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Abstract

This paper presents a new technique for the elimination of
passivity violations in linear lumped macromodels. The main
algorithm is based on the perturbation of imaginary eigenvalues
of suitably-defined Hamiltonian matrices, as documented in the
existing literature. We introduce a modification aimed at the
minimization of the relative error in the model responses dur-
ing the passivity enforcement. This strategy allows the accurate
modeling of structures characterized by a large dynamic range,
as typically found in microwave filters or advanced packaging
applications.

Introduction and motivations

Linear macromodeling provides a flexible and effective so-
lution for fast and accurate simulation of complex intercon-
nects. However, macromodel identification from time-domain
or frequency-domain tabulated data [1]-[8] often leads to non-
passive results. Though possibly accurate, non-passive models
may lead to unstable behavior when used in a CAD tool for
system design and verification. Therefore, passivity should be
enforced in some way during the model identification process.

Despite the intense research efforts that have been devoted
to the subject, the passivity enforcement of linear macromod-
els still poses several challenges. Currently available solutions
can be grouped into tree main classes. On one hand, methods
based on convex optimization [9]-[12] are guaranteed to find the
optimal solution. Unfortunately, these techniques are limited to
small-scale models due to their large computational complexity.
A second class is provided by a posteriori passivity correction
techniques based on linear or quadratic programming [13, 14].
These methods are based on inequality constraints imposed at
discrete frequency samples. They are applicable to larger-size
models but are not guaranteed to fully enforce passivity. Fi-
nally, other methods exploit the theory of Hamiltonian matri-
ces [15]-[18]. They are applicable to larger-size models and
do provide a global passivity characterization and enforcement.
However, the convergence is not always guaranteed and the so-
lution they offer is only sub-optimal.

All passivity enforcement techniques apply some perturba-
tion to the model until its passivity is achieved. This pertur-
bation is performed using special constraints insuring that the
model accuracy is preserved. These constraints have always
been formulated so that the absolute error in the responses is
minimized, except for the very recent results in [19]. In this
work, we present a method allowing for the systematic preser-
vation of the relative error during the passivity enforcement. We
show that the proposed technique leads to superior performance
with respect to standard schemes in all cases characterized by
responses with large dynamic range. This scenario is typical,
e.g., in packaging applications and RF component modeling.

Formulation
The main formulation is here presented for a scalar (one-

port) macromodel. The extension to multi-port structures will
be fully documented in a forthcoming report, although some
hints are provided in the next sections.

We consider a one-port linear macromodel described by one
of the following equivalent representations

H(s) = d +

N
∑

n=1

rn

s − pn

= d

∏N
n=1

(s − zn)
∏N

n=1
(s − pn)

= d + c (sI − A)
−1

b , (1)

where pn, zn, rn, d are, respectively, poles, zeros, residues, and
direct coupling constant. State-space matrices A ∈ R

N×N ,
b ∈ R

N×1, and c ∈ R
1×N are easily derived from poles and

residues using standard realization techniques. In the following,
we will assume that H(s) is regular ∀s : Re {s} ≥ 0, includ-
ing s = 0 and s = ∞. This implies that H(0) and H(∞) are
finite and non-vanishing, and that all poles are strictly stable,
i.e., Re {pn} < 0, n = 1, . . . , N . Form (1) is the typical out-
come of standard macromodeling algorithms providing rational
approximations of tabulated data, Vector Fitting (VF) being the
most popular in its various implementations [1, 2, 3, 4, 5, 6, 7].

Given the above regularity assumptions, a macromodel (1) is
passive when H(s∗) = H∗(s) and when

• H(jω) + H∗(jω) ≥ 0, ∀ω in case H(s) represents a
driving-point impedance or admittance (henceforth de-
noted ”case I”)

• |H(jω)| ≤ 1, ∀ω in case H(s) represents a reflection co-
efficient (henceforth denoted ”case II”)

Once a model (1) is available, its passivity should be checked
and enforced before safe use in a CAD environment. Several
techniques are available for checking passivity. Here, we rely
on algebraic tests based on the eigenstructure or Hamiltonian
matrices [17], which do not require any frequency sampling
process, and which provide global results over the complete fre-
quency spectrum. More precisely, the model is passive when
there are no imaginary eigenvalues of the associated Hamilto-
nian matrix M, provided that d + d∗ ≥ 0 (case I) or |d| ≤ 1
(case II). More details can be found in [17].

When a passivity violation is detected, it can be eliminated
using an iterative perturbation technique aimed at the displace-
ment of the imaginary Hamiltonian eigenvalues. The perturba-
tion scheme is obtained by relating, via first-order expansions,
the modification of the coefficients in (1) that is required for a
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desired eigenvalue perturbation. This procedure results [17] in
an iterative linear system solution

Z δ = µ , (2)

where Z is a constant matrix, δ collects the corrections to be
applied to the coefficients in (1), and µ is the desired amount
of Hamiltonian eigenvalue perturbation. Accuracy is usually
preserved during this process by adding a minimum-norm con-
straint. Choice of this norm is crucial for the performance of
the algorithm, as discussed below.

Absolute and relative norms
We focus our analysis on perturbation schemes applied to the

residues rn. We will assume that the state-space realization
is obtained as in [18], so that state-space matrix c collects all
residues. Therefore, the model to be determined is associated
to the state-space realization

Hp(s) = d + (c + δ) (sI − A)−1
b . (3)

Other perturbation choices are available in [19].
The standard approach for the preservation of model accu-

racy is to minimize the absolute energy L2 norm in the pertur-
bation of the model response. This norm can be defined either
in time-domain or directly in frequency-domain, the two for-
mulations being equivalent due to the Parseval’s identity. We
have

||Hp(s) − H(s)||22 =
1

2π

∫ ∞

−∞

|Hp(jω) − H(jω)|2dω

=

∫ ∞

0

|hp(t) − h(t)|2dt

= δ P δT , (4)

where h(t) denotes the inverse Laplace transform of H(s)
and matrix P is the controllability Gramian of the state-space
realization (1), defined as the unique symmetric and strictly
positive-definite solution of the following Lyapunov equa-
tion [20, 21]

AP + PA
T + bb

T = 0 . (5)

The last row in (4) defines the norm that should be minimized
during the solution of (2) in order to preserve the absolute ac-
curacy during passivity enforcement.

Let us now introduce the relative perturbation as

Θ(s) = (Hp(s) − H(s))H−1(s) . (6)

We want to derive an algebraic characterization of the L2 norm
of this perturbation, in terms of the model perturbation coeffi-
cients δ. To this aim, we first derive the state-space realization
of H−1(s) as

H−1(s) = d−1−
(

d−1
c
) (

sI − (A − b d−1
c)

) (

b d−1
)

. (7)

Direct substitution into (6) leads, using (1) and (3), to

Θ(s) = [δ 0] (sI − Aθ)
−1

bθ , (8)

where

Aθ =

[

A bd−1
c

0 A − bd−1
c

]

, bθ =

[

bd−1

−bd−1

]

. (9)

We compute now the controllability Gramian Pθ of (8) as the
solution of

AθPθ + PθA
T
θ + bθb

T
θ = 0 . (10)

This Gramian matrix has a 2 × 2 block structure

Pθ =

[

P11 P12

P21 P22

]

(11)

where each block is N×N . A straightforward calculation leads
to the following characterization of the relative norm

||Hp(s) − H(s)||2rel = ||Θ(s)||22
=

1

2π

∫ ∞

−∞

|Θ(jω)|2dω

= δ P11 δT . (12)

The last row is formally identical to (4), differing only in the
definition of the Gramian matrix. The above derivation implies
that if (4) is replaced by (12) during the passivity enforcement
iterations, the relative error is indeed minimized.

Minimum phase constraints
The above derivation implies some important restriction on

the models that can be handled. Precisely, the model (1) must
be minimum-phase. Equivalently, all its zeros must satisfy
Re {zn} < 0, n = 1, . . . , N . The necessity of this condition is
clear from (7). Since these zeros are the eigenvalues of

{zn} = eig{A − b d−1
c} , (13)

a violation of the minimum-phase condition leads to unstable
realizations of H−1(s) and Θ(s). Consequently, the Gramians
Pθ and P11 become non-positive definite, and (12) cannot be a
well-defined norm.

The above limitation is easily overcome as follows. First, the
set of zeros is split as

{zn}N
n=1 = {z+

n }N+

n=1 ∪ {z−n }N−

n=1 , (14)

where
Re

{

z+
n

}

> 0 and Re
{

z−n
}

< 0 . (15)

Then, the modified definition for the relative perturbation

Θ(s) = (Hp(s) − H(s))H−1(s)

N+

∏

n=1

s − z+
n

s + z+
n

. (16)

is used instead of (6). The last term is an all-pass function that
flips the positive zeros of H(s) into the left hand plane. Being
an all-pass function, the magnitude |Θ(jω)| on the imaginary
axis is left unchanged, with no effect in the numerical value
of the norm (12). However, the associated state-space realiza-
tion of Θ(s) becomes strictly stable, thus allowing the alge-
braic characterization of the norm using the (positive-definite)
Gramian P11.
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Figure 1: Validation example. The responses of two passive
models obtained by enforcing absolute and relative error are
compared to raw frequency data.

To summarize, the passivity enforcement with relative error
minimization is achieved by iteratively solving the system

min
δ

δ P11 δT , Z δ = µ . (17)

The solution of this system in least squares sense is straightfor-
ward.

A few remarks on the extension of the above technique to
multi-port macromodels. Two alternative approaches can be
devised. A first approach is to define a matrix-valued relative
perturbation as

Θ(s) = (Hp(s) − H(s))H−1(s) . (18)

This definition, however, does not allow the minimization of the
relative perturbation on each individual response of the model.
This may be crucial for Signal and Power Integrity applica-
tions, since small crosstalk waveforms may be very sensitive
to model perturbations, unless their individual accuracy is pre-
served. This is possible by defining an element-wise relative
perturbation

Θik(s) = (Hp,ik(s) − Hik(s))H−1

ik (s) . (19)

Implementation of (19) requires special care in the derivation
of the modified Gramian matrix to be used in the perturbation
norm. All details are postponed to a forthcoming report. How-
ever, the numerical results of next section are indeed multi-port
cases.

Examples
The first example we consider is a synthetic 6-port lumped

structure that was specifically designed to compare the perfor-
mance of the various passivity enforcement schemes. A ratio-
nal scattering matrix S(s) was generated by randomly selecting
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Figure 2: AC coupled interconnect. The responses of two pas-
sive models obtained by enforcing absolute and relative error
are compared to raw frequency data.

poles and zeros of each element. Then, the maximum singu-
lar value of S(jω) was constrained via appropriate scaling to
σmax = 1.2. Therefore, the raw frequency responses exploit a
non-passive behavior.

The standard passivity enforcement scheme with absolute er-
ror control was applied to correct the model residues and re-
cover passivity. The results for one of the model responses are
depicted in Fig. 1. Significant accuracy degradation is observed
at low frequencies. The proposed scheme based on relative er-
ror control was also applied to this example. Fig. 1 shows that
accuracy is indeed preserved over a large dynamic range.

The second example is an AC-coupled transmission link. The
interconnect is formed by two stripline segments separated by
a series capacitance. The 2 × 2 short-circuit admittance matrix
of the structure was computed, and a rational macromodel was
generated using VF iterations with inverse magnitude weight-
ing [2, 7]. This strategy was necessary since the series ca-
pacitance induces a wide dynamic range in the responses, as
depicted in Fig. 2 and 3. These plots show that application
of the standard passivity enforcement with absolute error con-
trol degrades the low-frequency accuracy, whereas the proposed
scheme provides a much better performance.

Conclusions

We have presented some preliminary results on the preserva-
tion of relative errors during the passivity enforcement of lin-
ear lumped macromodels. The algebraic characterization of the
relative error norm allows the implementation of this constraint
into existing passivity enforcement schemes with minimal mod-
ifications. The results show that the proposed technique results
in accurate modeling of responses characterized by large dy-
namic range.
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Figure 3: AC coupled interconnect. The responses of two pas-
sive models obtained by enforcing absolute and relative error
are compared to raw frequency data.
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