
05 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Control-flow checking via regular expressions / Benso, Alfredo; DI CARLO, Stefano; DI NATALE, Giorgio; Prinetto, Paolo
Ernesto; Tagliaferri, Luca. - STAMPA. - (2001), pp. 299-303. ((Intervento presentato al convegno IEEE 10th Asian Test
Symposium (ATS) tenutosi a Kyoto, JP nel 19-21 Nov. 2001.

Original

Control-flow checking via regular expressions

Publisher:

Published
DOI:10.1109/ATS.2001.990300

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1416288 since:

IEEE Computer Society



Control-f low checking via regular 
expressions
Authors: Benso A., Di Carlo S., Di Natale G., Prinetto P., Tagliaferri L.,

Published in the Proceedings of the IEEE 10th AsianTest Symposium (ATS), 19-21 Nov. 2001, Kyoto, 

JP.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final 
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990300

DOI: 10.1109/ATS.2001.990300

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including reprinting/republishing 

this material for advertising or promotional purposes, creating new collective works, for resale 

or redistribution to servers or lists, or reuse of any copyrighted component of this work in 

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990300
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990300
http://dx.doi.org/10.1109/ATS.2001.990300
http://dx.doi.org/10.1109/ATS.2001.990300


Control-Flow Checking Via Regular Expressions 

ALFREDO BENSO, STEFANO DI CARLO, GIORGIO DI NATALE, PAOLO PRINETTO, LUCA TAGLIAFERRI 

Politecnico di Torino 

Dipartimento di Automatica e Informatica 

Corso Duca degli Abruzzi 24 - I-10129, Torino, Italy 

Email: { benso, dicarlo, dinatale, prinetto, tagliaferri }@polito.it 

http://www.testgroup.polito.it 

Abstract 

The present paper explains a new approach to program 

control-flow checking. The check has inserted at source-

code level using a signature methodology based on 

regular expressions.  The signature checking is performed 

without dedicated watchdog processor but resorting to 

inter-process communication (IPC) facilities offered by 

most of the modern Operating Systems. The proposed 

approach allows very low memory overhead and trade-off 

between fault latency and program execution time 

overhead. 

1. Introduction 

The use of computer-based systems pervades all areas of 

our lives from common house land applications such as 

microwave ovens and washing machines, to complex 

applications like aircraft, trains and medical control 

systems, allowing high productivity and flexibility. They 

are commonly referred to as “Embedded Computer 

Systems” (ECS). 

The proposed examples state a very large number of 

ECS play a key role in critical tasks with respect to human 

safety and data security, supported by the development of 

new and powerful electronics circuits. In this context, high 

availability is a must to guarantee human safety. 

As devices geometry decreases, circuits clock 

frequencies increases and processors are introduced into 

more electrically active environments; the incidence of 

transient errors increases, decreasing the dependability of 

ECS where these components are used. These transient 

errors can only be detected by concurrent error detection 

techniques, allowing the maintenance of acceptable levels 

of system dependability. 

The design of ECS is always constrained by the 

reduction of time-to-market. This makes not feasible the 

development of custom products with high performances 

and dependability levels. This requirement forces the 

engineer to systematically use commercial off-the-shelf 

components in both software and hardware domain. These 

components are normally not designed to work in stressed 

environments and do not guarantee high dependability 

levels. The challenge is to build fault tolerant systems that 

harness the market forces by using off-the-shelf hardware 

and software components. 

Classical approaches for dependable ECS development 

rely on hardware redundancy. Although they are effective 

in protecting against transient faults, they are usually 

expensive. A possible and less expensive approach is to 

move the problem of fault detection at software level 

using software redundancy techniques. 

Control-flow checking has become a widely studied 

approach to concurrent error checking. The on-line test is 

aimed at detecting erroneous sequences of instructions in a 

program execution [1] [2]. The proposed solutions mainly 

rely on dedicated hardware [3]. The basic schema is based 

on watchdog and signature analysis [4] [5] [6] [7] [8] [9] 

[10]. The application program is split into elementary 

blocks with single entry. A reference signature 

representing the correct execution flow in the blocks is 

calculated off line and stored. At run time the signature is 

calculated again and compared with the golden one using 

so called dedicated watchdog processors. These hardware 

techniques have been evaluated on medium size 

applications using different hardware platforms [11].  

The main difference in the various approaches is in the 

method used to calculate and check the signature. In 

particular it is possible to identify two classes of approach: 

• Embedded Signature Monitoring (ESM): where the 

signature is embedded in the application program 

[5] [6]; 

• Autonomous Signature Monitoring (ASM): where 

the signature is stored in a dedicated watchdog 

memory [8]. 

Despite the effectiveness of the proposed methodologies 

they usually need dedicated hardware and system 

modifications, in contrast with the constraints of using 



commercial off-the-shelf components. In addition, with 

the increasing size of processor cache memory, the 

detection capability of these techniques decrease since 

they are able to detect faults into main memory, accessible 

by the watchdog processor but not faults inside the 

processor cache. 

In order to solve the problem of hardware control-flow 

checking, some software approaches have been proposed. 

They rely on the insertion of appropriate instructions into 

the code to calculate and check the signature without 

needed a dedicated watchdog processor. Representative 

software based control-flow monitoring schemes are 

Block Signature Self Checking (BSSC) [12] and Control 

Checking With Assertion (CCA) [13]. 

The present paper proposes a new high-level approach to 

control flow based on multiprocess/multithread operating 

systems [14]. The target is the insertion of control-flow 

checking mechanism directly at source code level. The 

approach relies on the multiprocess/multithread 

programming facilities offered by most of the modern 

Operating Systems to minimize the modification of the 

target application and to allow trade off between time 

overhead and fault latency. 

The proposed approach uses a new signature schema 

based on the regular expression formalism [15]. It has 

been implemented in a tool and evaluated using a custom 

fault injector [16]. 

The paper is organized as follow: Section 2 introduces 

some basic concepts and definitions related to the program 

flow theory. Section 3 proposes the new signature schema 

whereas Section 4 explains the control-flow checking 

methodology. To prove the effectiveness of the work 

Section 5 reports experimental results performed on a set 

of benchmarks. Finally Section 6 draws some conclusions. 

2. Program Control Graph 

Before presenting our control-flow checking 

methodology, we first introduce some definitions and 

models used in the sequel. A generic program can be 

represented by a so-called Flow Control Graph (FCG) in 

which each node represents an instruction, whereas the 

arcs represent the authorized sequences of instructions 

(Figure 1). 

The nodes of a FCG can be grouped into two main 

classes: 

• Sequential Nodes: the associated instruction does 

not modify the flow of the program, i.e. the program 

flow is sequential; 

• Control Nodes: the associated instruction is able to 

modify the program flow. They are typically 

associated with flow control statements (if, while, 

etc.). 

 

 

 

 

Figure 1: Control Flow Graph 

Using the information provided by the FCG it is possible 

to split the program into branch-free blocks. A branch free 

block is a set of consecutive sequential vertexes in the 

FCG. A branch-free block is normally followed by a 

control vertex. Figure 2 shows the FCG of Figure 1 

modified introducing the branch-free blocks. This 

modified FCG (MCFG) is the starting point for the 

proposed control-flow checking mechanism. 

       
Figure 2: Modified Control Flow Graph 

3. Flow Signature using Regular Expression 

In the proposed approach the problem of control-flow 

checking is tackled resorting to a new signature approach 

able to identify all the allowed program flows executions. 

These program flows executions are identified by all the 

possible paths in the related MFCG starting from the 



“Begin” node and ending in the “End” node (Figure 2). 

The defined signature is stored and checked at run time.  

The novelty of our approach is in the use of regular 

expressions to calculate the program flow signature, 

instead of classical approaches based on LFSR or 

arithmetic functions.  

Each branch-free block in the MFCG is labeled with a 

unique symbol named block symbol (in square brackets in 

Figure 2). Using this notation the allowed program flows 

executions generate a language composed by all the 

strings obtained by the concatenation of the block symbols 

composing the correspondent path in the MFCG. This set 

of strings can be considered as a language L in the sense 

of compiler theory [15]. This language can be represented 

in a formal way as: 

L = (A, R) 

Where: 

• A is the input alphabet composed by all the defined 

block symbols; 

• R is a regular expression able to generate all the 

necessary strings. 

The language L can represent a signature for the target 

application program. 

A program flow execution is allowed only if the 

corresponding path in the MFCG generates a string 

(Control String) belonging to the language L, in the other 

case a flow error has occurred. 

Considering the example of Figure 2 the language L is: 

L = (A, R) 

 

Where 

• A = (a, b, c, d) 

• R = a (b | (c)*) d 

If an execution produce the control string S = “acccd” 

we can say that the execution belongs to the space of 

correct executions, whereas in case of the control string 

S=”abcf” a flow error has occurred since the string is not 

recognized by the language L. 

The choice of using regular expressions for signature 

computation relies on the high expressivities of this 

formalism and the high simplicity in storing and 

manipulating this kind of strings. Using this formalism, 

the problem of control flow checking is reduced to the 

problem of generating the control strings during the 

execution of the application program and verifying for 

their correctness by checking whether it is accepted by the 

language L.  

4. Control-Flow Checking 

This paragraph explains our methodologies to generate 

and check control strings during the program execution. 

Both the code for strings generation and strings checking 

are obtained by modifying the original C/C++ source code 

of the target program application. This is not a limitation 

since the approach is general enough to work at any level 

of language: high-level, assembly-level and machine-

level. The inserted code makes use of the 

multiprocess/multithread programming facilities provided 

by all the modern Operating Systems [14]. 

The application program and the checker program are 

instantiated as two different processes communicating 

using a pipe or any other Inter Process Communication 

(IPC) facilities. The checker process stores the language L 

associated to the application program and the code needed 

to check if control strings belong to the language. The 

application program is modified inserting at the end of 

each branch-free block the code needed to generate the 

related control symbol. This symbol is transmitted to the 

checker process by using the IPC (Figure 3). In case of a 

wrong symbol it can detect a flow error. The code needed 

to generate control symbols is normally very simple, like a 

write operation on a pipe or a call to an IPC function, thus 

maintaining the memory and time overhead very low. At 

the same time the implementation of the checker process 

is very simple since the task of checking the appartenence 

of a language using regular expression is very simple [15] 

having a very low impact on the final application.  

The checker process is inherently equivalent to a finite 

state machine (FSM) that is usually not deterministic. 

Therefore, to be implemented it must be converted into a 

deterministic FSM, and this process may cause an 

exponential growth of states. In our approach the problem 

is implicitly solved by the method used to label the branch 

free blocks, that assure the generation of regular 

expressions recognized by deterministic FSMs. 

The use of a multiprocess architecture allows a very 

powerful mechanism to trade-off between time overhead 

in the application program execution and target fault 

latency. This can be obtained by appropriately setting the 

priority of the two processes. At limit if only the final 

results are relevant and the occurrence of a fault during the 

program execution is not a risk for the target application, 

the checker process can be called only at the end of the 

program execution. 

In addition, by splitting the branch-free blocks into sub-

blocks and applying the same signature schema on the 

new MFCG obtained, it is possible to check also the flow 

of long sequences of sequential instructions, allowing a 

trade-off between dependability and time/memory 

overhead. The limit, in case of very critical applications, is 

to consider each instruction as a single branch-free block.  

Figure 3 show the example of Figure 2 where the IPC is 

implemented as a pipe using the Linux System calls [17]. 



 
Figure 3: Multi Process Checking Architecture 

5. Experimental Results 

To evaluate the effectiveness of the proposed approach a 

source-to-source compiler has been implemented. It is able 

to build the FCG starting from a C/C++ source code and to 

identify the language L associated to the application 

program. It is therefore able to modify the original source 

code inserting the instructions needed to generate the 

block symbols, the source code of the checker and finally 

the instructions needed to make the proper connections 

between the two processes.  

The compiler can deal with IPC mechanisms offered by 

both Microsoft Windows NT/2000 and Unix Operating 

Systems. The approach has been validated under Windows 

2000 Operating System, using an ad-hoc fault injector [16] 

that allows injecting transient error into both data and code 

segments of an application program.  

Experimental results have been gathered from five 

different benchmarks. For each benchmark, a preliminary 

analysis has been performed to evaluate the percentage of 

control-flow errors obtained during the injection 

experiments. The faults have been injected into the code 

segment of the target application. 

Table 1 summarizes, for each benchmark and for both 

the original and modified source code: 

• the binary code size; 

• the execution time including, in the modified source 

code version, the communication time for the IPC 

mechanism and the time needed to check the 

correctness of the regular expression.; 

• the number of crashes i.e. the number of faults 

injected that has generated a crash of the application 

program; 

• the number of control-flow errors i.e. the number of 

injected faults that has caused a control flow 

different from the golden one ; 

• the number of error not belonging in the set of 

control-flow errors; 

• the number of detected control-flow errors, i.e. the 

number of injected faults belonging in the control 

flow errors category and detected by the control 

flow checking mechanism. 

Table 1 shows that in general the proposed approach is 

able to sensibly reduce the incidence of control flow errors 

in the target application. The effectiveness of the approach 

is mainly influenced by the characteristics of the source 

code. Programs that made large use of branches and loops 

statements have major benefit from the control-flow 

checking whereas more sequential programs like the 

Floating Point benchmark are less influenced by the 

proposed strategy.  

Moreover it is possible to note that the number of total 

detected errors is greater then the reduction of control-

flow errors. This means that the proposed approach is also 

able to reduce the cases of crashes of the application 

program increasing the total dependability of the target 

application. 

Concerning the memory overhead and time overhead 

Table 1 shows they are into an acceptable level 

considering that all the experiments have been performed 

in the worst case from the point of view of time overhead 

since the checker has been scheduled at each block symbol 

generation. 

6. Conclusions 

A very large number of computer based systems play a 

key role in critical tasks with respect to human safety and 

data security requiring high availability and dependability. 

The challenge is to build fault tolerant systems that 

harness the market forces by using off-the-shelf hardware 

and software components. Control-flow checking has 

become a widely studied approach to concurrent error 

checking.  

In the present paper we presented a new high-level 

methodology to control-flow checking based on regular 

expressions and multiprocess/multithread Operating 

Systems. The main features of our approach are the 

possibility of working at different programming levels 

(high level language, assembly language, machine 

language), the low memory overhead and the high 

flexibility in terms of trade-off between time overhead and 

fault latency, and memory overhead and detection 

capability.  

The proposed approach has been evaluated 

implementing a source-to-source compiler able to 

automatically insert the control structures. Experimental 

results demonstrate the effectiveness of the approach and 

the low overhead introduced in terms of both memory 

occupancy and execution time. 

 



7. References 

[1] S. S. Yau, F. Ch. Chen, “An Approach to Concurrent 

Control Flow Checking”, IEEE Transaction on Software 

Engineering, Vol. SE-6, No. 2, pp. 126-137, 1980. 

[2] R. Leveugle, T. Michel, G.Saucier, “Design of 

Microprocessors with Built-In On-Line test”, 20th 

International Symposium on Fault-Tolerant Computing 

(FTCS-20), pp. 450-456, 1990. 

[3] A. Mahamood, E. J. McCluskey, “Concurrent Error 

Detection Using Watchdog Processor - A Survay”, IEEE 

Transaction on Computer, Vol. 37, No. 2, pp. 160-174, 

1988. 

[4] M. Namjoo, “Techniques for Concurrent Testing of VLSI 

Processor Operation”, International Test Conference 

(ITC-82), pp. 461-468, 1982. 

[5] M.A. Schutte, J.P. Shen, D. P. Siewiorek, Y. X. Zhu, 

“Expermental Evaluation of Two Concurrent Error 

Detection Schemes”, 16th International Symposium on 

Fault Toleran Computing (FTCS-16), pp. 138-143, 1986 

[6] K. Wilken, J.P. Shen, “Continuous Signature 

Monitoring: Low-Cost Concurrent Detection of 

Processor Errors”, IEEE Transaction on Computer 

Aided Design and Systems, Vol. 9, Issue 6, pp. 629-641, 

June 1990. 

[7] H. Madeira, J. G. Silva, “On-line Signature Learning and 

Checking”, 2nd IFIP Working Conference On Dependable 

Computing for Critical Applications (DCCA-2), pp. 170-

177, Feb. 1991 

[8] T. Michel, R. Leveugle, G. Saucier, “A New Approach to 

Control Flow Checking without Program Modification”, 

21th International Symposium on Fault-Tolerant 

Computing (FTCS-21), pp. 334-341, 1991. 

[9] Shambhu Upaddhyaya, Bina Ramamurthy, “Concurrent 

Process Monitoring with No Reference Signatures”, 

IEEE Transaction on Computer, Vol. 43 no. 4, pp. 475-

480, April 1994. 

[10] G. Miremadi, J. Ohlsson, M. Rimen, J. Karlsson, “Use of 

Time and Address Signatures for Control Flow 

Checking”, 5th IFIP Working Conference on Dependable 

Computing for Critical Applcation (DCCA-5), pp. 113-

124, 1995 

[11] X. Delord, G.Saucier, “Control Flow in Pipelined RISC 

Microprocessor: The Motorola MC88100 Case Study”, 

Workshop on Real Time (Euromicro '90), pp. 162-169, 

1990. 

 [12] G. Miremadi, J. Karlsson, U. Gunneflo, J. Torin, “Two 

software techniques for on-line error detection”, 22th 

International Symposium on Fault-Tolerant Computing 

(FTCS-22), pp. 328-335, July, 1992. 

[13] Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy, J.A. 

Abraham, “Design and Evaluation of System-Level 

Checks for on-line Control Flow Error Detection”, IEEE 

Transaction on Parallel and Distributed Systems, Vol. 10, 

No. 6, pp. 627-641, June 1999. 

[14] Abraham Silberschatz, Peter Galvin, “Operating System 

Concepts, 5th Edition”, John Wiley & Sons, January 

1998. 

 [15] A.V. Aho, R. Sethi, J. D. Ullman, “Compilers: 

Principles, Techniques and Tools”, Addison-Wesley, 

1986. 

[16] A. Baldini, A. Benso, S. Chiusano, P. Prinetto, “BOND: 

An Interposition Agents based Fault Injector for 

Windows NT”, IEEE International Symposium on Defect 

and Fault Tolerance in VLSI Systems (DFT’2000), pp. 

387-395, October 2000. 

[17] Official Linux Web Site: http://www.linux.org

 

 

Floating Point 

Benchmark 

Matrix 

Multiplication 

Benchmark 

Quick Sort BubbleSort DicotomicSearch 
 

Original Modified Original Modified Original Modified Original Modified Original Modified 

Binary 

Code Size 

(KB) 

48 53 14 17 15 18 36 40 36 39 

Eexecution 

Time (s) 
1,5 1,8 6,1 10,5 0,5 0,6 0,1 0,3 0,4 0,6 

# Crashes 484 472 420 415 440 433 463 458 452 445 

# Control 

Flow 

Errors 

25 19 13 6 19 9 16 3 18 9 

# Other 

Errors 
26 26 30 30 29 29 33 33 29 29 

# Detected 

Flow 

Errors  

 18  12  17  18  16 

Table 1: Experimental results 

 


