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1 Introduction

A general three-dimensional initial-value perturbation problem is presented to
study the linear stability of a two-dimensional growing wake. The base flow
has been obtained by approximating it with an expansion solution for the lon-
gitudinal velocity component that considers the lateral entrainment process
[1]. By imposing arbitrary three-dimensional perturbations in terms of the
vorticity, the temporal behaviour, including both the early time transient as
well as the long time asymptotics, is considered [2], [3], [4]. The approach has
been to first perform a Laplace-Fourier transform of the governing viscous dis-
turbance equations and then resolve them numerically by the method of lines.
The base model is combined with a change of coordinate [5]. Base flow config-
urations corresponding to a R of 35, 50, 100 and various physical inputs are
examined. In the case of longitudinal disturbances, a comparison with recent
spatio-temporal multiscale Orr-Sommerfeld analysis [6], [7] is presented.

2 The initial-value problem
The base flow is viscous and incompressible. To define it, the longitudi-
nal component of an approximated Navier-Stokes expansion for the two-
dimensional steady bluff body wake [1], [8] has been used. The z coor-
dinate is parallel to the free stream velocity, the y coordinate is normal.
The coordinate xg plays the role of parameter of the system together with
the Reynolds number. The analytical expression for the wake profile is
U(y;z0,R) =1— a(R)xgl/Qe_(Ryz)/(4X°), where a(R) depends on the Reynolds
number [8]. By changing xg, the base flow profile locally approximates the be-
haviour of the actual wake generated by the body. The equations are
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where W, is the transversal component of the perturbation vorticity, while
. - Wy Wy
I' is defined as I' =

respect to the free stream velocity, the spatial scale of the flow D and the
density. By introducing the moving coordinate transform & = z — Uyt [5]
and performing a combined Laplace-Fourier decomposition of the dependent
variables in terms of £ and z, the governing equations become

. All physical quantities are normalized with
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where f(y,t; a,y) = f(€,y, 2, t)e!* T2 dedz is the Laplace-Fourier
transform of a generaloodepoendent variable, ¢ = tan"!(y/a,) is the per-

turbation angle of obliquity, & = /a2 + 2 is the polar wavenumber and
o, = kcos(9), v = ksin(¢) are the wavenumbers in £ and z directions respec-
tively. We choose periodic and bounded initial conditions:

CASE I (symmetric initial condition): 9(0,y) = e v’ cos(By), wy(0,y) =0
CASE II (asymmetric initial condition): 0(0,y) = e v’ sin(By), wy(0,y) =0

3 Results and Conclusions

The amplification factor G is defined as the normalized energy density [3],
namely G(t;k,¢) = E(t;k,¢)/E(t = 0;k,¢). It effectively measures the
growth of the energy at time t, for a given initial condition at ¢ = 0 (fig.
1). By defining the temporal growth rate [4] as r = log|E(t)|/(2t) (E(t) is
the total perturbation energy) and the angular frequency f as the temporal
derivative of disturbance phase, we can evaluate the initial stages of expo-
nential growth and, in the case of 2D disturbances, compare them with the
normal mode theory results [6] (fig. 2).

Figure 1 yields three differing examples of early transient periods. Case (a)
shows that a growing wave becomes damped, increasing the obliquity angle
beyond 7/4. Case (b) corresponds to dispersion relation values far from the
saddle point and shows that spatially damped/amplified waves can be tem-
porally amplified/damped. Case (¢) demonstrates that perturbations normal
to the base flow are stable. Figure 2 presents the comparison between the
initial value problem and the Orr-Sommerfeld problem. The results are pa-
rameterized with respect to the position xy through the polar wavenumber
k = k(zp). Equations are integrated in time beyond the transient until the
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temporal growth rate asymptotes to a constant value. We observed a very good
agreement with the stability characteristics given by the Orr-Sommerfeld the-
ory for both the symmetric and asymmetric arbitrary disturbances considered.
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Fig. 1. The amplification factor G as a function of time. (a): R = 100, k = 1.2,
a; =—0.1, =1, x0 =10.15, ¢ = 0,7/8,7/4, (3/8)m, /2, symmetric perturbation
(case I). (b): R=50,k=0.3,8=1, ¢ =0, z0 =5.20, o; = —0.1,0,0.1, symmetric
perturbation (case I). (¢): R = 100, a; = —0.01, 8 = 1, ¢ = 7/2, o = 7.40,
k=0.5,1,1.5,2,2.5, symmetric perturbation (case I).
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Fig. 2. 8 =1, ¢ = 0. (a, b, ¢) Temporal growth rate and (d, e, f) angular fre-
quency. Comparison between present results (triangles: symmetric perturbation,
case I; circles: asymmetric perturbation, case II) and normal mode analysis by
Tordella, Scarsoglio and Belan, 2006 Phys. Fluids (solid lines). The wavenumber
a = ar(xo) + tai(zo), ar(zo) = k(xo) is the most unstable wavenumber in any
section of the near-parallel wake (dominant saddle point in the local dispersion re-
lation). The wake sections considered are in the interval 3D < z, < 50D.
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