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Extensive analysis of IGS REPRO1 coordinate time series 

M. Roggero 

Abstract. The work describes the analysis con-

ducted on the IGS REPRO1 coordinate time series, in 

order to detect GNSS permanent stations periodic be-

havior. Frequency analysis requires cyclostationary 

time series, while observed coordinates time series 

are not cyclostationary because of discontinuities of 

different kind and origin and of long term linear or 

non linear trend. For this reason time series offsets 

and trends must be estimated and eliminated, prior to 

conduct the harmonic analysis.  

Discontinuities are usually documented by IGS, 

but undocumented discontinuities also exists and 

need to be detected. The long term component of the 

signal is generally modeled as a linear trend, but the 

linear model is often inadequate to obtain 

cyclostationary residuals. An alternative model based 

on a discrete time Markov process will be adopted. 

The study has been conducted on the up compo-

nent of the REPRO1 raw coordinates time series. No 

correction for the atmospheric pressure loading has 

been applied. Harmonic analysis has been performed 

using the non linear least square algorithm imple-

mented by F. Mignard in the Frequency Analysis 

Mapping On Unusual Sampling software (Mignard, 

2003). 

We obtained a complete statistic on the vertical 

component period, amplitude and phase. Signals at 

from 1 to 7 cycle per solar and draconitic year can be 

observed in most stations as expected, but also other 

signals have been detected that can be attributed to 

tidal model errors. Some interpretation will be given 

referring to recent literature. 
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1 Introduction and motivation 

Recently IGS released a first full reanalysis of all 

GPS data collected since 1994, the REPRO1 solution, 

based on the weekly SINEX solutions, from GPS 

week 729 (01/01/1994) to GPS week 1631 

(04/16/2011). We performed a retrospective analysis 

of the REPRO1 coordinate time series, focusing at 

first on the detection, estimation, and elimination of 

time series offsets, than on the long term model esti-

mation and finally on the harmonic analysis of model 

residuals.  

Published harmonic analysis of GPS coordinates 

time series have shown significant variation in the 

respective spectrum. The most recent studies include 

(Ray et al., 2008), (Collilieux et al. 2007, 2010), 

(Fritsche et al., 2009), and (Mtamakaya et al., 2012). 

A comprehensive analysis of the whole REPRO1 data 

set
1
, providing a significant and self consistent sam-

ple, can help to understand the impact of detected 

signals at a global scale. Moreover regional depend-

ent spectral signatures can be observed, even if the 

analysis suffers of a lack of data in the southern hem-

isphere and in  the polar areas. Coordinate and formal 

error time series of 526 IGS stations have been ex-

tracted from REPRO1 SINEX (∆E, ∆N, ∆h and 

N,E, h) and in the present work we examined the 

up component (∆h, h). Time series discontinuities 

are documented by IGS in the SOLN.SNX file, that 

reports 1206 documented discontinuities in position 

and velocity, over 338 stations (a mean of 3 or 4 dis-

continuities per station). The cause of about 25% of 

the discontinuities is unknown, while it is not possi-

ble to exclude the presence of other undocumented 

discontinuities. The reprocessing of IGS had been 

carried out by using fully consistent models in order 
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to avoid model dependant discontinuities and coordi-

nates variance anisotropy that occur in operational 

time series. However, the discontinuities due to 

hardware or monument change or to geophysical ef-

fects remain also in the reprocessed time series as 

noted in (Steigenberger, 2009). An example of dis-

continuity estimation is given in the BAKO station 

UP time series of Fig. 1, that presents 8 different po-

sition discontinuities reported by IGS.  

 

Fig. 1 – BAKO UP time series with the estimated jumps. 

The changes in velocity, usually caused by earth-

quakes or by other geophysical effects, can be de-

scribed by multi linear models, as shown in (Perfetti, 

2006) and (Ostini, 2012). In these works the coordi-

nate time series are represented as the sum of a long 

term linear or multi linear trend and a step function, 

taking in account for position offsets, and cyclical 

components. Harmonic analysis requires to be applied 

on cyclostationary residuals, having statistical proper-

ties that vary cyclically with time, however linear and 

also multi linear models seem to be often inadequate 

to describe the long term behavior of a station in or-

der to obtain cyclostationarity, as it will be shown in 

par. 2.3. 

To overcome the inadequacy of multi linear mod-

els applied to coordinate time series, the presented 

approach is based on a discrete time Markov process 

modeling and focuses on three steps:  

1. Detect, estimate and remove the level shifts, 

performing iteratively the so called detec-

tion, identification and adaptation procedure 

(DIA) as explained in (Roggero, 2012). 

2. Model the long term signal constraining the 

system dynamic, in order to obtain 

cyclostationary residuals. 

3. Residuals harmonic analysis by the non line-

ar least square algorithm implemented in the 

FAMOUS software (Mignard, 2003). 

The step 1 of the proposed algorithm has been 

tested on synthetic data in the framework of the 

DOGEx project (Gazeaux et al. 2013). The signals 

estimated by FAMOUS will be analyzed in frequen-

cy, amplitude and phase, stacking the power spectra 

in order to detect the most significant effects. Some 

preliminary consideration will be given in par. 4. The 

software FAMOUS has been used also in (Collilieux 

et al. 2010) to analyze the ITRF2008, that is based on 

entirely reprocessed GPS solutions from 1997 to 

2008. 

2 Time series modeling 

2.1 Discrete time linear model 

GNSS time series can be modeled as discrete-time 

Markov process. Consider a discrete-time linear sys-

tem described by a finite state vector x, evolving with 

known dynamics T through the epochs t (t [1, n]), 

with system noise  (with variance-covariance matrix 

Rvv): 
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The observations y are known with observation 

noise  (with variance-covariance matrix R). It has 

been shown by (Albertella et al., 2006) that the sys-

tem has the optimal solution  
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where x̂  is the estimated state vector, D and M are 

block diagonal matrices representing respectively T 

and H over the considered time interval, while W 

and W are weight matrices. The 3D state vector x̂  is 

estimated constraining the system dynamic, by setting 

the system noise  at a given value. The process is 

detailed in (Roggero, 2008, 2012). 

For a system with slow dynamic as GNSS coordi-

nate time series, the motion can be described by a 

constant velocity model in T, with acceleration 0p  
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where the position p and the velocity p  are the 

two elements of the state vector  ppx  , with sys-

tem noise  pp   . The approach is equivalent to 

Kalman filtering and smoothing, but allows to man-

age the estimation of constant biases more efficiently, 

as will be shown in par. 2.2. 

In state estimation the outliers are not rejected but 

properly weighted according to the system and obser-

vation noise. 



2.2 Discontinuity model 

Discontinuities has been detected, estimated and re-

moved applying the detection, identification and ad-

aptation procedure (DIA) presented in (Teunissen, 

1998), as applied in (Perfetti, 2006) and in (Roggero, 

2012). Taking in account for discontinuities requires 

to modify the model [1]. The bias vector b represents 

the time series offsets and modifies the system as fol-

lows: 
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The bias vector b is constant with steps, and it is 

linked to the system dynamic and to the observations 

by the matrices B and C. The matrix C, whose ele-

ments are 0 or 1, represents the occurrence of the bi-

ases in the time series. The number of rows is equal 

to the number of observation epochs, while the num-

ber of columns is equal to the unknown number of 

jumps to be estimated. The matrix B it is assumed 

equal to zero if the bias affects only the observed po-

sition and not the real position. However it can be dif-

ferent by zero in the case of seismic displacements. 

These matrices can be known a priori in the case of 

documented discontinuities, or determined by means 

of some detection criteria for undocumented disconti-

nuities. The estimation of the extended state vector 

 bxz   requires the inversion of a large sparse 

normal matrix. This matrix has a bordered block or 

band-diagonal structure (quasi-triangular Schur 

form), so it can thus be blockwisely inverted by using 

Shur decomposition as in (Roggero, 2008). 

The offsets detection is based on a hypothesis test 

which assumes as null hypothesis H0 that the time se-

ries do not have any offset. This hypothesis is tested 

against a certain number of alternative hypotheses 

HA, with a jump in a given epoch. An alternative hy-

pothesis can be formulated for each observation 

epoch or for candidate epochs only. The adequacy of 

the model can be verified using the ratio test, which is 

known to have the 
2
 distribution. After detecting the 

offsets, they can be estimated and removed. 

Because offsets do not necessarily affect horizontal 

and vertical components similarly, the vertical com-

ponent is studied separately using the same approach. 

This approach also makes it possible to consider doc-

umented and undocumented offsets, to predict the sta-

tion coordinates in data gaps, and to correctly repre-

sent pre-seismic and post-seismic deformations or 

other non-linear behaviors. 

The frequency analysis shows that not only the co-

ordinate time series present discontinuities in position 

and velocity, but also in their characteristic frequency 

signature. This last kind of discontinuity can be site 

dependant and in this case seems to be related to 

hardware change or to other site effects to be investi-

gated. Model dependant frequency discontinuities can 

also exist, but have been avoided in REPRO1 solu-

tion by adopting models and methods fully consistent 

during the time. 

2.3 Long term signals 
In the long term signals we include the linear trend, 

the non linear and non periodic signals, and also the 

periodic signals with period larger than the time se-

ries length, that therefore are not estimable by har-

monic analysis. From this point of view linear trend is 

only one component of the long term signal, often the 

larger one, but to obtain cyclostationary model resid-

uals we can’t neglect the non linear long term signals. 

As we have seen in par. 2.1, the time series are 

modeled as a Markov process, and the system dynam-

ic is described by a constant velocity model. A way to 

estimate the long term signal is by decreasing the var-

iance  of the system noise  in other words, the 

system noise is related to the maximum frequency of 

the estimated signal. 

Because of the system noise depends on the system 

dynamic, the model can follow different dynamics by 

setting different values for the system noise variance 

, that has been done empirically. Fig. 2 shows the 

UP component time series of the ALGO station. Two 

different model have been estimated: model 1, with 

P = 10
-6

m and   = 10
-5

m, that follows the short 

term signal, and model 2 with P = 10
-6

m and   = 

10
-6

m, that follows the long term signal. 

 
Fig. 2 – Two different variance model used to estimate the 

long term behavior of the ALGO station in the UP component: 

• Model 1: short wavelength, P = 10
-6

m and   = 10
-5

m 

• Model 2: long wavelength,  P = 10
-6

m and   = 10
-6

m 

The choice of the system variance noise is critical 

and depends on the sampling frequency and on the 

system noise. It has been fixed empirically on a sub-



set of 10 stations, randomly chosen. However the al-

gorithm is insensitive to quite large variations of this 

parameter. 

3 Harmonic analysis 

Harmonic analysis leads to the representation of the 

signal as a superposition of basic waves. A variety of 

different approaches are presently available such as 

Fast Fourier transformation (FFT), Frequency Analy-

sis Mapping On Unusual Sampling (FAMOUS) and 

least squares spectral analysis (LSSA). LSSA soft-

ware was developed in the Department of Geodesy 

and Geomatics Engineering at the University of New 

Brunswick and it is based on the developments by 

(Vaníček, 1969, 1971), (Wells et al., 1985) and 

(Pagiatakis, 1999, 2000). However, all of them use a 

set of base functions made up of sine and cosine func-

tions in the decomposition process, to generate a fre-

quency spectrum. FAMOUS and LSSA have been 

developed as an alternative to bypass some of the lim-

itations present in the classical Fourier methods. The-

se limitations include the need for long time series, 

constant sampling rate, equally weighted data values, 

no presence of gaps or datum shifts all of which ren-

der the time series strongly non stationary. 

 

Fig. 3 - KOSG station 16 years time series, UP component. 

The process is clearly non cyclostationary, it presents a long 

term non linear behavior and a large data gap in the year 2008. 

The model 2 (▬) with P = 10
-6

m and   = 10
-6

m, follows the 

long term behavior of the data. The periodic model (▬) has 

been estimated by FAMOUS on the stochastic model residuals, 

and it is the sum of a linear component and of five different 

periodic signals with periods of 775.6, 527.8, 365.8, 271.0 and 

41.6 days. 

FAMOUS (Frequency Analysis Mapping On Unu-

sual Sampling) makes the decomposition of a time 

series as 
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The model  

   
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is a non linear least square very sensitive to the 

starting values, solved in two steps (SVD and 

Levenberg-Marquardt minimization).  

The solution is also given in term of   tAcos  

and the signal can be reconstructed as 
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FAMOUS allows the analysis of equally weighted 

data, with known or unknown a priori variance fac-

tors, assuming them to be uncorrelated; the algorithm 

can handle unevenly spaced time series without a pre-

processing requirement. Tests of statistically signifi-

cant spectral peaks are implemented, with respect to 

S/N ratio. FORTRAN source code is available by F. 

Mignard. 

4 Analysis of IGS REPRO1 time series 

Coordinate and formal error weekly time series of 

the full data set of 526 IGS permanent stations have 

been analyzed. The presented three steps procedure 

has been implemented in fortran90 integrating the 

FAMOUS source code and it is completely automat-

ic. For this reason a complete reanalysis of REPRO1 

data set takes only few minutes. The S/N threshold 

value for acceptance of the detected signals has been 

set equal to 3, as in (Collilieux et al. 2007; Mignard 

2003). For each time series we obtain: 

• the estimated offsets, 

• the long term signal model, 

• the cyclostationary residuals, 

• the frequency, amplitude and phase of the 

detected harmonics, with their RMS. 

We must note that the analysis has been conducted 

on the REPRO1 raw coordinates, without taking in 

account for atmospheric loading correction. It was 

been observed in (Mtamakaya, 2012) that a slight im-

provement to coordinates repeatability may result if 

Atmospheric Pressure Loading were included in the 

processing, however this does not cause any signifi-

cant reduction in spectral peaks that are still present 

in the REPRO1 solutions. See also (Tregoning and 

Watson, 2009) for a quantitative analysis of atmos-



pheric loading. The global analysis starts from the 

number of detected signals over the total number of 

stations in [%], reported in Fig. 4. We can observe 

three classes of signals, related to seasonal, orbital 

(draconitic) and tidal effects. The minimum sampling 

frequency (Nyquist frequency) for weekly time series 

is 14 days, at which a strong signal has been also de-

tected, that will be attributed to tidal model errors.  

 

Fig. 4 – Detected signals over the number of stations in [%]. The signals evidenced in blue are the solar year harmonics (sea-

sonal term), in red the draconitic harmonics, while in black are the tidal harmonics. 

The 89% of the stations present an annual signal 

and signals have been detected at the 2
nd

, 3
rd

, 4
th

 and 

7
th

 harmonics of the solar year (seasonal signals), 

with respective periods of 182.6, 121.8, 91.3 and 52.2 

days. The annual signal amplitude, represented in Fig. 

5, has a mean value of 3.1 mm and it is strongly spa-

tially correlated. The maximum value of 1.0 cm is at 

the station WSLR (Whistler, Canada). 

 

 

Fig. 5 - Amplitude of the annual term. 

The observed signatures appear to be consistent al-

so around the 1
st
, 2

nd
, 3

rd
, 4

th
, 6

th
 and 7

th
 draconitic

2
 

harmonics with respective periods of 351.2, 175.6, 

117.1, 87.8, 70.2, 58.5 and 50.2 days. No signal has 

been detected at the higher frequencies of the 
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draconitic harmonics, even if some signal can be ali-

ased by the tidal harmonics. Note in the Fig. 4 that the 

1
st
, 2

nd
 and 3

rd
 draconitic harmonics overlap the 1

st
, 

2
nd

 and 3
rd

 seasonal harmonics. For this reason, in 

many time series draconitic errors cannot be distin-

guished by seasonal signals and contribute to them, as 

already noted by (Rebischung et al., 2012), and beat-

ing between draconitic and seasonal harmonics can 

explain the annual an inter-annual amplitude varia-

tions. Draconitic and solar year are in phase every 26 

years
3
 during which the amplitude of the combined 

signal ranges between 0 and 6.8 mm with a beating 

effect. The superimposition of the 7 draconitics and 4 

solar detected harmonics results in a signal amplitude 

that ranges from 3 to 27 mm. The wavelength RMS 

are larger for the detected seasonal harmonics and 

smaller for the draconitic and tidal harmonics, be-

cause seasonal effects present a greater variability. 

The mean amplitudes are coherent with the values 

reported by (Ostini, 2012), obtained by the FODITS 

method proposed in (Ostini et al., 2008). 

Two peaks has been found with period of 14 and 

28 days that are doubtless related to tidal model er-

rors. The peak at 14 days has been attributed to sub-

daily EOP tidal errors by (Ray et al., 2013). The rela-

tive motions of the Earth, Moon and Sun cause the 

tides to vary in numerous tidal cycles, the two most 

important ones being the spring-neap cycle and the 

equinoctial cycle. The spring-neap cycle is a 14.77 

                                                           
3
 365.25/(365.25-351.2) ≈ 26 



day cycle resulting from the tidal influence of the sun 

and moon either reinforcing or partially cancelling 

each other (neap tides). The semi-annual equinoctial 

cycle is caused by the tilt of the Earth, and its orbit 

around the Sun which leads to higher than average 

spring tides around the time of the equinoxes (March 

and September) and lower than average spring tides 

in June and December. Because of its seasonality this 

effect cannot be distinguished by other seasonal ef-

fects. The Moon crosses the ecliptic at the same node 

every ~27.3 days, and a peak can also be observed at 

a frequency of 28 days. Finally three peaks are at 41 

(=3·14), 82 (=6·14) and 163 (=12·14) days, that can 

also be related to tidal model errors. A synthesis of 

the detected signals is reported in Tab. 1. 

 
harmonics [days] mean amplitudes [mm] 

 
expected estimated 

cpy drac. solar tidal drac. solar tidal drac. solar tidal 

1 351.2 365.3 164.0 355±3 364±10 163±2 3.2 3.1 1.3 

2 175.6 182.6 82.0 175±3 180±6 82±1 2.0 1.7 0.8 

3 117.1 121.8 
 

118±2 121±5 
 

1.3 1.1 
 

4 87.8 91.3 41.0 88±2 91±3 41±1 1.1 1.5 0.7 

5 70.2 73.1 
 

70±2 
  

1.0 
  

6 58.5 60.9 27.3 58±1 
 

28±1 1.0 
 

1.1 

7 50.2 52.2 
 

50±1 53±1 
 

1.0 0.7 
 

12 
  

13.7 
  

14±1 
  

1.1 

Tab. 1 – Detected signals that are consistent with the solar, 

draconitic and tidal harmonics. 

The remaining signatures could be attributed to 

other un-modeled effects that must be investigated, 

such as non tidal loading displacement, high order 

ionosphere terms and mismodeling effect in GPS atti-

tude models. For example, on remarkable peak is at 

66 days, that cannot be related to seasonal, draconitic 

or tidal effects. 

 

Fig. 6 – Phase of the annual term, in term of doy of the UP 

maximum. It can be noted some correlation with the station 

latitude.  

The phase  represents the signal maximum in the 

model [8]. It seems to be spatially correlated, as can 

be noted in Fig. 6, where the signal phase is repre-

sented with respect to station latitudes. The European 

cluster is represented in red and has it maximum be-

tween doy 120 and 220 (April - June). As conse-

quence of the seasonal loading effects, the phase dis-

tribution seems to be coherent with the Earth defor-

mation global model proposed by (Blewitt et al., 

2001), according to which during February to March 

the Northern Hemisphere compresses and the South-

ern Hemisphere expands. The opposite pattern of de-

formation occurs during August to September. More 

uniform data from both the hemispheres are necessary 

to clearly identify this latitude dependant effect. 

5 Conclusions 

Spectral analysis of weekly station coordinate time 

series of 526 IGS sites reveals signals at the seasonal, 

draconitic and tidal harmonics. The analysis has been 

conducted on the UP component of the REPRO1 time 

series, while E and N are not yet analyzed and they 

must be considered in future works. It has been 

shown that the detected annual signal is spatially cor-

related in both amplitude and phase, and it depends 

on the loading changes due to the water cycle. Similar 

analysis must be conducted on the sub annual signals, 

in order to better understand their origin, that seems 

to be related to model errors. Some geophysical effect 

can also be observed at a global level, such as the ex-

pansion of the hemispheres during the summer and 

their contraction during winter. Other non periodical 

geophysical signals can be potentially discovered in 

the long term signal models, not studied in the present 

work. 
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