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Abstract

A sun SGn is a graph of order 2n consisting of a cycle Cn, n ≥ 3, to each vertex of it
a pendant edge is attached. In this paper, we prove that unbalanced signed sun graphs
are determined by their Laplacian spectra. Also we show that a balanced signed sun
graph is determined by its Laplacian spectrum if and only if n is odd.

1 Introduction and Preliminaries

Spectral characterizations of certain classes of graphs is an important subject in spectral
graph theory. This means if a graph G in the specified class is cospectral with a graph H
(not necessarily in the class), then G and H are isomorphic. This study is extended to signed
graphs by some authors [1].

In this paper we assume that all graphs are simple, i.e. without any loops or multiple
edges.

Recall that a signed graph Λ = (G, σ) is a simple graph G = (V (G), E(G)) equipped
with a signed function σ : E(G)→ {+,−}.

The adjacency matrix of a signed graph Λ = (G, σ) is defined as A(Λ) = (aσij) with
aσij = σ(ij)aij where A(G) = (aij) is the usual adjacency matrix of G. Also the Laplacian
matrix of Λ is defined as L(Λ) = D(G)− A(Λ).

If all the edge signs are positive then we have the usual definitions of the adjacency and
Laplacian matrices. If all the edge signs are negative, then A(Λ) = −A(G) and L(Λ) =
D(G) + A(G), which the latter is called the signless Laplacian matrix of the graph G.

It is natural to consider the signed graphs of the classes of graphs that are determined
by their spectra and ask if their corresponding signed graphs can be determined by their
spectra, too.

The same study can be done for the corresponding Laplacian matrices of signed graphs.
For example, the spectral characterization of lollipop graphs is given in [4] and [7] and that
of the Laplacian of signed lollipop graphs in [1]. But the situation of signed graphs is slightly
different and needs the notion of switching.

For a signed graph Λ = (G, σ) and U ⊆ V (G), let ΛU be the signed graph obtained from
Λ by reversing the signatures of the edges in the cut [U, V (G)\U ]. Namely σΛU (e) = −σΛ(e)
for any edge e between U and V (G)\U and σΛU (e) = σΛ(e) otherwise. The signed graph ΛU

is called a switching of Λ, and Λ and ΛU are called switching isomorphic, for the following
well-known and easy-to-prove theorem.

Theorem 1.1. The adjacency (Laplacian) matrices of Λ and ΛU are similar.

Corollary 1.2. The adjacency (Laplacian) matrices of Λ and ΛU have the same character-
istic polynomials.

Definition 1.1. Two signed graphs are said to be A-cospectral (L-cospectral) if they have
the same adjacency (Laplacian) characteristic polynomials. Also we say that a signed graph
Λ is determined by its adjacency (Laplacian) spectrum if every graph that is A-cospectral
(L-cospectral) to Λ is switching isomorphic to Λ.
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In this sense, when we say that an unsigned graph is determined by its spectrum or
Laplacian spectrum or signless Laplacian spectrum, we mean it is determined up to isomor-
phism.

Definition 1.2. A sun SGn is a graph of order 2n consisting of a cycle Cn, n ≥ 3, to each
vertex of it a pendant edge is attached.

R. Boulet in [3] proves that a sun is determined by its Laplacian spectrum. Also M.
Mirzakhan and D. Kiani in [9], show that the sun graphs are determined by their signless
Laplacian spectra.

In this paper, we give the Laplacian spectral characterization of signed sun graphs.
Boulet [3] also shows that a sun that its corresponding cycle is odd, is determined by its

adjacency spectrum while he provides examples with even cycles that can not be determined
by their adjacency spectra ([3, Remark 2]). In [5], Bu et al. studied signless Laplacian
spectral characterizations of some generalized sun graphs.

A walk of length k in a signed graph is, as usual, a sequence of vertices v0, v1, . . . , vk in
which vi−1 and vi, are adjacent, for i = 1, 2, . . . , k. The sign of a walk is the product the
signs of its edges. Thus, a walk is either positive or negative, depending on whether it has
an even or odd number of negative edges, respectively. So, the sign of a cycle in a signed
graph is positive, if it contains an even number of negative edges, otherwise it is negative.
A triangle is thus a walk of length 3 from a vertex to itself.

Definition 1.3. A signed graph is said to be balanced if all of its cycles (if any) are positive,
otherwise it is unbalanced.

By t+Λ (resp., t−Λ) we mean the number of balanced (resp., unbalanced) triangles in Λ.
The signatures of the edges of an induced tree is irrelevant in signed graphs up to switching

isomorphism. Hence in a signed unicyclic graph Λ = (G, σ), we have just two non-switching
isomorphic structures: either all edges are positive, or the unique cycle has only one negative
edge; which can be any of its edges. The former is a balanced graph and the latter is
unbalanced. We denote them by Λ = (G,+) and Λ = (G,−), respectively.

Next we recall a formula useful to compute the coefficients of Laplacian polynomial of
signed graphs from [2] and [6].

Definition 1.4. A signed TU-subgraph H of a signed graph Λ is a spanning subgraph whose
components are either trees or unbalanced unicyclic graphs.

If H is a signed TU-subgraph, then we can write H = ∪ti=1Ti ∪cj=1 Uj, where if any,
the Ti’s are trees and the Uj’s are unbalanced unicyclic graphs. The weight of the signed
TU-subgraph H is defined as w(H) = 4c

∏t
i=1 |Ti|.

Theorem 1.3. ([2, Theorem 3.9 ]) Let Λ be a signed graph and ψ(Λ, x) = xn + b1x
n−1 +

. . .+ bn−1x+ bn be its Laplacian characteristic polynomial. Then

bi = (−1)iΣH∈Hi
w(H) i = 1, 2, . . . , n,

where Hi denotes the set of signed TU-subgraphs of Λ built on i edges.
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Let Sk = Σn
i=1µ

k
i (k = 0, 1, 2, . . .) be the k-th spectral moment for the Laplacian spectrum

of a signed graph Λ. Let Λ = (G, σ) be a signed graph with n vertices, m edges and degree
sequence (d1, d2, . . . , dn).

Lemma 1.4. ([1, Theorem 3.4])

S0 = n, S1 = Σn
i=1di = 2m, S2 = 2m+ Σn

i=1d
2
i

and

S3 = 6(t− − t+) + 3Σn
i=1d

2
i + Σn

i=1d
3
i .

For an unsigned graph, it is well-known that the multiplicity of 0 as a root of the Laplacian
characteristic polynomial counts the number of components, while in a signed graph it counts
the number of balanced components.

Theorem 1.5. ([1, Theorem 3.5]) Let Λ = (G, σ) and Γ = (H, τ) be two L-cospectral signed
graphs. Then,

(i) Λ and Γ have the same number of vertices and edges;

(ii) Λ and Γ have the same number of balanced components;

(iii) Λ and Γ have the same Laplacian spectral moments;

(iv) Λ and Γ have the same sum of squares of degrees, Σn
i=1dG(vi)

2 = Σn
i=1dH(vi)

2;

(v) 6(t−Λ − t
+
Λ) + Σn

i=1dG(vi)
3 = 6(t−Γ − t

+
Γ ) + Σn

i=1dH(vi)
3.

The following is the interlacing theorem for signed graphs [1, Theorem 2.5]:

Theorem 1.6. Let Λ = (G, σ) be a signed graph and e be an edge of Λ. Then

µ1(Λ) ≥ µ1(Λ− e) ≥ . . . ≥ µn(Λ) ≥ µn(Λ− e).

We need also the following well-known lemma, which can be proved plainly.

Lemma 1.7. Let G be a graph with two pendant vertices sharing the same neighbour. Then
it has 1 as a Laplacian eigenvalue.

2 Main Theorem

A complete analysis of Laplacian-spectra characterization of signed sun graphs is given in
this section.

Lemma 2.1. Let Λ = (SGn, σ). The eigenvalues of the matrix L(Λ) =
(

3In−A(Cn) −In
−In In

)
are

(2− λi)±
√

(λi − 1)2 + 1, i = 0, . . . , n− 1; where λi = cos 2i+1
n
π if σ = −, and λi = cos 2i

n
π

if σ = +.
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Proof. The proof is very similar to the proof of [9, Lemma 3.1], and is omitted.

Corollary 2.2. If either σ = + and n is even, or σ = − and n is odd, then µ1(Λ) = 3 +
√

5
with multiplicity one. Otherwise, µ1(Λ) < 3 +

√
5.

Although the following Lemma can be deduced from the previous one, we can simply see
it by noticing that

I − L(Λ) =
(
−2In+A(Cn) In

In 0

)
,

and det(I − L(Λ)) 6= 0, since the rows of this matrix are linearly independent. Therefore,

Lemma 2.3. The signed sun graph Λ = (SGn, σ) does not have 1 as a Laplacian eigenvalue.

Proposition 2.1. If Γ is an L-cospectral signed graph with Λ = (SGn,−), then Γ is a
connected unicyclic unbalanced graph.

Proof. Since Λ is unbalanced, by Theorem 1.5 (ii), Γ has only unbalanced components.
Therefore no component of Γ is a tree, and by Theorem 1.5 (i), since Γ and Λ have the same
order and size, components of Γ are unicyclic. Let t be the number of (unbalanced unicyclic)
components of Γ. So 4t = b2n(Γ) = b2n(Λ) = 4. Consequently t = 1 and Γ is connected.

Lemma 2.4. Let Γ be a L-cospectral with Λ = (SGn, σ), then ∆(Γ) ≤ 4.

Proof. From [8, Theorem 3.10] and Corollary 2.2 we have 3 +
√

5 ≥ µ1 ≥ ∆ + 1, and the
result follows.

Hereafter, in a specified graph Γ, let ai denote the number of vertices of degree i, i =
0, 1, 2, · · · . If Γ is L-cospectral with Λ = (SGn, σ), then by Lemma 2.4, ai = 0 for i ≥ 5.
Also, because of the multiplicity of 0 (Theorem 1.5 (ii)), a0 ≤ 1 and a0 = 0 whenever σ = −.

Lemma 2.5. For a signed graph Γ which is L-cospectral with Λ = (SGn, σ), we have:

Σ4
i=0ai = 2n, (1)

Σ4
i=0iai = 4n, (2)

Σ4
i=0i

2ai = 10n, (3)

a0 + a3 + 3a4 = n. (4)

Proof. The equations (1), (2) and (3) follow from Lemma 1.4, and together deduce (4).

A part of our main theorem is the special case n = 3.

Theorem 2.6. Let Γ be L-cospectral with Λ = (SG3, σ). Then Γ is switching isomorphic to
Λ.
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Proof. First suppose that σ = +. By equation (4), a0 + a3 + 3a4 = 3, which says that
a4 ≤ 1. If a4 = 1, then S5, the star of order 5, is a subgraph of Γ. We can reach S5 + K1

by deleting two edges of Γ. The star S5 has 1 as a Laplacian eigenvalue with multiplicity
3. The interlacing Theorem (1.6) implies that 1 is a Laplacian eigenvalue of Γ, while 1 is
not an eigenvalue of Λ = (SG3,+), by Lemma 2.3. This contradiction shows that a4 = 0
and hence a0 + a3 = 3. We have a0 ≤ 1. Suppose that a0 = 1. Then a3 = 2, a1 = 0 and
a2 = 3, by equations (1), (2) and (3). So Γ = K1 + Ω where Ω is an unbalanced graph whose
underlying graph is obtained from C5 by adding a chord. By Theorem 1.3, |b5(Λ)| = 18.
Also b5(Λ) = b5(Γ) = b5(Ω). We have b5(Ω) = −4α, where α is the number of unbalanced
unicyclic subgraphs of Ω on 5 edges (these subgraphs are obtained by deleting a possible
single edge from Ω). So 4α = 18 which is impossible. Consequently a0 = 0. Again (1), (2)
and (3) give a3 = 3, a4 = a2 = 0, and a1 = 3 which imply that Γ = (SG3,+).
Next suppose that σ = −. By Proposition 2.1, Γ is a connected unicyclic graph. As in the
case σ = +, since a0 = 0, we have a4 = 0 and a3 = 3. Once more equations (1) and (2) yield
a1 = 3 and a2 = 0. Therefore Γ = (SG3,−).

Lemma 2.7. Let Γ be a signed graph without isolated vertices which is L-cospectral with
Λ = (SGn, σ), where n ≥ 4. If β = t−Γ − t

+
Γ , then a1 = n + β, a2 = −3β, a3 = n + 3β and

a4 = −β.

Proof. Since n ≥ 4, we have t−Λ = t+Λ = 0. By Theorem 1.5 (v),

6β + Σ4
i=1i

3ai = 28n. (5)

By (3) and (5) we have,

2a2 + 9a3 + 24a4 = 9n− 3β. (6)

Also (2) and (3) give

2a2 + 6a3 + 12a4 = 6n. (7)

Therefore from (6) and (7) we deduce that

a3 + 4a4 + β = n. (8)

Now from (4) and (8) we get a3 = n + 3β and a4 = −β; and from (1) and (2), a1 = n + β
and a2 = −3β.

Lemma 2.8. A tree with at least a vertex of degree 3 whose vertex degrees are either 1 or
3, has two pendant vertices sharing the same neighbour.

Theorem 2.9. Let Γ be a signed graph L-cospectral with Λ = (SGn,−) and n ≥ 4. Then Γ
is switching isomorphic to Λ.

Proof. By Lemma 2.1, Γ is a connected unicyclic graph. As in the Lemma 2.7, set β = t−Γ−t
+
Γ .

If the unique cycle of Γ is a triangle, then β = 1 = −a4 by Lemma 2.7, which is impossible.
Hence β = 0 and therefore a1 = a3 = n and a2 = a4 = 0, again by Lemma 2.7. Let the cycle
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of Γ be of length q. Since no vertex of Γ is of degree 2, we have q ≤ n. Now the structure of
Γ is such that to every vertex x of its cycle a tree is attached so that the degree of x is 3 in
Γ.

These trees have only vertices of degrees 1 and 3. If q < n, some of these trees have
vertices of degree 3 and Lemma 2.8 says that they have two pendant vertices sharing the
same neighbor. Note that such a shared neighbor is not a vertex of the cycle. Hence by
Lemma 1.7, Γ has 1 as a Laplacian eigenvalue while Λ is not so. Therefore q = n and Γ is a
sun (switching) isomorphic to Λ.

Theorem 2.10. Let Γ be L-cospectral with Λ = (SGn,+), where n ≥ 5 is odd. Then Λ and
Γ are switching isomorphic.

Proof. By Theorem 1.5 (ii), Λ has a simple zero as a Laplacian eigenvalue and so does Γ.
Therefore Γ consists of a balanced component and some unbalanced components.
We have |b2n−1(Λ)| = 2n2 = |b2n−1(Γ)|. Let c be the number of unbalanced components of
Γ. If c > 0 then 4 divides |b2n−1(Γ)| by Theorem 1.3, which is a contradiction to the oddness
of n. Hence c = 0 and Γ is a balanced connected graph. Since the number of edges and
vertices of Γ are equal, Γ is a unicyclic graph. Let the unique cycle of Γ be of length q.
Then |b2n−1(Λ)| = 2n2 = |b2n−1(Γ)| = 2nq, which enforces q = n. Since n ≥ 5, in Lemma
2.7, β = 0. Therefore a1 = a3 = n and a2 = a4 = 0. Since the lengths of the cycles of Γ and
Λ are equal, they are (switching) isomorphic.

Example 2.11. The following graph is L-cospectral with Λ = (SG4,+), as an easy calcula-
tion with MATLAB R2017a shows. Dashed lines are the negative edges.

Proposition 2.2. Let Λ = (SGn,+) be a signed graph, where n is even. If n ≥ 6, then Λ is
L-cospectral with (SGn

2
,+) ∪ (SGn

2
,−).

Proof. By Lemma 2.1, Laplacian eigenvalues of Λ are (2 − λi) ±
√

(λi − 1)2 + 1, where
λi = cos 2i

n
π (i = 0, . . . , n− 1). For even i, they are the eigenvalues of (SGn

2
,+), and for odd

i, they are the eigenvalues of (SGn
2
,−).

Summing up, we have our main theorem as follows.

Theorem 2.12. The signed sun graph Λ = (SGn,−), n ≥ 3, is determined by its Laplacian
spectrum. The signed sun graph Λ = (SGn,+), n ≥ 3, is determined by its Laplacian
spectrum if and only if n is odd.

Proof. All ingredients are now ready. Use Theorems 2.6, 2.9, 2.10, Example 2.11 and Propo-
sition 2.2.
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