neighbor distance from a given point in a unit square, assuming 
Poisson arrivals of N points 

 Not considering edge effects Including Donnelly (1978) 
correction terms 
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