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Rigorous results on superconducting ground states for attractive extended Hubbard models
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and Dipartimento di Fisica and Unitá Instituto Nazionale Fisica della Materia, Politecnico di Torino, I-10129 Torino, Italy

David K. Campbell
Department of Physics, University of Illinois at Urbana-Champaign, Illinois 61801

~Received 31 January 1995!

We show that the exact ground state for a class of extended Hubbard models including bond-charge,
exchange, and pair-hopping terms, is the Yang ‘‘h-paired’’ state for any nonvanishing positive value of the
pair-hopping amplitude, at least when the on-site Coulomb interaction is attractive enough and the remaining
physical parameters satisfy a single constraint. The ground state is thus rigorously superconducting. Our result
holds on a bipartite lattice in any dimension, at any band filling, and for arbitrary electron hopping.

Interest in itinerant, strongly interacting electron systems
has exploded since the discovery of high-Tc superconduct-
ors, for which the interplay between itinerant magnetism and
insulating behavior is believed to play a crucial role. The
Hubbard model1 provides the simplest description of such
systems, by assuming that the itinerant electrons interact
only via an on-site term, and it has therefore been intensively
studied. The original Bethe ansatz solution of the one-
dimensional ~1D! model at half-filling2 has in recent years
been supplemented by a number of additional rigorous re-
sults ~see Ref. 3 for a current review!. For instance, for the
attractive ~i.e., ‘‘negative U’’! Hubbard model, long studied
as a model believed to have a superconducting ground state,4
recent articles have established the existence of ‘‘off-
diagonal long-range order’’ @ODLRO ~Ref. 5!#, but these re-
sults have been restricted either to U!2` ~Ref. 6! or to
bipartite lattices in which the number of sites on one sublat-
tice is not equal to that on the other.7,8,3 Indeed, although it is
known9 that the Hubbard Hamiltonian has certain eigenstates
~the ‘‘h-paired’’ states! that have nonzero pairing and
ODLRO and hence are superconducting, Yang has shown
that these states can never be the ground state for the pure
Hubbard model on a standard bipartite lattice.9
Apart from the Hubbard model itself, ‘‘extended’’ Hub-

bard models have also attracted considerable recent interest,
in part because it has been recognized10,11 that the additional
interaction terms ~discussed but eventually neglected in the
original papers1! could be relevant in stabilizing some novel
~e.g., ferromagnetic or superconducting! phases. For in-
stance, Strack and Vollhardt12 proved rigorously that the
ground state for a class of extended Hubbard models is a
saturated ferromagnet at half-filling for any nonvanishing
positive value of the exchange term, provided that the Cou-
lomb repulsion is strong enough.
In this paper we show that in appropriate regions of the

parameter space of a class of extended Hubbard models, the
superconducting phase is the stable ground state for any non-
vanishing positive value of the pair-hopping term.10,13 More
precisely, by simultaneous use of Yang’s states and of a suit-
able generalization of Strack and Vollhardt’s techniques, we
prove rigorously that the ground state of the extended Hub-

bard model at any band filling and for average magnetization
m50 is superconducting, provided that the on-site Coulomb
interaction is attractive enough and that the remaining physi-
cal parameters satisfy a single reasonable constraint.
Moreover—after showing that at X50 our model exhibits
the full SO~4! dynamical algebra characteristic of the con-
ventional Hubbard model—by means of a particle-hole
transformation we map the result at X50 into a sufficient
criterion for stability of ferromagnetism in the repulsive case
at half-filling and for arbitrary m , which criterion is more
general than the one given in Ref. 12. Importantly, in con-
trast to other recent work,14–16 the supersymmetric condition
t5X @see ~1! below# is in general neither required nor ful-
filled by our superconducting ground state.
Our extended Hubbard Hamiltonian reads1
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where c j,s
† ,c j,s are fermionic creation and annihilation op-

erators ($c j,s8,ck,s%50, $c j,s ,ck,s8
† %5d j,kds ,s8II, n j,s

8c j,s
† c j,s , n j5(sn j,s) on a d-dimensional lattice L (j,k

PL , sP$* ,+%), and ^j,k& stands for nearest neighbors
~NN! in L . In ~1! the first term represents the band energy of
the electrons, and the remaining terms describe their Cou-
lomb interaction energy in a narrow band approximation:1 U
parametrizes the on-site diagonal interaction, V the neighbor-
ing site charge interaction, X the bond-charge interaction, W
the exchange term, and Y the pair-hopping term. An explicit
evaluation of the relative size of these contributions—all
generated from on-site and NN matrix elements of the Cou-
lomb interaction—was already given in Ref. 1. It is worth

PHYSICAL REVIEW B 1 MARCH 1996-IVOLUME 53, NUMBER 9

530163-1829/96/53~9!/5153~4!/$10.00 5153 © 1996 The American Physical Society



emphasizing that most of the following analysis can be ex-
tended in a straightforward way to the case in which the
interactions in ~1! are not confined to neighboring sites.
However, to avoid cumbersome notation, we have chosen to
limit ourselves to the present case.
The exchange and pair-hopping terms in ~1! can be writ-

ten more conveniently in terms of the conventional spin and
pseudospin operators S j

(a) and S̃ j
(a) , a5x ,y ,z ,
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which are known to generate two orthogonal su~2! algebras.
For a bipartite lattice with an even number of sites, the sec-
ond line of ~1! reads then

2V8(
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S̃ j
~z !S̃k

~z !2W(
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Sj•Sk2Y(
^j,k&

S̃j•S̃k1C , ~3!

where V85V2(1/2)(W2Y ) and C5(1/2)(V2W/
2)qN(2n21), with q the number of nearest neighbors in
L , N the number of sites, and n the average electron number
per site.
H can be easily seen to commute with su~2! f , generated

by Sa5( jS j
a , a5x ,y ,z . This observation is in fact relevant

in recognizing the (N11)-fold degenerate saturated ferro-
magnetic state ucm&,

ucm&8~S1!~n1m !N/2u##•••#&, umu<min$1,n%, ~4!

as eigenstate of H at n51 ~half-filling! and average magne-
tization per site m . Analogously, one can construct
su~2! sc , generated by S̃a5( jS̃ j

a . The latter does not com-
mute with H . Nevertheless, it is easily checked that the
states, known as h pairs,9 defined by

uhn&8~ S̃1!
nN
2 u0&, 0<n<2, ~5!

with u0& being the electron vacuum, are eigenstates of H at
band filling n with m50, provided that V850. Interestingly
enough, these states are precisely those which Yang has
proved to exhibit ODLRO, which property has been shown
to imply both the Meissner effect and flux quantization,17
i.e., superconductivity. Notice that the h pairs ~5! differ from
the pairs defined in Ref. 16 by a factor of (2) uju; this will be
essential in the following.
Assuming henceforth V850, we want to investigate under

which circumstances uhn& is indeed the ground state. We
proceed by rewriting, by means of suitable operator identi-
ties, the hopping and bond-charge repulsion terms as sums of
positive definite operators having zero eigenvalue on ~5! plus
contributions which simply renormalize the other terms in
the Hamiltonian, which now reads
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where U852$U1q@ ut2Xu(ugua21u12gub2)14uXu#%,
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C85C2(1/2)(Un1Yq/2)N . Here afi0, bfi0, and g are
free parameters, and
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with e5sgn@(t2X)g# , h5sgn@(t2X)(12g)# , and
u5sgn@X# .
For U8<0 and Y 8>0 the lower bound of the on-site and

pair-hopping terms in ~6! is zero, which coincides with their
eigenvalue on the states uhn&. Moreover,

O jkuhn&5P jk,suhn&5Q jk,s
† uhn&5R jk,suhn&50, ~8!

and, H being a positive definite form in these operators,
uhn& is the ground state also for the second line of ~6!. The
freedom in the choice of a , b , and g permits two of them to
be fixed so that W8505J . In this case, one finds that the
state uhn& is the ground state with energy E g.s.5(1/2)
3(U2qY )nN whenever U8<0, and Y 8>0. In fact, we can
obtain an even larger region of values of U for which uhn& is
the ground state if, instead of fixing a , b , and g as above,
we first express both the Ising-like term and the ferromag-
netic exchange term in ~6! through the following operator
identities,
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B jk5
1
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@c j,"
† c j,#2sgn~W8!ck,"
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and J85J2W8. The identities ~9! when inserted in ~6! fur-
ther renormalize the coefficient of the Coulomb interaction
term ~i.e., ( j@S j

(z)#2), so that the inequalities which have to
be satisfied in order that uhn& be the ground state now read

U81q~2uW8u1uJ8u!<0, Y 8>0, ~11!

and are still functions of a , b , and g . Eliminating a using
the second equation of Eqs. ~11!, one is left with a single
inequality for u8U/qt ,

u<2H 4x1u12xuF 2g2

B 1
~12g!2
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where x , y , and w are X , Y , and W expressed in units of t ,
and B5y /u12xu2u12gu/b2, 0,B,y . Equation ~12! can
be optimized by fixing the remaining parameters b ~through
B! and g variationally. The result gives a sufficient condition
for the superconducting state uhn& to be stable ground state.
This ground state is unique for Y 8.0, for in that case it is
the unique ground state of the pair-hopping term in ~6!. The
constraint V850 @i.e., V5(1/2)(W2Y )] must be satisfied.
The above rigorous result holds for any bipartite lattice, in
any dimension, and importantly for arbitrary values of x . In
particular, for v5x5y5w50 one finds directly from ~12!
that the pure Hubbard model has a superconducting ground
state with ODLRO at least for u52` , in agreement with
Ref. 6.
The final explicit form of the general result ~12! is too

long to be written in the present paper, and will be reported
elsewhere.18 Here we simply plot in Fig. 1 the actual bound-
ary of our rigorous superconducting region in the u-vs-y
plane at different x values. The inequality ~12! and Fig. 1
show that at any yfi0 there is a region of u values for which
the system is superconducting, and its size increases
with increasing y , at least for y<u12xu. It is quite natural
that a nonvanishing value of y can stabilize the super-
conducting phase, in that it removes the degeneracy of the
expectation value of the Hamiltonian on states uFn(f)&
5@( jeif•j(c j,"

† c j,#
† )#n(N/2), which, for arbitrary ffip and x

fi1, are not eigenstates of H . As pointed out by Yang in Ref.
9, this observation implies that uhn&[uFn(p)& cannot pos-
sibly be the ground state at y50. On the contrary, for x51
and y50, uFn(f)& is an eigenstate of H for all f and can in
principle be the ~degenerate! ground state. Indeed, from ~12!
we see that this is the case at least for u<24. For yfi0, x
fi1, ^Fn(f)uHuFn(f)& becomes a function of f , in fact
minimized by f5p , and uFn(p)& turns out to be the ground
state at least in the region of U values satisfying ~12!. Fi-
nally, for x51 and yfi0, there are two choices of f
which correspond to eigenstates of H , f5p @for

V5(1/2)(W2Y )# and f50 @for V5(1/2)(W1Y ),0#.
The first corresponds to the ground state at least for
u<2(41y1w) @see ~12!#, whereas the region of stability
of the solution corresponding to the second was already dis-
cussed in Ref. 16.
The relation ~12! has a solution only for negative values

of u . On the other hand, the physics of high-Tc materials
suggests that the actual value of the on-site electron interac-
tion is strongly repulsive. Even if the electron-phonon cou-
pling reduces the effective value of the Hubbard
interaction,19 its sign is still expected to be positive. How-
ever, one should keep in mind two points. First, ~12! is a
sufficient condition, and thus does not eliminate the possibil-
ity of having uhn& as ground state even when it is not ful-
filled. Again, the easier case x51 helps clarify this point.
There, an exact solution in 1D ~Ref. 20! shows that ODLRO
and superconductivity still survive as part of the degenerate
ground state up to moderately positive values of u , which
values are now band-filling dependent. We thus expect this
behavior to persist even when the condition x51 is relaxed.
In particular, it would be extremely interesting to work out
an exact Bethe ansatz solution of ~1! in d51, at least at x50
~for u5w50 the latter would be the superconducting
‘‘t2Y ’’ model, which is the particle-hole transformation of
the ferromagnetic t-J model21!. Second, and very impor-
tantly, knowing rigorously both the superconducting nature
of the ground state and its explicit form in any dimension
provides powerful benchmarks for the approximate methods
required to examine more realistic models.
Apart from the superconducting solution, our expression

~6! for H allows us also to recognize a region of the param-
eter space characterized by ferromagnetic order. Indeed, it is
easily seen that the state ucm& of ~4! can be obtained from the
state uhn& of ~5! by the following unitary particle-hole trans-
formation:

c j,"!c j," , c j,#
† !~2 ! ujuc j,# . ~13!

The same transformation maps S j
(a) into S̃ j

(a) , and the con-
sequences for H as given by ~6! can be worked out directly.
Let us call the transformed Hamiltonian H̃ . For X50, H̃ is
still an extended Hubbard model, in which the on-site Cou-
lomb repulsion term has opposite sign, W and Y have ex-
changed their roles ~the first becoming the pair-hopping am-
plitude, and the second the exchange coupling!, and the
operators of ~7!–~10! have been redefined accordingly.
Moreover, an arbitrary neighboring-site Coulomb repulsion
term can be added to H̃ , as now it simply renormalizes the
coefficient J of the Ising-like term in ~6!. The discussion
following ~6! can be used to examine the conditions under
which the saturated ferromagnetic state ucm& is the ground
state of H̃ . A straightforward calculation shows that the re-
sult is identical ~in form! to the one given in ~12!, apart from
the sign of u , the inequality hence becoming a lower bound
for positive u . Further, now it is the exchange coupling
which cannot be zero in order to have a stable ferromagnetic
phase. This result is in full agreement with Ref. 12. In fact,
our lower bound can easily be seen to coincide with expres-
sion ~6! of Ref. 12 for g50, whereas it is lower than that if
g is fixed variationally. Again, a more complete discussion of
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this case will be given elsewhere.18 Notice that in Ref. 12 the
‘freedom in the polarization of the saturated ferromagnet was
not explicitly incorporated, which hid the power of the
particle-hole transformation.
In summary, we have shown rigorously that a large class

of extended Hubbard models on bipartite lattices has a su-
perconducting ground state for negative U and nonvanishing
pair-hopping amplitude. The conditions derived here are suf-
ficient, depend in a trivial way on the dimension, and do not
depend at all on the band filling. Of course, this does not
exclude that a superconducting ground state can exist even

for moderate positive values of U . If this is the case, we
expect that the dimension and the band filling should become
crucial, as happens for instance in the t5X case. Work is in
progress along these lines.
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