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Abstract Experimental tests on crack propagation in concrete under constant post-peak loading
are simulated using the finite element method and the cohesive crack model, in both Mode I and
Mixed-mode conditions. The time-dependent behaviour of concrete in the process zone is due to
the interaction and growth of microcracks, a phenomenon which, for high constant load levels,
turns out to be predominant over linear viscoelastic creep in the bulk material. In mechanical
systems based on this type of material behaviour (creep and strain-softening taking place simul-
taneously), the initial value problem is non-parabolic, i.e., the error at one time level is affected
by the accumulation of errors introduced at earlier time levels. Despite these difficulties, the
scatter in numerical failure lifetime vs. load level turns out to be negligible in Mode I conditions
and practically acceptable in Mixed-mode conditions. Therefore the time-dependent behaviour of
the process zone can be inferred solely from the results of direct tensile tests.

http://dx.doi.org/10.1016/j.engfracmech.2005.03.010
http://porto.polito.it
http://www.sherpa.ac.uk/romeo/issn/0013-7944/


1 INTRODUCTION

The numerical analysis of crack propagation in concrete under constant post-peak loading re-
quires the solution of two phases: monotone static loading (Crack Mouth Opening Displacement
(CMOD) rate always positive) and cyclic loading (CMOD rate negative during the unloading
stage, otherwise positive). Before the beginning of the unloading stage, in fact, the system
behaves in monotone static conditions and, for high reloading levels, it behaves as if it were
subjected to a single unloading and reloading cycle. In this study the first phase is addressed
through the cohesive crack model [1, 2, 3]. According to this model, the process zone can be
represented as an extended portion of the real crack (or traction-free crack), called fictitious
crack, where the material, albeit damaged, can still transfer stresses which are a decreasing
function of the crack opening displacement (see Fig. 1).
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Figure 1: Process zone (a) and constitutive laws for: (b) the undamaged material and (c) the
process zone.

This is a well established approach to the fracture mechanics of quasi-brittle materials be-
cause it can explain the size-effects observed experimentally in structural response in terms
of:

• maximum load,

• softening branch slope (global brittleness),

• process zone length,

• formation of a second crack,

in both Mode I problems [4] and Mixed-mode problems [5, 6, 7, 8].
The second phase is addressed through the Focal Point Model suggested by Yankelevsky and

Reinhardt [9]. Account taken of the two above mentioned phases, the time dependent behaviour
of the process zone has been analysed [10]. It can be ascribed to the interaction and growth of
the microcracks, a phenomenon which, for high constant load levels, turns out to be predominant
over linear viscoelastic creep in the bulk material [11].

2 LOADING PROCEDURE

The experimental tests described in this paper can be grouped as follows:



• type A: stable tensile tests performed on cylindrical specimens, 10cm in diameter and
20cm high, with a 1cm deep notch (Fig. 2),

• type B: three-point bending tests performed according to the RILEM recommendations
on prism shaped specimens, sized 10 × 10 × 84cm (testing span 80cm), with a 5cm deep
notch (static case) or a 2cm deep notch (creep case), see Fig. 3.

• type C: tests on planar pre-notched (notch depth 30cm) gravity dam models (Fig. 4).
The geometric scale ratio between model and prototype was assumed to be Sℓ = 1 : 40
(2.40m (dam model height)/96m (real dam height)). The scale adopted for density was
S̺ = 1, while the scale for stresses was Sσ = 1 (same value for both the model and
the prototype). Having established the scales of two independent quantities (length and
stress), the scales of the other quantities playing a role in static problems are determined
according to Buckingham’s theorem. By applying this theorem, we get the scale of volume
forces as Sg = Sσ/(S̺Sℓ) = 40. For this reason, it was necessary to simulate a dead-
weight increment (40 times) by means of a system of discrete vertical forces [12]. The
total volume of the model was subdivided into elementary portions and the equivalent
forces to be applied were estimated. In order to check each vertical force applied, a
spring-dynamometer is used. As shown in Fig. 4, each dynamometer is connected to a
steel framework placed under the foundation of the dam. In order to disturb the static
behaviour of the model as little as possible, in the fracture zone the vertical forces are
applied through glued metallic plates.The hydraulic thrust was generated by means of a
servocontrolled actuator (2000kN capacity) applied to the upstream side. This force was
distributed in four concentrated loads whose intensity is indicated in Fig. 15. The test was
carried out by controlling CMO at a rate of 1.2 µm/s.

Type A and B tests were performed at the ENEL-CRIS. laboratories of Milan [13, 14], type
C tests at the ISMES laboratories of Bergamo [15, 16, 17].

Figure 2: Tensile test setup.

The same loading procedure, consisting of the following five stages, was used in all three
cases (Fig. 5):



Figure 3: Three-point bending test setup.

• CMOD-controlled loading from zero to the maximum value (Pmax),

• CMOD-controlled softening to point D,

• load-controlled unloading to point E (PE ≈ Pmax/10),

• load-controlled reloading up to point G,

• constant load (P = PG) until specimen failure. Since this stage is started after reaching
the peak load (Pmax), this is known as the post-peak test.

From a qualitative viewpoint, the load vs. CMOD diagram obtained from type B tests is
similar to the one depicted in Fig. 5 (type A test). In either case, in fact, the dead-weight of the
structure does not tend to close the crack and hence, when the outer load becomes negligible
(P ≈ PE), the crack stays open. On the contrary, during type C tests, dead-weight (increased
40 times for the sake of similitude) tends to close the crack (Figs. 16, 17 and 18).

3 CONCRETE CHARACTERISATION

3.1 Static properties

From now on we shall refer to four types of concrete. The specimens and the models were
stored at 20◦C and 95% relative humidity, and were tested at 20◦C and 50% relative humidity.
Mean compressive strength was measured on six 15× 15× 15cm cubes and Young’s modulus on
two 15 × 15 × 60cm prisms; fracture energy was determined through type B tests, and tensile
strength through type A tests. By way of an exception, for the first concrete type listed in
Table 1 (maximum aggregate size φ = 10mm), the elastic modulus was determined by having
the numerical solution best fit the test results relating to the initial portion of the P vs. CMOD
curve. Mean static concrete properties are summarised in Table 1.

The numerical simulations were performed on the basis of the properties listed in Table 1,
assuming a Poisson’s ratio of 0.1.



Table 1: Mean static concrete properties.

Test Mean compr. Concr. age Mean Young’s Mean fracture energy Mean tens. strength
series φ strength at test (T ) modulus (E)

(at T months) (at T months) (at T months)
(mm) (MPa) (Months) (MPa) (N/m) (MPa)

10 42 6 38.0 132.00 2.500
3.15 32 8 22.1 96.55 1.950
12 28 8 28.0 141.15 2.375
25 35 8 35.2 121.49 2.885

3.2 Unloading and reloading stages

In order to determine the state of stress in the fictitious process zone (FPZ), it proves necessary
to resort to a constitutive law for the unloading and reloading stages. As suggested in [18], the
numerical simulations were performed by using the Focal Point Model [9], which is described in
schematic form in Fig. 6.

It is characterised by a marked curvature in the initial portion of the unloading branch and
by the fact that it joins the static curve at a point characterised by a stress lower than the
starting stress (σM < σA).

The entire potential unloading, or reloading, polygonal turns out to be defined as soon as
its initial point is defined. This does not necessarily occur simultaneously for all the cohesive
elements.

3.3 Creep stage

The creep law adopted is the one proposed in [13], which is based on the following observations
concerning type A tests:

• for the four concrete types analysed, the relationship between the load level, PG/PD, and
failure lifetime, tcr, can be best fitted by a power law, as shown in Fig. 7.

• Fig. 8 shows the normalised creep COD (defined as wc

wc

ult

= w−wG

wH−wG
, see Fig. 5) vs. nor-

malised time (t/tcr) curves. For each type of concrete, the difference between such curves
at different load levels (PG/PD) turned out to be not greater than the difference between
different tests at the same level. As a result, this relationship was taken to be unique.

The best-fitting curves shown in Fig. 8 were obtained by assuming the creep related COD
rate to depend on three terms (Eqs. 2), relating to primary, secondary and tertiary creep.
During the constant load (PG) stage of stable tensile tests (referred to as type A tests), it is
assumed that the tensile stress (σG) is the same at all points of the process zone and does not
vary over time. In this manner it becomes possible to characterise the time-related behaviour
of the process zone formed in a given type of concrete.

Equation 1 is proposed to best fit the mean creep curves:
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Coefficients c1, c2, c3 are determined by a numerical integration of Eq. 1 in order to best fit
the mean creep curves (see Fig. 8). According to a phenomenological approach, Eq. 1 is assumed
as a constitutive law for the process zone.



By taking into account the results shown in Fig. 7 and 8 it is possible to rewrite Eq. 1 for
the four materials analised.
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By introducing such properties into the cohesive model, three-point bending tests and tests
on gravity dam models were simulated.

3.4 Constant load stage

During stage 5, the external load is kept constant and because of the relaxation of the process
zone the stress path extends from point G to the static envelope (Fig. 9, left). In the numerical
simulations, the latter was simulated by means of Petersson’s bilinear curve [19].

According to the integration procedure proposed by Zhou [10], any time increment can be
divided into two steps (Fig. 9, right):

• during time dt, w is kept constant, and a relaxation stress dσR = −F ẇc dt develops in
the process zone (the COD rate is given by Eqs. 2),

• the reduction in the closing cohesive stresses acting on the edges of the fictitious crack
causes an increase in crack opening, dw, and an increase in stress, dσI , in each cohesive
element.

In stage 5, unlike stages 3 and 4, the stress path does not depend solely on the definition of
its initial point G, but also on the evolution of displacements over time. In Fig. 9 the sequence
of steps is magnified for the sake of clarity; in actual fact, the steps are limited so that it is
|dσR| < σ/100 and dw < wc

ult/100. Upon reaching the static envelope, the stress path is forced
to follow it (dw/dt > 0).

4 COHESIVE CRACK MODEL

According to the finite element method, keeping in mind that the constitutive law for the FPZ
is piecewise linear, by taking the unknowns to be the n nodal displacement increments, du, and
assuming that compatibility and equilibrium conditions are satisfied at all points in the solid,
we get the following system of n equations with n+1 unknowns (du, dλ or dt). The creep effect
is incorporated by simply adding the pseudo–load caused by relaxation to the load vector in the
equilibrium equations [14, 16]:

(KT +CT ) du = dλP + dtQ, (3)

where:

• KT : positive definite tangential stiffness matrix, containing contributions from linear
elastic elements and possible contributions from cohesive elements with values (σc, wn)
inside the static envelope [phases (3), (4) and (5)];



• CT : negative definite tangential stiffness matrix, containing contributions from cohesive
elements with values (σc, wn) on the static envelope [phases (1), (2) and some elements
during phase (5)];

• P is the vector of hydrostatic load normalised in order to obtain
∑

Pi = 1 (see Fig. 15,
right);

• dλ maximum load multiplier which is compatible with all active limits.

• Q: vector of the unbalanced load (or pseudo–load) due to relaxation in the process zone,
related to a unitary time increment;

• dt: maximum time increment which is compatible with all active limits (see also dλ).

The displacements, u, are related to the process zone and to the loading points. For purposes
of numerical efficiency, the remaining displacements are statically condensed. The nodes on the
crack are split and connected by a two-node element orthogonal to the crack. These elements,
which are mutually independent, follow the constitutive law for the process zone. During stages
1, 2, 3 and 4, the behaviour of the material is assumed to be time independent (Q = 0) and
hence the external load changes (dλ 6= 0 and dt = 0). On the contrary, during stage 5, the
behaviour of the process zone is assumed to be time dependent (Q 6= 0) and the external load
is kept constant (dλ = 0 and dt 6= 0). During the initial steps of stages 1 and 2, du and dλ are
limited by a single condition: σFCT ≤ σu. As a result, the Fictitious Crack Tip (FCT) is seen
to spread with each step. In the later stages, the stresses in the elements farthest away from the
FCT approach point S of Fig. 6, thereby activating another limiting condition on du and dλ:
the stress path, in fact, is now prevented from going beyond point S within a single step. The
passing of point S cannot take place, in fact, unless matrix CT is reassembled, which means it
must take place in two steps.

During the unloading and reloading stages (stages 3 and 4), the main limiting condition is
given by the angular points of the respective polygonals which, like point S discussed above,
cannot be passed within a single step. In some cases, the fictitious crack may grow. The initial
part of the constant load stage (stage 5) is subjected to the limiting conditions described above
|dσR| < σ/100 and dw < wc

ult/100, σFCT ≤ σu, and the relaxation of the cohesive stresses
may result in a growth of the fictitious crack. Later on, some of the stress paths approach
the angular point H (at the intersection with the static envelope, Fig. 9) thereby giving rise to
another limiting condition.

Finally, the stress paths, which move along the static envelope, entail the limiting conditions
relating to points S and T (Fig. 9), as are typical of stages 1 and 2. These elements, together with
the ones arising from the growth of the fictitious crack, contribute to matrix CT (dσ/dw < 0);
when their number becomes significant, the KT + CT matrix loses its characteristic of being
positive definite and the constant load may no longer be sustained. This condition determines
the failure lifetime of the structure tcr.

5 STABILITY OF THE INITIAL VALUE PROBLEM

Figure 10 shows the diagram of Eq. 2 after setting υ = wc/wc
ult. For purposes of the following

discussions, it is useful to express this diagram as a piecewise linear curve so as to obtain:

υ̇(t) + αυ(t) = β (4)

where:

• α: parameter that controls the slope of each segment of Fig. 10 (α positive means υ̇
decreasing function of υ),



• β = υ̇|υ=0: constant parameter depending on initial conditions.

From numerical analysis [20] we know that Eq. 4 represents an initial value problem which
can be classified depending on the way in which a perturbation of the solution at one time level
affects the solution at later levels. In particular:

• α > 0: the perturbations of the solutions decay with time, and perturbations originating
from different time levels do not accumulate. This is the situation we are faced with during
primary creep.

• α = 0: a sort of “non-accumulation” of perturbations occurs. This is the situation en-
countered during secondary creep.

• α < 0: this is the general case, in which the error associated with a numerical solution
grows with time, since the error of one time level is affected by the accumulation of errors
introduced at earlier time levels. This situation occurs during tertiary creep.

In the first two cases the problem is classified as parabolic.
The diagram shown in Fig. 10 refers to a system with a single degree of freedom, as is

used to represent direct tensile tests in schematic form (type A tests). Type B and C tests,
instead, are represented by means of mechanical systems with several degrees of freedom. In
such circumstances, the υ ratio in Eq. 4 is replaced with a vector V with as many components
as the points used to discretise the process zone. Similarly, the scalar quantity α is replaced
with matrix A. There is no accumulation of errors, and hence the system can be classified as
parabolic if and only if A is symmetric positive semidefinite [20].

During the numerical simulation it was observed that the the overall system retains its
parabolic character at the beginning of the crack propagation process only. As the fictitious
crack tip grows, the smallest eigenvalue of KT +CT decreases undermining the parabolic nature
of the global response, even when the local constitutive law (Eq. 4) is still in a parabolic phase.

6 NUMERICAL SIMULATIONS

6.1 Three-point bending tests

The finite element mesh used in the numerical simulations of three-point bending tests is illus-
trated in Fig. 11. Each triangular element has been further subdivided into four constant strain
triangles by joining the midpoints of the sides. The concrete employed is the one characterised
by 10mm max. aggregate size, whose properties are given in Table 1 and Eq. (1a).

Figure 12 shows the load vs. CMOD diagrams for Pmax/PD = 1.926 and PG/PD = 0.90.
The experimental and the numerical curves are in good agreement and suggest that the collapse
of the specimen takes place when the (P,CMOD) point reaches the static curve, which therefore
behaves as an envelope curve. This conclusion is confirmed by the results obtained for other
values of PG/PD and Pmax/PD.

Figures 12, 13 and 14 show that the numerical results are in good agreement with the
experimental findings. In this case, any variation in PG/PD, even a very small one (for example
< 0.001), may result in the static envelope being reached by the cohesive elements according to
a different sequence. This fact represents a perturbation of the solution, which, on account of
the non-parabolic nature of the system of equations, will tend to increase, giving rise to a non
continuous correlation between failure lifetime and the load level.

This phenomenon cannot be appreciated graphically in the diagram shown in Fig. 13, but it
can be seen in Fig. 14 for high values of PG/PD; it is negligible for practical design purposes.



6.2 Gravity dam models

The finite element mesh used for the three gravity dam models is illustrated in Fig. 15. Each
element is a linear strain triangle with six nodes.

Before stage 1 (CMOD rate of 0.03µm/s) starts, the vertical load is applied, to simulate the
dead-weight increment required (Sg = 40). In order to prevent concrete damage in compression,
two plastic sheets (0.1mm thick each) and expansive mortar were placed into the notch. Negative
CMOD at this step is due to the compression of the plastic sheets and to the transducer base
length of 8cm. The vertical load is kept constant during all the following stages. For the
numerical simulation of negative CMOD values, a bilateral contact law on the notch was adopted,
i.e.:

σ = 0 for w ≥ 0; σ = 4.5w
σu
wnc

for w < 0. (5)

Figures 16, 17, 18 and 19, 20, 21 show that numerical and experimental results are in good
agreement. Direct tensile tests and three-point bending tests show that the collapse occurs when
the load vs. CMOD path reaches the corresponding static curve (static envelope, Figs. 5 and 12).
On the contrary, experimental and numerical results related to three gravity dam models show
that creep failure occurs before the static envelope is reached.

In the tests illustrated in Fig. 16, model failure occurred at the reloading stage. Therefore
the experimental failure lifetime is computed from the test starting time. Figures 17 and 18
show that about 50% of peak load is required to balance the dead-weight so as obtain CMOD=0,
along the first loading branch. Therefore the PG/PD ratios presented in Figs. 19 and 20 are not
comparable with the ratios obtained in bending and tensile tests1. Unlike Mode I conditions,
these testing conditions call for several remeshing steps during stage 5, which cause perturbations
in the time integration process (see [21]). Since the system of equations is non-parabolic, an
appreciable (albeit acceptable) degree of scatter is observed in failure lifetime results (Figs. 19, 20
and 21).

7 CONCLUSIONS

• From the numerical analysis of a mechanical model able to take into account simultaneously
the effects of both strain-softening (reduction in bearing capacity as a function of strain)
and creep, it can be seen that the effects of a perturbation increase during the subsequent
time integration process. In other words, the initial value problem for such a system is
non-parabolic. This behaviour is an intrinsic feature of the problem and does not depend
on the creep law, the representation of damage (for example: smeared crack model or
discrete crack model) or the numerical method adopted to represent the linear elastic part
of the solid (for example: finite element method or boundary element method).

• The greater or lesser scatter in the results in terms of failure lifetime therefore depends
on the amplitude of the perturbations affecting the mechanical system during the time
integration process.

• When the crack trajectory is known a priori, as in Mode I problems, remeshing is not
necessary. The perturbations therefore turn out to be very small, and their effects on the
failure lifetime of a structure are negligible. On the contrary, remeshing (a step which
proves necessary in Mixed-mode problems) represents a perturbation having repercussions
on the failure lifetime of a structure.

• The scatter in numerical results, however, is lower than the scatter determined experi-
mentally by repeating the same test several times, as born out by the numerous tensile

1It must be noticed that, because of a problem encountered during the experimental test, the model presented
in Fig. 17 was unloaded/reloaded twice.



and bending test results of this kind given in the literature (see, for example, Figs. 7, 13
and 14).

• Despite these difficulties, the model discussed in this paper serves as a valid tool to predict
the failure lifetime of cracked concrete structures, starting from a characterisation of the
time-dependent behaviour of the process zone as inferred solely from the results of direct
tensile tests. In this manner, no restrictive assumption concerning the evolution in time
of the stress path at every point of the process zone is introduced.

• With reference to three-point bending tests and tests on gravity dam models, numerical and
experimental results are seen to be in good agreement in terms of total load, displacements
and failure lifetime.
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Figure 4: Dam model test setup.
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Figure 13: Load level vs. failure lifetime in bending test. High initial damage level Pmax/PD =
1.926.
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Figure 14: Load level vs. failure lifetime in bending test. Medium initial damage level
Pmax/PD = 1.325 (hollow diamond dot denotes tests without final creep rupture).
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Figure 16: Load vs. CMOD (dam models, φ = 3.15mm).
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Figure 17: Load vs. CMOD (dam models, φ = 12mm).
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Figure 18: Load vs. CMOD (dam models, φ = 25mm).
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Figure 19: Load level vs. failure lifetime (dam models, φ = 3.15mm).
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Figure 20: Load level vs. failure lifetime (dam models, φ = 12mm).
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Figure 21: Load level vs. failure lifetime (dam models, φ = 25mm).


