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Properties of nanoparticles affecting simulation of fibrous gas 
filter performance 

Paolo Tronville1, Richard Rivers2 
1 Politecnico di Torino DENERG, Corso Duca degli Abruzzi, 24 10129 Turin, Italy 
2 EQS, Inc. 1262 Bassett Ave. Louisville, Kentucky 40204 USA 
 

E-mail: paolo.tronville@polito.it 

Abstract. Computational Fluid Dynamics (CFD) codes allow detailed simulation of the flow 
of gases through fibrous filter media. When the pattern of gas flow between fibers has been 
established, simulated particles of any desired size can be “injected” into the entering gas 
stream, and their paths under the influence of aerodynamic drag, Brownian motion and 
electrostatic forces tracked. Particles either collide with a fiber, or pass through the entire filter 
medium. They may bounce off the fiber surface, or adhere firmly to the surface or to particles 
previously captured. Simulated injection of many particles at random locations in the entering 
stream allows the average probability of capture to be calculated. Many particle properties 
must be available as parameters for the equations defining the forces on particles in the gas 
stream, at the moment of contact with a fiber, and after contact. Accurate values for all 
properties are needed, not only for predicting particle capture in actual service, but also to 
validate models for media geometries and computational procedures used in CFD. We present 
a survey of existing literature on the properties influencing nanoparticle dynamics and 
adhesion. 

1. Introduction 
The immense growth of nanotechnology in recent years means that nanoparticles will appear in 
industrial and research locations at levels which demand careful air pollution control. Vehicular 
exhausts pollute the air in cities and along highways with unacceptable aerosol concentrations, 
including nanoparticles. It is important to understand and quantify the details of nanoparticle by 
fibrous filters, to promote the development of effective, reliable and minimum-cost solutions to 
nanoparticle filter systems design. 

The authors have previously discussed the effect of nanofiber additions to air filter media [1]. The 
present paper is concerned with the physical properties of nanoparticles which affect their capture and 
build-up in fibrous air filters, regardless of the characteristics of the fibers in the filter media. 

Several studies found in our literature review had a recurring theme: the behavior of instruments 
based on “classic” concepts cannot necessarily be extended to aerosol particles with low-nanometer 
sizes. Flow patterns in differential mobility analyzers that appear unimportant for micrometer-sized 
particles may affect results for nanoparticles. Particle-charge neutralization in bipolar ion fields are not 
described by the same expressions for nanoparticles as for larger particles. Particle count devices may 
have very different count efficiencies for particle sizes above and below 100 nm. Agglomeration of 
fundamental nanoparticles can confuse results. 
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determined by analysis of two-dimensional electron microscope images using computer algorithms. 
Rogak, Flagan and Nguyen [3] provide a description of these image-analysis procedures. An 
approximation to the fractal dimension is a simple function of the number of primary particles in an 
agglomerate and square root of the product of the particle’s length and width (Sander [4]). Examples 
of agglomerate characterization are given in Patterson and Kraft [5]. Useful explanations of the 
terminology in that paper and others which make use of fractal concepts are given on two internet sites 
[6] and [7]. 

Several studies have taken a somewhat different approach to establishing the fractal dimension and 
fractal prefactor of aggregates. Assuming or calculating the size and size distribution of primary 
particles, and fractal dimension and fractal prefactor values, they generate large numbers of images of 
aggregates. Various models of the agglomeration physics are possible. These simulated images 
frequently match the appearance of TEM or SEM images of the agglomerates studied quite well, 
indicating that the parameter choices were appropriate. [8] and [9] discuss ways in which the 
agreement between simulations and measurements can be quantified, and in particular, the best means 
to obtain reliable fractal descriptions of 3D agglomerates from 2D images. 
 
2.2. Size distributions of nanoparticles 
Many studies have shown that primary nanoparticles can exist as essentially uniform particles. More 
often, however, the size distributions are log-normal. The same mathematical relationships and 
graphical representations that are used with micrometer-scale particles apply to distributions at 
nanometer scale. Simple particle forms have a characteristic dimension, which for a cloud of particles 
can have a size-dependent distribution. Sodium chloride particles, for example are frequently cubical, 
characterized by the length of a side; cylindrical particles can have size distributions for both diameter 
and length. Agglomerates can have wide size ranges, but no easily defined size, hence no easily 
specified size. What can be defined and measured for agglomerates are their mobilities, aerodynamic, 
diffusive and electrical. Mobility is defined as: [particle velocity relative to local gas velocity] / [force 
on particle]. 

The term [force on particle] is different for aerodynamic, diffusive, and electrical mobility. These 
three forces and means for measuring them are discussed in sections below. Because agglomerates 
have no definable size, their size distributions are often stated in terms of some “equivalent mobility 
diameter”, dependent on the method used to obtain the distribution. An alternative “size” is some 
measurable geometric value, obtained from SEM images. One example of SEM-measured size is the 
determination of the smallest rectangle able to enclose the particle. Image-analysis software packages, 
both commercial and open-source, are available to measure such dimensions more or less 
automatically, and characterize the distributions of them. 
 
2.3. Aerodynamic drag of nanoparticles 

The aerodynamic drag Fdrag of a sphere with low Reynolds number moving in a gas stream is given 
by Stokes law with the Cunningham correction: 

 
Fdrag = 3πµdp (ug - up) · (mp Cc)

-1 
 
Where µ = gas dynamic viscosity; dp= sphere diameter; ug = gas velocity; up = particle velocity; 
mp = particle mass; and Cc = Cunningham’s correction for slip at the particle surface, a function of gas 
type, temperature and pressure. With λ = gas mean-free-path and Knudsen Number defined as 

 
Kn = 2λ( dp )

-1 

 
Cc = 1 + Kn(A + B exp(-CC / Kn)) 
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“neutral” aerosol cloud is not charge-free; each individual particle in the cloud carries some number of 
elementary charges, ranging from zero to N elementary charges, either positive or negative. For an 
aged aerosol, the Boltzmann equilibrium distribution will be approached. Aerosols freshly generated in 
the laboratory are passed through clouds of mixed positive and negative ions to reach equilibrium 
quickly. The ion-production devices of such neutralizers can depend on radioactive sources (Kr-85 or 
Po-210), soft X-rays, or high-voltage corona discharge to produce the bipolar ion clouds needed. 
Covert, Wiedensohler and Russell [26] critique neutralizing devices. Like so many things in aerosol 
experimentation, care in choosing a neutralizer adequate for the conditions of an experiment is 
essential. 

Fuchs [27] developed the basic form of the distribution of charges on aerosols exposed to a 
balanced bipolar ion cloud (one with equal numbers of positive and negative ions). Hoppel and Frick 
[28] extended the analysis to nanometer-size particles, and provided plots of the Boltzmann 
equilibrium distribution of charge on particles with radii 1 nm to 4µm. Stommel and Riebel [29] found 
errors in these earlier works, and provide corrections. The limited results of their corrections deviate 
slightly from the plot from Hoppel and Frick (figure 4). 
 
2.9. Evaporation of liquid nanoparticles 
The literature on nanoparticle evaporation is chiefly related to high-temperature evaporation of metal 
particles. Li and Davis [30] conducted experiments on evaporation of dibutyl-phthalate particle 
evaporation in air at pressures decreasing from 13.7 kPa to 0.016 kPa. Their results are expressed as 
evaporation rates as a function of Knudsen Number, so may be applicable to nanoparticles at normal 
pressures. Their experimental conditions involved values of Kn as high as 2. Sutter et.al. [31] studied 
the evaporation of n-hexadecane particles with mass-mean diameters as small as 1.5 µm actually on 
filter fibers. Evaporation rates were substantially lower than predicted by traditional mass-transfer 
theory (Fick’s Law). The mass of nanoparticle aerosols is very small, so evaporation may not result in 
appreciable health hazards. 
 
2.10. Counting of nanoparticles for filtration studies 
Light-scattering aerosol spectrometers, widely used for counting particles of micrometer dimensions, 
have lower detection limits of about 90 nm, hence limited application in nanoparticle studies. 

Nanoparticles can be examined by a transmission electron microscope (TEM) or scanning electron 
microscope (SEM), and the number of particles counted. Nuclear track-etched polycarbonate 
membrane filters provide a relatively featureless image background, allowing some automation of the 
counting process when SEM images are obtained. Preparation of nanoparticle samples for these 
imaging processes is more difficult than for light microscopy; the samples must be given a thin 
conductive coating, usually of a gold/palladium alloy, in an ion sputtering device. 

Image-analysis computer programs are available to assist the particle counting process, including 
an open-source one (fraclac, an add-on for imagej). Electron microscope imaging is essentially the 
reference method for evaluating all other devices used to study aerosol particle geometry. It avoids the 
assumptions about particle charging, aerodynamic drag and diffusion effects necessary for interpreting 
the results of data from instruments such as the MOUDI, ELPI, DMA, SMPS, and APM. 

The usual device for nanoparticle counting in gas flows is the condensation particle counter (CPC), 
which increases the size of individual particles by condensing a vapor onto them, then counting the 
enlarged particles by light-scattering. While the counting efficiency of a CPC is not 100% for all size 
particles, the efficiency values are reasonably stable and predictable, and useful counts can be obtained 
for particles below 10 nm diameter. The accuracy of results decreases as the size detected decreases. 

Particle capture efficiency measurements for filter media require simultaneous upstream and 
downstream sampling, or very stable aerosol generation. In addition, it is essential that the sampling 
systems upstream and downstream, and the two flow rates, be as nearly identical as possible, so that 
particle losses in the two sampling systems are the same. 
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3. Generation of nanoparticles for filtration studies 
Biskos et.al.[32] provide descriptions of the many ways available for nanoparticle generation. They 
discuss the potential of several methods to yield compact aerosol forms, rather than agglomerates, and 
provide an extensive bibliography for the details of various methods. Here we comment on some of the 
available generation methods. 

Tiwari, Fields and Marr [33] dispersed dry nanoparticle powders using the generator described in 
[34]. The nanoparticle powders must be produced in some way which provides high yields of particles 
with defined properties. Powders of many substances are commercially available. 

Liquid dispersions of nanoparticles can be diluted with ultrapure water, aerosolized by spraying, 
then passed through an evaporator to create individual spherical nanoparticles. Dispersions of 
polystyrene latex, gold and silver with certified diameters and standard deviations are available 
commercially with diameters as small as 1 nm. Raabe [35] gives the dilution needed to yield a given 
fraction of single particles in each spray droplet, depending on the droplet size distribution. Sheehan 
et.al. [36] generated nanoparticles by creating solution droplets with a Collison atomizer, stripping the 
larger particles with a cyclone, then evaporating the droplet water. Using an electrospray, instead of 
more conventional atomizers, gives smaller droplets, increasing the chance of dispersing individual 
particles. Electrosprayed droplets can also be solutions which evaporate to yield individual 
nanoparticles whose shape depends on the nature of the solute [37]. Figure 5 shows such a generator, 
which incorporates a bipolar ion source to neutralize the aerosol, which would otherwise be highly 
charged. 

A popular means of generating liquid nanoparticles is to evaporate a liquid, then condense its 
vapor. Metals, such as gold and silver, can also be vaporized if high enough temperatures are 
available. Ji et.al. [38] describe such a generator. A widely-used means to reach temperatures high 
enough to vaporize metals is spark-discharge, Meuller et.al. [39] review controlled spark-discharge 
nanoparticle generation. 

Flames can of course produce carbon nanoparticle agglomerates in the laboratory, as they do in the 
outdoor environment. They are also produce occasional fullerene-structure particles. For filter media 
testing, steady aerosol generation rates with substantial particle counts are needed. Means to generate 
all fullerene forms – single – and multiple-wall nanotubes, “buckyballs”, spirals – have all been 
developed. The methods are employed for carbon nanoparticle generation, and many other materials, 
include laser ablation, spark generation; and furnace, flame, plasma and laser-stimulated reactors. 
These last four methods allow the creation of nanoparticles of selected chemical composition, 
especially organic compounds and metal oxides. Flows of precursor compounds are provided, either in 
solution or as gases, then passed into zones where energy is injected. The addition of substantial 
energy produces the reactions needed to create the desired compounds. A cooling zone is provided; 
there the hot vapors condense into particles. Sometimes an additional hot zone is provided for melting 
or sintering any agglomerates present into compact particles. Figure 6 shows a generator using a flame 
to oxidize a feed flow of liquid aerosol precursor particles. The mix of combustion and inert gases, and 
the form of the flame, provide conditions which optimize the yield of nanoparticles, either in primary 
form or as agglomerates as desired [40]. 

Iida et.al. [41] generated particles with diameters as small as 300 nm using an ink-jet generator; it 
seems possible to do the same with vibrating orifice generators, such as described by Mitchell, 
Snelling and Stone [42]. 

Wang and Tronville examined nanoparticle generation methods for their suitability to adaption as 
standardized test methods [43]. 
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