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1 Introduction
A general three-dimensional initial-value perturbation problem is presented to
study the linear stability of a two-dimensional growing wake. The base flow
has been obtained by approximating it with an expansion solution for the lon-
gitudinal velocity component that considers the lateral entrainment process
[1]. By imposing arbitrary three-dimensional perturbations in terms of the
vorticity, the temporal behaviour, including both the early time transient as
well as the long time asymptotics, is considered [2], [3], [4]. The approach has
been to first perform a Laplace-Fourier transform of the governing viscous dis-
turbance equations and then resolve them numerically by the method of lines.
The base model is combined with a change of coordinate [5]. Base flow config-
urations corresponding to a R of 35, 50, 100 and various physical inputs are
examined. In the case of longitudinal disturbances, a comparison with recent
spatio-temporal multiscale Orr-Sommerfeld analysis [6], [7] is presented.

2 The initial-value problem
The base flow is viscous and incompressible. To define it, the longitudi-
nal component of an approximated Navier-Stokes expansion for the two-
dimensional steady bluff body wake [1], [8] has been used. The x coor-
dinate is parallel to the free stream velocity, the y coordinate is normal.
The coordinate x0 plays the role of parameter of the system together with
the Reynolds number. The analytical expression for the wake profile is
U(y;x0, R) = 1− a(R)x−1/2

0 e−(Ry2)/(4x0), where a(R) depends on the Reynolds
number [8]. By changing x0, the base flow profile locally approximates the be-
haviour of the actual wake generated by the body. The equations are
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where ω̃y is the transversal component of the perturbation vorticity, while
Γ̃ is defined as Γ̃ =

∂ω̃z

∂x
− ∂ω̃x

∂z
. All physical quantities are normalized with

respect to the free stream velocity, the spatial scale of the flow D and the
density. By introducing the moving coordinate transform ξ = x − U0t [5]
and performing a combined Laplace-Fourier decomposition of the dependent
variables in terms of ξ and z, the governing equations become
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where f̂(y, t;α, γ) =
∫ +∞

−∞

∫ +∞

0

f̃(ξ, y, z, t)eiαξ+iγzdξdz is the Laplace-Fourier

transform of a general dependent variable, φ = tan−1(γ/αr) is the per-
turbation angle of obliquity, k =

√
α2

r + γ2 is the polar wavenumber and
αr = kcos(φ), γ = ksin(φ) are the wavenumbers in ξ and z directions respec-
tively. We choose periodic and bounded initial conditions:
CASE I (symmetric initial condition): v̂(0, y) = e−y2

cos(βy), ω̂y(0, y) = 0
CASE II (asymmetric initial condition): v̂(0, y) = e−y2

sin(βy), ω̂y(0, y) = 0

3 Results and Conclusions
The amplification factor G is defined as the normalized energy density [3],
namely G(t; k, φ) = E(t; k, φ)/E(t = 0; k, φ). It effectively measures the
growth of the energy at time t, for a given initial condition at t = 0 (fig.
1). By defining the temporal growth rate [4] as r = log|E(t)|/(2t) (E(t) is
the total perturbation energy) and the angular frequency f as the temporal
derivative of disturbance phase, we can evaluate the initial stages of expo-
nential growth and, in the case of 2D disturbances, compare them with the
normal mode theory results [6] (fig. 2).
Figure 1 yields three differing examples of early transient periods. Case (a)
shows that a growing wave becomes damped, increasing the obliquity angle
beyond π/4. Case (b) corresponds to dispersion relation values far from the
saddle point and shows that spatially damped/amplified waves can be tem-
porally amplified/damped. Case (c) demonstrates that perturbations normal
to the base flow are stable. Figure 2 presents the comparison between the
initial value problem and the Orr-Sommerfeld problem. The results are pa-
rameterized with respect to the position x0 through the polar wavenumber
k = k(x0). Equations are integrated in time beyond the transient until the
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temporal growth rate asymptotes to a constant value. We observed a very good
agreement with the stability characteristics given by the Orr-Sommerfeld the-
ory for both the symmetric and asymmetric arbitrary disturbances considered.
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Fig. 1. The amplification factor G as a function of time. (a): R = 100, k = 1.2,
αi = −0.1, β = 1, x0 = 10.15, φ = 0, π/8, π/4, (3/8)π, π/2, symmetric perturbation
(case I). (b): R = 50, k = 0.3, β = 1, φ = 0, x0 = 5.20, αi = −0.1, 0, 0.1, symmetric
perturbation (case I). (c): R = 100, αi = −0.01, β = 1, φ = π/2, x0 = 7.40,
k = 0.5, 1, 1.5, 2, 2.5, symmetric perturbation (case I).
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Fig. 2. β = 1, φ = 0. (a, b, c) Temporal growth rate and (d, e, f) angular fre-
quency. Comparison between present results (triangles: symmetric perturbation,
case I; circles: asymmetric perturbation, case II) and normal mode analysis by
Tordella, Scarsoglio and Belan, 2006 Phys. Fluids (solid lines). The wavenumber
α = αr(x0) + iαi(x0), αr(x0) = k(x0) is the most unstable wavenumber in any
section of the near-parallel wake (dominant saddle point in the local dispersion re-
lation). The wake sections considered are in the interval 3D ≤ xo ≤ 50D.
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