1CO D
@9?.-- oa-n..{.?o
AN

« PO

PRTTTIT T,
. .

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Control-flow checking via regular expressions

Original

Control-flow checking via regular expressions / Benso, Alfredo; DI CARLO, Stefano; DI NATALE, Giorgio; Prinetto, Paolo
Ernesto; Tagliaferri, Luca. - STAMPA. - (2001), pp. 299-303. ((Intervento presentato al convegno IEEE 10th Asian Test
Symposium (ATS) tenutosi a Kyoto, JP nel 19-21 Nov. 2001.

Availability:
This version is available at: 11583/1416288 since:

Publisher:
IEEE Computer Society

Published
DOI:10.1109/ATS.2001.990300

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

05 August 2020

Politecnico di Torino

Control-flow checking via regular
EXDressions

Authors: Benso A., Di Carlo S., Di Natale G., Prinetto P., Tagliaferri L.,

Published in the Proceedings of the IEEE 10th AsianTest Symposium (ATS), 19-21 Nov. 2001, Kyoto,
JP.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990300

DOI: 10.1109/ATS.2001.990300

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990300
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=990300
http://dx.doi.org/10.1109/ATS.2001.990300
http://dx.doi.org/10.1109/ATS.2001.990300

Control-Flow Checking Via Regular Expressions

ALFREDO BENSO, STEFANO D1 CARLO, GIORGIO DI NATALE, PAOLO PRINETTO, LUCA TAGLIAFERRI
Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24 - I-10129,
Email: { benso, dicarlo, dinatale, prinetto,
http://www.testgroup. p«

Abstract

no, Italy
L} @polito.it @
“O

comuniercial off-the-shelf
dware domain. These

inee
. co nents in both soft
The present paper explains a new approach to pro ran@nponents are norm not d : ned to work in stressed
control-flow checking. The check has inserted at gource- {vironments and . uatantee high dependability
to

code level using a signature methodology ~ba

without dedicated watchdog processor b
inter-process communication (IPC) (fasili

between fault laten
overhead.

The propo
ECS piay-a ke
safety 3

new and i
availability is a must to guarantee human safety.
As vices geometry decreases, circuits clock

frequencies increases and processors are introduced into
more electrically active environments; the incidence of
transient errors increases, decreasing the dependability of
ECS where these components are used. These transient
errors can only be detected by concurrent error detection
techniques, allowing the maintenance of acceptable levels
of system dependability.

The design of ECS is always constrained by the
reduction of time-to-market. This makes not feasible the
development of custom products with high performances
and dependability levels. This requirement forces the

levels. The cha ild fault tolerant systems that

by using off-the-shelf hardware

techniques.
as become a widely studied

O hec
@ t erfiol checking. The on-line test is

elcClIno _ery

single entry. A reference signature
representing the correct execution flow in the blocks is
calculated off line and stored. At run time the signature is
calculated again and compared with the golden one using
so called dedicated watchdog processors. These hardware
techniques have been evaluated on medium size
applications using different hardware platforms [11].

The main difference in the various approaches is in the
method used to calculate and check the signature. In
particular it is possible to identify two classes of approach:

* Embedded Signature Monitoring (ESM): where the
signature is embedded in the application program
[5116];

* Autonomous Signature Monitoring (ASM): where
the signature is stored in a dedicated watchdog
memory [8].

Despite the effectiveness of the proposed methodologies

they wusually need dedicated hardware and system
modifications, in contrast with the constraints of using

commercial off-the-shelf components. In addition, with
the increasing size of processor cache memory, the
detection capability of these techniques decrease since
they are able to detect faults into main memory, accessible
by the watchdog processor but not faults inside the
processor cache.

In order to solve the problem of hardware control-flow
checking, some software approaches have been proposed.
They rely on the insertion of appropriate instructions into
the code to calculate and check the signature without
needed a dedicated watchdog processor. Representative
software based control-flow monitoring schemes are
Block Signature Self Checking (BSSC) [12] and Control
Checking With Assertion (CCA) [13].

The present paper proposes a new high-level approach to
control flow based on multiprocess/multithread operating
systems [14]. The target is the insertion of control-flow
checking mechanism directly at source code level. Th
approach relies on the multiprocess/mul
programming facilities offered by most of the
Operating Systems to minimize the modific
target application and to allow trade of
overhead and fault latency.

The proposed approach uses a
based on the regular expression f

fault injector [16].
The paper is org

flow theory. Sectid
whereas Section 4

of benchmarks. Finally Se
2. Program Con

control-flow checking
tntroduce some definitions and

(Figure 1)
The nodes of a FCG can be grouped into two main
classes:

* Sequential Nodes: the associated instruction does
not modify the flow of the program, i.e. the program
flow is sequential;

* Control Nodes: the associated instruction is able to
modify the program flow. They are typically
associated with flow control statements (if, while,
etc.).

Void main ()
‘
Instrl;
Instr2;

If (condl){
Instr4;
Instr5;
Instré6;}

Else
While (cond2) {
Instr8;
Instr9;}

InstrlO;
/\//-\\

to split the pr;
block is a s
FCG. A

-free block is normally followed by a
igure 2 shows the FCG of Figure 1

introducing the branch-free blocks. This
ed FCG (MCFQG) is the starting point for the
aroposed control-flow checking mechanism.

Figure 2: Modified Control Flow Graph
3. Flow Signature using Regular Expression

In the proposed approach the problem of control-flow
checking is tackled resorting to a new signature approach
able to identify all the allowed program flows executions.
These program flows executions are identified by all the
possible paths in the related MFCG starting from the

“Begin” node and ending in the “End” node (Figure 2).
The defined signature is stored and checked at run time.

The novelty of our approach is in the use of regular
expressions to calculate the program flow signature,
instead of classical approaches based on LFSR or
arithmetic functions.

Each branch-free block in the MFCG is labeled with a
unique symbol named block symbol (in square brackets in
Figure 2). Using this notation the allowed program flows
executions generate a language composed by all the
strings obtained by the concatenation of the block symbols
composing the correspondent path in the MFCG. This set
of strings can be considered as a language L in the sense
of compiler theory [15]. This language can be represented
in a formal way as:

L=(4,R)
Where:
* A is the input alphabet composed by all the define
block symbols;

application program.

A program flow execution is
corresponding path in the MEC
(Control String) belonging
case a flow error has ox

Considering the~exampid, 0

L=(4,R)

* R is a regular expression able to generate
necessary strings.
The language L can represent a signatus

if the
es a strlng

Where
. A:(a,b,c,d)
* R=a®|(©%d

If an execution produce the string “acccd”
ongs™yo the space of

the control strlng

the high expressivities of this
h igh simplicity in storing and

his’kind of strings. Using this formalism,
the probe of control flow checking is reduced to the
problem ‘of generating the control strings during the
execution of the application program and verifying for
their correctness by checking whether it is accepted by the
language L.

4. Control-Flow Checking

This paragraph explains our methodologies to generate
and check control strings during the program execution.
Both the code for strings generation and strings checking
are obtained by modifying the original C/C++ source code
of the target program application. This is not a limitation

e L in the ot
2 the langu, eXponential growth of s
& is 1mpllcltly solve b
at\ as

since the approach is general enough to work at any level
of language: high-level, assembly-level and machine-
level. The inserted code makes use of the
multiprocess/multithread programming facilities provided
by all the modern Operating Systems [14].

The application program and the checker program are
instantiated as two different processes communicating
using a pipe or any other Inter Process Communication
(IPC) facilities. The checker process stores the language L
associated to the application program and the code needed
to check if ¢ strings belong to the langua
application pr i ,
each brangii-f

tation of the checker process
f checking the appartenence
(Par expression is very simple [15]
pact on the final application.

ocess is inherently equivalent to a finite

efpre, to be implemented it must be converted into a
/miinistic FSM, and this process may cause an
tes. In our approach the problem
method used to label the branch
the generation of regular
gterministic FSMs.

\/program execution and target fault
hi§ can be obtained by appropriately setting the
of the two processes. At limit if only the final
S are relevant and the occurrence of a fault during the
program execution is not a risk for the target application,
the checker process can be called only at the end of the
program execution.

In addition, by splitting the branch-free blocks into sub-
blocks and applying the same signature schema on the
new MFCG obtained, it is possible to check also the flow
of long sequences of sequential instructions, allowing a
trade-off between dependability and time/memory
overhead. The limit, in case of very critical applications, is
to consider each instruction as a single branch-free block.

Figure 3 show the example of Figure 2 where the IPC is
implemented as a pipe using the Linux System calls [17].

Void Main () Application
{ Program

int p[2];
pipe (p);
m Instrl;
Instr2;
write (p[1l],’A’);
0 If (cond)
m 0 Instr3;
write (p[l],’B’)
Else
While (cond) {
m Instr 5;
Block4 write (p[1],’C’);}
Instr6;
write (p,’D’);

A

Checker

R=A(B|C*)D I

Pipe

Figure 3: Multi Process Checking Architecture

5. Experimental Results

e original sourge
to genera e

code inserting the in
block symbols,

ained during the injection
have been injected into the code

the origingPand modified source code:

* the binary code size;

¢ the execution time including, in the modified source
code version, the communication time for the IPC
mechanism and the time needed to check the
correctness of the regular expression.;

* the number of crashes i.e. the number of faults
injected that has generated a crash of the application
program;

* the number of control-flow errors i.e. the number of
injected faults that has caused a control flow
different from the golden one ;

¢ the number of error not belonging in the set of
control-flow errors;

* the number of detected control-flow errors, i.e. the
number of injected faults belonging in the control
flow errors category and detected by the control
flow checking mechanism.

Table 1 shows that in general the proposed approach is
able to sensibly reduce the incidence of control flow errors
in the target application. The effectiveness of the approach
is mainly influenced by the characteristics of the source
code. Program made large use of branches
statements ha ajor benefit from the ¢ flow

|g=; ber of total

duction of control-

rrors/is greater t th
errors. This mean s$¢d approach is also
e to reduce the céses of es of the application
Togram increasi 1 deépendability of the target
application.

y overhead and time overhead
ticy are into an acceptable level
11 the experiments have been performed

er ofl computer based systems play a
sks with respect to human safety and

arnesg Ure rnarket forces by using off-the-shelf hardware

ftware components. Control-flow checking has
become a widely studied approach to concurrent error
checking.

In the present paper we presented a new high-level
methodology to control-flow checking based on regular
expressions and multiprocess/multithread Operating
Systems. The main features of our approach are the
possibility of working at different programming levels
(high level language, assembly language, machine
language), the low memory overhead and the high
flexibility in terms of trade-off between time overhead and
fault latency, and memory overhead and detection
capability.

The proposed approach has been evaluated
implementing a source-to-source compiler able to
automatically insert the control structures. Experimental
results demonstrate the effectiveness of the approach and
the low overhead introduced in terms of both memory
occupancy and execution time.

7. References

(1]

(2]

(3]

(4]

(3]

(6]

S. S. Yau, F. Ch. Chen, “4n Approach to Concurrent
Control Flow Checking”, IEEE Transaction on Software
Engineering, Vol. SE-6, No. 2, pp. 126-137, 1980.

R. Leveugle, T. Michel, G.Saucier, “Design of
Microprocessors with Built-In On-Line test”, 20"
International Symposium on Fault-Tolerant Computing
(FTCS-20), pp. 450-456, 1990.

A. Mahamood, E. J. McCluskey, “Concurrent Error
Detection Using Watchdog Processor - A Survay”, IEEE
Transaction on Computer, Vol. 37, No. 2, pp. 160-174,
1988.

M. Namjoo, “Techniques for Concurrent Testing of VLSI
Processor Operation”, International Test Conference
(ITC-82), pp. 461-468, 1982.

M.A. Schutte, J.P. Shen, D. P. Siewiorek, Y. X. Zhu,
“Expermental Evaluation of Two Concurrent Error
Detection Schemes”, 16™ International Symposium o
Fault Toleran Computing (FTCS-16), pp. 138-143, 1986
K. Wilken, J.P. Shen, “Continuous j
Monitoring: Low-Cost Concurrent
Processor Errors”, 1EEE Transaction ofy
Aided Design and Systems, Vol. 9, Issu¢*9

[9] Shambhu Upaddhyaya, Bina Ramamurthy, “Concurrent
Process Monitoring with No Reference Signatures”,
IEEE Transaction on Computer, Vol. 43 no. 4, pp. 475-
480, April 1994.

G. Miremadi, J. Ohlsson, M. Rimen, J. Karlsson, “Use of
Time and Address Signatures for Control Flow
Checking”, 5™ IFIP Working Conference on Dependable
Computing for Critical Applcation (DCCA-5), pp. 113-
124, 1995

X. Delord, G.Saucier, “Control Flow in Pipelined RISC
Microprocessor: The Motorola MC88100 Case Study”,
Worksho Real Time (Euromicro '90), pp. 162-169,

[10]

(11]

s for on-line errpr—de

| Symposium o] @

n of System-Level
Ervor Detection”, IEEE

Abwahany” “Design ani

Checks for on-line ¢
Transaction on P

e 19997
atz, Reter Galvin, “Operating System
iZipn”’, John Wiley & Sons, January

[14]

June 1990. . P .)
[7] H. Madeira, J. G. Silva, “On-lin re ing and [15] TR.h sethl’ J'd DTL Iljllmzi:(,id Cor&[,)llfrs'
Checking”, 2™ IFIP Working Conferende Qn Dependable echmques and. L00:S 1son-wesiey,
1C7o;n I;;gn‘%f;){ Critical A QLiorg XDCCA-2), pp- 170 A. Baldini, A. Benso, S. Chiusano, P. Prinetto, “BOND:
8] T l\;hchél R Lev “4 New App » An Interposition Agents based Fault Injector for
C.on trol Fi Pr’o am Modit Windows NT”, IERE)\ International Symposium on Defect
51th Intt N . gon l-Tole ? and Fault Tole ¢ in VLSI Systems (DFT’2000), pp.
Computing (F -341, LR : http://www.linux.org
. . datrix gL)
Fg):l:lcng P n&< Mmlication J gq\) “BubbleSort DicotomicSearch
chmark A
=~
o/rgﬁ}al kagdiﬁ% br/iginal Modified Origin\ai~ todified | Original | Modified | Original | Modified
Binary
Code Size 8 9 53 14 17 15 18 36 40 36 39
(KB) \ v
]T':f;‘zcg)“\‘é/\% 1.8 6,1 10,5 0,5 0,6 0,1 0,3 04 0,6
Crashel) | 484 472 420 415 440 433 463 458 452 445
Control
Flow 25 19 13 6 19 9 16 3 18 9
Errors
igg‘:‘;r 26 26 30 30 29 29 33 33 29 29
Detected
Flow 18 12 17 18 16
Errors

Table 1: Experimental results

