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Abstract

We present an algorithm to test whether a given graphical degree sequence is
forcibly biconnected. The worst case time complexity of the algorithm is shown to
be exponential but it is still much better than the previous basic algorithm for this
problem. We show through experimental evaluations that the algorithm is efficient
on average. We also adapt the classic algorithm of Ruskey et al. and that of Barnes
and Savage to obtain some enumerative results about forcibly biconnected graphical
degree sequences of given length n and forcibly biconnected graphical partitions of
given even integer n. Based on these enumerative results we make some conjectures
such as: when n is large, (1) the proportion of forcibly biconnected graphical degree
sequences of length n among all zero-free graphical degree sequences of length n is
asymptotically a constant C (0 < C < 1); (2) the proportion of forcibly biconnected
graphical partitions of even n among all forcibly connected graphical partitions of n is
asymptotically 0.

Keywords— graphical degree sequence, graphical partition, forcibly biconnected, co-NP

1 Introduction

We consider graphical degree sequences of finite simple graphs (i.e. finite undirected graphs
without loops or multiple edges) where the order of the terms in the sequence does not matter.
As such, the terms in a graphical degree sequence are often written in non-increasing order
for convenience. An arbitrary non-increasing sequence of non-negative integers a1 ≥ a2 ≥
· · · ≥ an can be easily tested whether it is a graphical degree sequence by using the Erdős-
Gallai criterion [5] or the Havel-Hakimi algorithm [7, 6]. Sierksma and Hoogeveen [12] later
summarized seven equivalent criteria to characterize graphical degree sequences. A zero-free
graphical degree sequence is also called a graphical partition. The former terminology is
often used when the length of the sequences under consideration is fixed while the later is
often used when the sum of the terms in the partitions under consideration is fixed.

Enumerating all unlabeled graphs having the same vertex degree sequence and exploring
their properties have been of interest. To our knowledge, an efficient algorithm of Meringer
[9] is available for the case of regular graphs, but no efficient algorithm is known to solve
the problem for general graphical degree sequences. When considering all realizations of
the same vertex degree sequence, two notions are very useful. Let P be any property of
graphs (e.g. biconnected, critical, Hamiltonian, planar, etc). A graphical degree sequence
d = (d1 ≥ d2 ≥ · · · ≥ dn) is called potentially P-graphic if it has at least one realization
having the property P and forcibly P-graphic if all of its realizations have the property P
[10]. In [14] we have presented an efficient algorithm to test whether a graphical degree
sequence d is forcibly connected and also outlined an algorithmic framework to test whether
d is forcibly k-connected for every fixed k ≥ 2. In this paper we will present a more efficient
algorithm to test forcibly biconnectedness of graphical degree sequences. Recall that Wang
and Kleitman [13] have given a simple characterization of potentially k-connected graphical
degree sequences of length n, which takes O(n) time given any input d. However, testing
forcibly k-connectedness appears to be much harder. Some sufficient conditions are known
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for testing forcibly connectedness or forcibly k-connectedness [3, 2, 4], but they have also
been shown to be unnecessary conditions.

In the rest of this paper we review the basic algorithm and present the improved algorithm
to characterize forcibly biconnected graphical degree sequences and justify its correctness in
Section 2. We analyze the complexity of the algorithm in Section 3. In Section 4 we demon-
strate the efficiency of the algorithm through some computational experiments and then
present some enumerative results regarding forcibly biconnected graphical degree sequences
of given length n and forcibly biconnected graphical partitions of given even integer n. Based
on these enumerative results we make some conjectures about the relative asymptotic be-
havior of considered functions and the unimodality of certain associated integer sequences.
We also disprove a conjecture posed in [14] in this section. Finally we conclude in Section 5.

2 The decision algorithm for forcibly biconnectedness

In this section we first review the basic algorithm to test forcibly biconnectedness of graphical
degree sequences proposed in [14] and then present an improved and much more efficient
version of the algorithm. We will give a detailed proof why it works and also comment on
certain implementation issues.

2.1 Review of the basic algorithm

The basic algorithm from [14] to test forcibly biconnectedness of graphical degree sequences
is reviewed in Algorithm 1. The idea is simple as follows. First we need to make sure that the
input graphical degree sequence d is potentially biconnected and forcibly connected before
we continue the test of forcibly biconnectedness. This is why we have lines 1 and 2.

After we confirmed this is the case, we can conclude that the input d is forcibly bicon-
nected as long as we become sure that in every realization of d there is no cut vertex based on
the definition of biconnected (non-separable) graphs. In order to simplify our discussion, we
call the degree of a cut vertex in a connected graph a cut degree. Recall that we have defined
in [14] that a generalized Havel-Hakimi (GHH) operation on a graphical degree sequence
d means selecting an arbitrary term di to remove from d and then selecting an arbitrary
collection dS of size di from the remaining sequence d−{di} and decrementing each of them
by 1. The resulting sequence is notationally written as d′ = GHH(d, di,dS). If d′ is a non
forcibly connected graphical degree sequence under some choice of di and dS, then the di is a
cut degree and d is not forcibly biconnected. This is because if d′ is non forcibly connected,
i.e. it has a disconnected realization, then d has a connected realization with a cut vertex of
degree di, which shows d is not forcibly biconnected. If no such choice of di and dS exists,
then no cut degree exists and d is forcibly biconnected. As indicated in [14] if d′ obtained
on line 4 is not a graphical degree sequence, then the for loop continues to iterate without
returning False on line 6.

We remark that although Algorithm 1 works, its performance is probably poor due to the
large number of possible choices of di and dS in the for loop from lines 3 to 6. See Section
3 for more detailed worst case time complexity analysis. Our rudimentary implementation
of Algorithm 1 can start to encounter bottlenecks for input sequences d of length 30 to 40.
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Algorithm 1: basic version pseudo-code to test whether a graphical degree sequence
is forcibly biconnected (See text for the description of GHH operation). From [14,
Algorithm 2]

Input: A zero-free graphical degree sequence d = (d1 ≥ d2 ≥ · · · ≥ dn)
Output: True or False, indicating whether d is forcibly biconnected or not

1 if d is not potentially biconnected or forcibly connected then
2 return False
3 for each di and each collection dS of size di from d− {di} do
4 d′ ← GHH(d, di,dS);
5 if d′ is a non forcibly connected graphical degree sequence then
6 return False

7 return True

2.2 The improved algorithm and the proof of its correctness

Our strategy to improve Algorithm 1 is to replace the for loop from lines 3 to 6 with more
sophisticated methods to find a potential cut degree. The idea is still simple. Assume there is
a cut degree in the input sequence d. Then we can construct two graphical degree sequences
from d with total length n+ 1 of which n− 1 terms come directly from d and the remaining
two constitute a partition of the cut degree. We actually first test some necessary conditions
for the existence of a cut degree, during which process an auxiliary set S consisting of the
orders of potential smaller induced subgraphs (explained below) is constructed should a cut
degree exist. The pseudo code of the improved version is shown in Algorithm 2.

Figure 1: A realization G of d with a cut vertex vc.

Now we show why Algorithm 2 correctly identifies whether the input d is forcibly bicon-
nected or not. The conditional test on line 1 is the same as in Algorithm 1 since potentially
biconnectedness and forcibly connectedness are necessary conditions for forcibly biconnect-
edness. The following discussion about the pseudo code of Algorithm 2 from line 3 on all
safely assumes that the input d is potentially biconnected and forcibly connected.

The conditional test on line 3 works because d2 + dn < n is a necessary condition for the
existence of a cut degree.

Proof: Assume there is a cut vertex vc in a realization G of d. There are two possible
situations with respect to the degree deg(vc) of vc.

• If deg(vc) = d1, then consider two vertices v2 and vx in the two disjoint induced
subgraphs G1 and G2 of G separated by vc respectively such that deg(v2) = d2 and
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Algorithm 2: improved version pseudo-code to test whether a graphical degree
sequence is forcibly biconnected

Input: A zero-free graphical degree sequence d = (d1 ≥ d2 ≥ · · · ≥ dn)
Output: True or False, indicating whether d is forcibly biconnected or not

1 if d is not potentially biconnected or forcibly connected then
2 return False
3 if d2 + dn ≥ n then
4 return True
5 S← ∅;
6 for s← dn to b(n− 1)/2c do
7 if dn−s+1 ≤ s and d2 ≤ n− s− 1 then
8 S← S ∪ {s}
9 if S = ∅ then

10 return True
11 foreach distinct d in d do
12 foreach s in S do
13 if d = d1 or n− s− 1 ≥ d1 then
14 m← min{i : di ≤ s}; // 1 ≤ m ≤ n− s + 1
15 dL ← (dm ≥ dm+1 ≥ · · · ≥ dn);
16 Remove a copy of d from dL if it appears at least once in dL;
17 if dL has at least s elements then
18 Form all possible s combinations sL of dL, add an element d′ with

1 ≤ d′ < d into sL to form a sequence s′L of length s + 1; Form all
possible sequences sH of length n− s− 1 consisting of the elements
of d− ({d} ∪ sL), add an element d′′ = d− d′ (1 ≤ d′′ < d) into sH to
form a sequence s′H of length n− s; If both s′H and s′L have even sum
and are graphical, return False;

19 return True;

deg(vx) is arbitrary. (G− {vc} is the disjoint union of G1 and G2. See Figure 1. Here
the vertex degrees are all with respect to G.) Note that there are two possibilities
regarding which induced subgraph v2 and vx belong: (1) v2 ∈ V (G1), vx ∈ V (G2); (2)
v2 ∈ V (G2), vx ∈ V (G1). It is irrelevant to us here which of the two occurs. Since v2 and
vx share at most one neighbor in G (which is vc) we have deg(v2)+deg(vx)−1 ≤ n− 2.
Thus d2+deg(vx)≤ n− 1. Because dn ≤ deg(vx), we have d2 + dn ≤ n− 1.

• If deg(vc) < d1, then consider two vertices v1 and vx in the two induced subgraphs
G1 and G2 of G separated by vc respectively such that deg(v1) = d1 and deg(vx) is
arbitrary. By the same argument as above we have deg(v1)+deg(vx)−1 ≤ n− 2. Thus
d1+ deg(vx)≤ n− 1. Then we have d2 + dn ≤ n− 1 since d2 ≤ d1 and dn ≤ deg(vx).

Lines 5 to 8 work as follows. If there is a cut vertex vc in a realization G of d whose
removal results in two disjoint induced subgraphs G1 and G2, then there are some restrictions
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on the order of the smaller of these two subgraphs given d. Without loss of generality we
assume from now on |V (G2)| ≤ |V (G1)| so that G2 is always the smaller of the two disjoint
subgraphs. This piece of code is trying to find out the set S of potential values of |V (G2)|.
Notice that G2 must contain at least dn vertices because if it contains at most dn−1 vertices,
then each of its vertices will have a degree at most dn−1 in G, which contradicts the fact that
dn is the smallest degree. Obviously G2 cannot contain more than b(n− 1)/2c vertices since
G2 is the smaller of the two induced subgraphs separated by vc. This explains the for loop
lower bound (dn) and upper bound (b(n− 1)/2c) on line 6. For an integer s between dn and
b(n− 1)/2c to be a potential order of G2 (i.e. |V (G2)| = s) we must have dn−s+1 ≤ s since
all the vertices in G2 have degrees at most s in G, which makes it necessary for d to have at
least s terms that are at most s. The s smallest terms of d are dn−s+1 ≥ dn−s+2 ≥ · · · ≥ dn.
Thus we must have dn−s+1 ≤ s. If |V (G2)| = s then |V (G1)| = n− s− 1. Therefore all the
vertices in G1 have degrees at most n − s − 1 in G. Now other than the requirement that
d has at least s terms that are ≤ s, the other necessary condition for d to contain a cut
degree is the existence of an additional n − s − 1 terms that are at most n − s − 1. Since
s ≤ n−s−1 based on the chosen lower and upper bounds for s, we must have d2 ≤ n−s−1
as the other necessary condition.

The functionality of lines 9 to 10 is now clear. If no potential smaller induced subgraph
order |V (G2)| can be found in the range from dn to b(n−1)/2c, then definitely no cut degree
in d can possibly exist and d must be forcibly biconnected.

After testing the necessary conditions the double for loop from lines 11 to 18 tries to
find out if a cut degree d in d exists such that the smaller subgraph G2 after cut has order
s from S.

The conditional test on line 13 is to ensure that the largest degree d∗ in d that is not the
cut degree d does not exceed the order n− s− 1 of the larger subgraph G1 after cut, should
a cut degree d exists. This is because any vertex in G1 can only have the vertices in G1 or
the cut vertex with degree d as its neighbors in G. If the vertex with the degree d∗ occurs
in G2, then d∗ actually should not exceed the order s of G2. However, since s ≤ n − s − 1
due to the upper bound b(n− 1)/2c of s on line 6, it is automatically true that d∗ does not
exceed n− s− 1 when it does not exceed s. Now each d in d is either d = d1 or d < d1. If
d = d1, then we need to ensure that d2, which is the largest degree d∗ in d other than d, does
not exceed n− s− 1, i.e. d2 ≤ n− s− 1. This inequality has already been satisfied due to
the conditional test on line 7. If d < d1, then we need to ensure that d1, which is the largest
degree d∗ in d other than d, does not exceed n− s− 1, i.e. d1 ≤ n− s− 1. This completes
our justification of the conditional test on line 13.

Lines 14 to 16 construct the sub sequence dL of d consisting exactly of those elements at
most the order s of the smaller subgraph G2. The motivation for this construction is that
the s degrees of the vertices of G2 must all come from dL. Note that if the cut degree d ≤ s,
then we need to remove one copy of d from dL since the cut vertex itself is not considered
part of G2. This explains why we have line 16.

The conditional test on line 17 is to ensure that there are enough degrees ≤ s from d for
G2. The sequence dL constitutes the pool of degrees we can select for the vertex degrees of
G2. Since G2 has order s and each of its vertices has degree ≤ s, we need dL to have at least
s elements.

Line 18 performs exhaustive enumerations to find out if there are two graphical degree
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sequences s′H and s′L, which are the vertex degree sequences of G − V (G2) and G − V (G1)
respectively, should a cut degree d exists such that the smaller subgraph G2 is of order s after
cut. The vertex degree sequence s′L of G − V (G1) consists of the s degrees of the vertices
of G2 in G together with the degree d′ equal to the number of adjacencies of the cut vertex
with G2. The vertex degree sequence s′H of G−V (G2) consists of the n−s−1 degrees of the
vertices of G1 in G together with the degree d′′ = d− d′ equal to the number of adjacencies
of the cut vertex with G1. Clearly, one level of exhaustive enumeration comes from selecting
s degrees sL from dL. The other level of exhaustive enumeration comes from choosing d′

(1 ≤ d′ < d), which is the number of adjacencies of the cut vertex with G2. Notationally we
have s′L = sL ∪ {d′}. Once sL from dL and d′ (1 ≤ d′ < d) have been chosen, s′L and s′H are
both determined, with s′H = (d− ({d} ∪ sL)) ∪ {d′′}. We only need a linear time algorithm
such as from [8] to test whether s′L and s′H are both graphical. If during the double for loop
from lines 11 to 18 such a pair of graphical degree sequences s′L and s′H can be found, then
we know that the input d is not forcibly biconnected (hence returning False on line 18) since
we have found a cut degree d together with the degrees for vertices of G1 and G2 after cut
and the number of adjacencies (d′′, d′) of the cut vertex with G1 and G2 respectively. If no
such pair of graphical degree sequences s′L and s′H can ever be found on line 18, then we
know that the input d is forcibly biconnected and we should return True on line 19.

One thing to note about Algorithm 2 is that the sequences mentioned from line 15 to
line 18 are all treated as multisets so that the set difference and set union operations therein
should be implemented as multiset operations. We also note that Algorithm 2 performs a
test of whether any graphical sequence is forcibly connected or not at most once (on line 1),
while Algorithm 1 possibly performs such a test many times (on lines 1 and 5). This is a
supplementary explanation of why Algorithm 2 performs much better than Algorithm 1 on
many inputs. More detailed run time analysis is presented later.

2.3 Extensions of the algorithm

In this section we briefly discuss how to extend Algorithm 2 to perform the additional
task of listing all possible cuts of a potentially biconnected and forcibly connected but non
forcibly biconnected graphical degree sequence. We also show that the idea of Algorithm
2 to find a cut degree in deciding forcibly biconnectedness can be extended to test forcibly
triconnectedness of a graphical degree sequence and beyond.

2.3.1 Enumeration of all possible cuttings

It is easy to see that if the input d is potentially biconnected and forcibly connected but not
forcibly biconnected, we can enumerate all possible cuttings (the cut degree, the numbers
of adjacencies of the cut vertex to G1 and G2 and the degrees of the vertices of G1 and G2

in G using the notation of Section 2.2). We can simply report such a cutting on line 18
of Algorithm 2 without returning False at the moment. Such an enumerative algorithm to
find all possible cuttings of the input d can be useful when we want to explore the possible
realizations of d and their properties.
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2.3.2 Testing forcibly k-connectedness of d when k ≥ 3

The idea to find a cut degree in Algorithm 2 can be extended to find a pair of cut degrees for
the case of k = 3 and a triple of cut degrees for the case of k = 4, and so on. Now we need
to consider more complicated situations about whether those cut vertices with potential cut
degrees are themselves adjacent or not, besides the numbers of adjacencies of each of these
cut vertices to G1 and G2 and the potential orders of G1 and G2. However, we believe a
careful implementation should still have better performance than the basic version to test
forcibly k-connectedness presented in [14, Algorithm 3].

3 Complexity analysis

In this section we give an approximate and conservative analysis of the worst case run time
performance of Algorithms 1 and 2. We also comment on the computational complexity of
the decision problem of testing forcibly biconnectedness of graphical degree sequences.

Let us first consider the basic Algorithm 1. The test of potentially biconnectedness on
line 1 can be performed in linear time using the Wang and Kleitman characterization [13].
The test of forcibly connectedness on line 1 has been analyzed in [14] with worst case run
time probably exponential (around poly(n)

(
n

n/2

)
where poly(n) is some polynomial of n).

The number of iterations in the for loop from lines 3 to 6 depends on the number of
possible choices of di and dS. The number of choices for di is O(n). The number of choices
of dS after di is chosen depends on the magnitude of di. Assume the average size of di is n/2
for the purpose of simplicity of our analysis. The number of choices of dS is then about

(
n−1
n/2

)
since dS is to be chosen from d−{di}. Once di and dS have been chosen, the sequence d′ of
length n− 1 can be constructed and tested whether it is a graphical sequence in O(n) time.
After that the testing of forcibly connectedness of d′ can be done in poly(n − 1)

(
n−1

(n−1)/2

)
time. Thus we can see that the worst case run time complexity of the for loop from lines 3

to 6 is roughly poly(n)
(

n
n/2

)2
under this simplified analysis.

The total run time complexity of Algorithm 1 is dominated by the for loop from lines 3

to 6, which is about poly(n)
(

n
n/2

)2
.

Let us now turn to the improved Algorithm 2. The worst case run time of line 1 to test
potentially biconnectedness and forcibly connectedness is about poly(n)

(
n

n/2

)
as indicated

above.
It is easy to see that lines 3 to 10 take linear time. The body of the double for loops

from line 13 to 18 will be iterated at most O(n2) times since we have O(n) distinct d in d
and less than n/2 elements in S. Lines 14 to 16 clearly take O(n) time. Thus, the total run
time excluding the test of forcibly connectedness on line 1 and the exhaustive enumeration
on line 18 is O(n3).

Now we consider line 18. The length of the sequence dL could be up to n and the length
s of the sequence sL could be up to b(n− 1)/2c. Then the maximum number of all possible
choices of sL from dL will be up to

(
n

b(n−1)/2c

)
, which is exponential. The number of choices

for d′ is O(n). Once the choices for sL and d′ have been made, the two sequences s′L and
s′H can be constructed and tested whether they are graphical in O(n) time. This shows that
the worst case total run time of line 18 is about poly(n)

(
n

n/2

)
.
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The most time consuming parts of Algorithm 2 are the testing of forcibly connectedness
on line 1 and the exhaustive enumeration on line 18. In the worst case both of these parts can
take exponential time. The combined worst case total run time of Algorithm 2 is then about
poly(n)

(
n

n/2

)
, which can be seen to be better than the worst case run time of Algorithm 1

by a factor of
(

n
n/2

)
. Suitable data structures can be established for those multiset sequences

mentioned on line 18 to avoid duplicate exhaustive enumerations. However, a large number
of exhaustive enumerations on line 18 can happen before returning for some inputs based on
our computational experiences.

As for the computational complexity of the problem of deciding forcibly biconnectedness
of arbitrary graphical degree sequences, it is known to be in co-NP as indicated in [14].
However we do not know if it is co-NP-hard or if it is inherently harder than the problem
of deciding forcibly connectedness of arbitrary graphical degree sequences. In general one
can be interested in whether the problem of deciding forcibly k-connectedness is inherently
harder than the problem of deciding forcibly (k − 1)-connectedness for any fixed k.

4 Computational results

In this section we will first present some experimental performance evaluation results of
Algorithm 2 on randomly generated graphical degree sequences. We will then provide some
enumerative results about forcibly biconnected graphical degree sequences of given length and
forcibly biconnected graphical partitions of a given even integer. Based on these enumerative
results we will make some conjectures about the relative asymptotic behavior of related
functions and the unimodality of certain associated integer sequences.

Before we continue we remark that Algorithm 1 can only satisfactorily process inputs
with length below 50 most of the time unless the input is not potentially biconnected or it
can be easily determined to be non forcibly connected. In contrast, Algorithm 2 can handle
a much larger range of input lengths.

4.1 Performance evaluations of Algorithm 2

Previously in [14] we evaluated our algorithm to test forcibly connectedness of graphical
degree sequences using randomly generated long inputs with length up to 10000. In antici-
pation of the greater challenge to test forcibly biconnectedness than forcibly connectedness,
we decide to evaluate Algorithm 2 using randomly generated inputs with length up to 1000.

We adopt a similar evaluation methodology as in [14]. Choose a constant pl in the range
[0.002,0.49] and a constant ph in the range [pl+0.01,0.99] and generate 100 random graphical
degree sequences of length n with largest term around phn and smallest term around pln.
For each chosen length n, the smallest chosen pl is slightly adjusted to make sure that the
smallest term in each generated random input graphical degree sequence is at least 2 since
any graphical degree sequence with the smallest term 1 is not potentially biconnected so
the answer is always False for such inputs. The largest pl is chosen to be 0.49 because any
graphical degree sequence of length n with smallest term at least 0.5n is not only forcibly
connected (see [14]) but also forcibly biconnected (see line 3 of Algorithm 2). The constant
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ph is chosen to be less than 1 so that the largest term in any randomly generated input
graphical degree sequence is at most n− 1.

We implemented our Algorithm 2 using C++ and compiled it using g++ with optimiza-
tion level -O3. The experimental evaluations are performed on a common Linux workstation.
We run the code on the randomly generated instances and record the average performance
and note the proportion of them that are forcibly biconnected. Table 1 lists the tested pl
and ph for the input length n = 500. The input lengths that are chosen to be tested are
n = 20, 30, · · · , 100, 200, · · · , 1000. The chosen pl and ph for different input length n are all
similar to the case for n = 500.

Table 1: Chosen pl and ph in the experimental performance evaluation of Algorithm 2 for
input length n = 500.

pl ph

0.01 0.02,0.03,...,0.1,0.2,0.3,...,0.7,0.8,0.9,0.95,0.97,0.99
0.03 0.04,0.05,...,0.1,0.2,0.3,...,0.72,0.73,0.74,0.75,0.8,0.85,0.9,0.94,0.96,0.99
0.06 0.08,0.1,0.2,...,0.7,0.71,0.73,0.77,0.8,0.85,0.88,0.89,0.95,0.99
0.1 0.15,0.25,0.35,...,0.65,0.68,0.7,0.75,0.8,0.82,0.85,0.9
0.2 0.3,0.4,0.5,0.6,0.62,0.65,0.68,0.7,0.8,0.9
0.3 0.35,0.45,0.55,0.56,0.58,0.6,0.62,0.7,0.8,0.9
0.4 0.44,0.48,0.52,0.53,0.54,0.55,0.56,0.6,0.7,0.8,0.9
0.49 0.491,...,0.499,0.5,0.501,0.502,0.504,0.506,0.508,0.51,0.52,...,0.6,0.7,0.8,0.9

We summarize our experimental evaluation results as follows.
1. For all input length n below 100, all instances can be decided instantly (run time

< 0.1s).
2. Starting from n = 100 up to n = 1000, certain inputs start to cause Algorithm 2

to run slowly (run time from a few seconds to a few hours or time out). The longer the
length n, the more time these difficult instances might take and the higher percentage of
these difficult instances occupy in all 100 input instances for a given triple of (n, pl, ph). In
detail, difficult instances could occur when (1) pl is very small (say from 0.005 to 0.05) and
ph is very large (say from 0.8 to 0.95) or when (2) pl is slightly below 0.5 and ph is slightly
above 0.5. We note based on our observations that the former situation (1) often (but not
always) corresponds to the cases where forcibly connectedness itself is hard to decide while
the latter situation (2) corresponds to the cases where forcibly connectedness itself is not
hard to decide but forcibly biconnectedness is after confirmation of forcibly connectedness.

3. For each fixed pl, there is a transition range of ph (shown in bold in Table 1) such that
(1) if ph is below this transition range, almost all input instances are non forcibly biconnected;
(2) if ph is above this transition range, almost all input instances are forcibly biconnected; (3)
when ph increases in the transition range, the proportion of input instances that are forcibly
biconnected grows approximately from 0 to 1. For example, for input length n = 500 and
pl = 0.1, the transition range of ph is from 0.68 to 0.8. When ph is below 0.68 almost all
input instances are non forcibly biconnected. When ph is above 0.8 almost all input instances
are forcibly biconnected. As noted in [14], these results indicate relative frequencies, instead
of absolute law, of forcibly biconnected graphical degree sequences among the pool of all

9

Wang: Forcibly-biconnected Graphical Degree Sequences

Published by Digital Commons@Georgia Southern, 2019



graphical degree sequences that can be chosen to test.

To sum up, our implementation of Algorithm 2 runs fast on the majority of the tested
random inputs with length up to 1000. Considering that all those inputs with smallest term
exactly 1 or at least n/2 are excluded from test, which are estimated to occupy at least 35%
of all possible instances, we are confident that Algorithm 2 is efficient on average. Certain in-
puts do cause it to perform poorly. In particular, if it is hard to decide whether a potentially
biconnected input is forcibly connected using the algorithm in [14], it is also hard to decide
whether it is forcibly biconnected using Algorithm 2 since testing forcibly connectedness is
part of testing forcibly biconnectedness. We also remark from our experimental observations
that there are difficult input instances whose hardness come mainly from deciding forcibly
connectedness. That is, the algorithm may take a long time to decide forcibly connected-
ness. However, once the algorithm knows the input is potentially biconnected and forcibly
connected it can almost instantly finish the testing of forcibly biconnectedness. There are
also difficult input instances that are easy to be determined to be potentially biconnected
and forcibly connected but hard to be further determined to be forcibly biconnected. Fi-
nally, there are some difficult input instances that are hard to be determined to be forcibly
connected and, after confirmation of forcibly connectedness, hard to be further determined
to be forcibly biconnected.

Table 2: Terminology used in Section 4.2

Term Meaning

D(n) number of zero-free graphical sequences of length n
Dk c(n) number of potentially k-connected graphical sequences of length n
Dk f (n) number of forcibly k-connected graphical sequences of length n
Ck(n,N) number of potentially k-connected graphical degree sequences

of length n with degree sum N (Note: Ck(n,N) = ck(N, n))
Fk(n,N) number of forcibly k-connected graphical degree sequences

of length n with degree sum N (Note: Fk(n,N) = fk(N, n))
Lk(n, j) number of forcibly k-connected graphical degree sequences of

length n with largest term j
Mk(n) minimum largest term in any forcibly k-connected graphical

sequence of length n
g(n) number of graphical partitions of even n
gk c(n) number of potentially k-connected graphical partitions of even n
gk f (n) number of forcibly k-connected graphical partitions of even n
ck(n, j) number of potentially k-connected graphical partitions of

even n with j parts (Note: ck(n, j) = Ck(j, n))
fk(n, j) number of forcibly k-connected graphical partitions of

even n with j parts (Note: fk(n, j) = Fk(j, n))
lk(n, j) number of forcibly k-connected graphical partitions of n with largest term j
mk(n) minimum largest term of forcibly k-connected graphical partitions of n
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4.2 Enumerative results

In this section we present some enumerative results. The motivation to obtain these results
is to gain insights into the absolute and relative asymptotic orders of the relevant functions.
For the reader’s convenience, we list the notations and their meanings used in this section
in Table 2.

In a previous manuscript [15] we presented efficient algorithms to compute D(n) and

Dk c(n) for fixed k and have shown that limn→∞
D1 c(n)
D(n)

= 1 and limn→∞
D2 c(n)
D(n)

6= 1. Recently

in [14] we presented enumerative results about the number D1 f (n) of forcibly connected

graphical degree sequences of length n and conjectured that limn→∞
D1 f (n)

D(n)
= 1, which will

be refuted later in Section 4.3. Using the sandwich theorem of calculus we can easily see that

limn→∞
D2 f (n)

D(n)
6= 1 since D2 f (n) ≤ D2 c(n) ≤ D(n). We adapted the algorithm of Ruskey et

al [11] that enumerates zero-free graphical degree sequences of length n by incorporating the
test in Algorithm 2 to enumerate those that are forcibly biconnected. The results together
with the proportion of them in all forcibly connected graphical degree sequences of length
n and in all zero-free graphical degree sequences of length n are listed in Table 3. It looks
likely that D2 f (n)/D1 f (n) and D2 f (n)/D(n) both tend to some constant less than 1.

Table 3: Number of forcibly biconnected graphical sequences of length n and their propor-
tions in forcibly connected and zero-free graphical sequences of length n respectively.

n D2 f (n) D1 f (n) D2 f (n)/D1 f (n) D2 f (n)/D(n)

4 3 6 0.500000 0.428571
5 9 18 0.500000 0.450000
6 30 63 0.476190 0.422535
7 105 216 0.486111 0.437500
8 381 783 0.486590 0.437428
9 1412 2843 0.496658 0.448539
10 5296 10535 0.502705 0.454397
11 20010 39232 0.510043 0.461783
12 76045 147457 0.515710 0.467196
13 290142 556859 0.521033 0.472392
14 1110847 2113982 0.525476 0.476649
15 4264563 8054923 0.529436 0.480473
16 16411152 30799063 0.532846 0.483750
17 63284616 118098443 0.535863 0.486662
18 244489774 454006818 0.538516 0.489220
19 946101866 1749201100 0.540877 0.491504
20 3666602417 6752721263 0.542981 0.493542
21 14229131559 26114628694 0.544872 0.495376
22 55288167003 101153550972 0.546577 0.497033
23 215070591363 392377497401 0.548122 0.498537
24 837503686065 1524043284254 0.549527 0.499908
25 3264489341370 5926683351876 0.550812 0.501162
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In Table 4 we show itemized potentially and forcibly biconnected graphical degree se-
quences of length 7 based on the degree sum N . The counts for N < 14 are not shown
because those counts are all 0. The minimum N such that C2(7, N) is nonzero can be eas-
ily determined to be 14 using the Wang and Kleitman [13] characterization. However, the
minimum N such that F2(7, N) is nonzero (which is equal to 20, not 14) is not obvious. In
general for given n if the minimum N such that F2(n,N) is nonzero can be easily determined,
it can be added into Algorithm 2 so that for any input d with the sum of its terms less than
this minimum the algorithm can immediately return False. The largest degree sum is 42 for
any graphical degree sequence of length 7. Notice that both the nonzero C2(7, N) values and
the nonzero F2(7, N) values when N increases form a unimodal sequence. Also notice that
C2(7, N) = F2(7, N) when 28 ≤ N ≤ 42. This shows that for even N between 28 and 42, all
potentially biconnected graphical partitions of N with 7 parts are also forcibly biconnected.
That is, 28 is the smallest N such that all potentially biconnected graphical partitions of N
with 7 parts are also forcibly biconnected.

Table 4: Number of potentially (row C2(7, N)) and forcibly (row F2(7, N)) biconnected
graphical degree sequences of length 7 with given degree sum N .

degree sum N 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

C2(7, N) 1 1 3 7 14 17 18 19 16 12 8 5 2 1 1
F2(7, N) 0 0 0 2 8 14 17 19 16 12 8 5 2 1 1

In Table 5 we show itemized numbers of forcibly biconnected graphical degree sequences
of length 15 based on the largest degree. The counts for largest degrees less than 7 are not
shown because those counts are all 0. Any graphical degree sequence of length 15 has a largest
term at most 14. From the table we can see that the counts decrease when the largest degree
decreases. For other degree sequence lengths from 5 to 25 we observed similar behavior.
The table also indicates that there are no forcibly biconnected graphical degree sequences of
length 15 with largest degree less than 7. In fact, we can define M2(n) to be the minimum
largest term in any forcibly biconnected graphical sequence of length n. This is, M2(n)

.
=

min{∆: ∆ is the largest term of some forcibly biconnected graphical degree sequence of
length n}. Clearly we have M2(n) ≤ n/2 since for even n the sequence n/2, n/2, · · · , n/2 of
length n is forcibly biconnected. In [14] we have defined M(n) to be the minimum largest
term in any forcibly connected graphical sequence of length n (M(n) = M1(n) based on
the notation Mk(n) in Table 2). By definition we obviously have M2(n) ≥ M(n) so that
we also have M2(n) > c

√
n for all sufficiently large n and some constant c > 0 based on

a lower bound of M(n) shown in [14]. If M2(n) can be easily calculated, it can be added
into Algorithm 2 so that any input d of length n with largest term less than M2(n) can
be immediately decided to be non forcibly biconnected. We show the values of M2(n) and
M(n) based on our enumerative results in Table 6.

We also incorporated our Algorithm 2 into the highly efficient Constant Amortized Time
(CAT) algorithm of Barnes and Savage [1] to generate forcibly biconnected graphical par-
titions of even n. The results for n up to 170 together with the proportion of them in all
forcibly connected graphical partitions of n are listed in Table 7. For the purpose of saving
space we only show the results in increments of 10 for n. From the table it seems reasonable
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Table 5: Number L2(15, j) of forcibly biconnected graphical degree sequences of length 15
with given largest term j.

largest part j 14 13 12 11 10 9 8 7

L2(15, j) 2113982 1335151 573980 185510 45951 8689 1202 98

Table 6: Minimum largest term M2(n)(resp. M(n)) of forcibly biconnected (resp. connected)
graphical sequences of length n.

n 4 5 6 7 8 9 10 11 12 13 14
M2(n) 2 2 3 3 4 4 4 5 5 6 6
M(n) 2 2 3 3 3 4 4 5 5 5 6

n 15 16 17 18 19 20 21 22 23 24 25
M2(n) 7 7 7 8 8 9 9 10 10 10 11
M(n) 6 6 7 7 7 7 8 8 8 8 8

to conclude that the proportion g2 f (n)/g1 f (n) will decrease when n is beyond some small
threshold and it might tend to the limit 0. Previously in [14] we have conjectured that

limn→∞
g1 f (n)

g(n)
= 0. With the trend of g2 f (n)/g1 f (n) in Table 7, we are almost certain that

limn→∞
g2 f (n)

g(n)
= 0.

Table 7: Number of forcibly biconnected graphical partitions of n and their proportions in
all forcibly connected graphical partitions of n.

n g2 f (n) g1 f (n) g2 f (n)/g1 f (n)

10 2 8 0.250000
20 10 81 0.123457
30 55 586 0.093857
40 262 3308 0.079202
50 1062 15748 0.067437
60 4171 66843 0.062400
70 14445 256347 0.056349
80 47586 909945 0.052295
90 147132 3026907 0.048608
100 430709 9512939 0.045276
110 1217258 28504221 0.042704
120 3285793 81823499 0.040157
130 8621222 226224550 0.038109
140 21874986 604601758 0.036181
150 54077294 1567370784 0.034502
160 130279782 3951974440 0.032966
170 306808321 9714690421 0.031582

When generating all forcibly biconnected graphical partitions of n we can also output
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the itemized counts based on the number of parts or the largest part. In Table 8 we show
itemized counts of potentially biconnected and forcibly biconnected graphical partitions of
30 based on the number of parts. The counts c2(30, j) and f2(30, j) for which the number of
parts j is less than 6 or greater than 15 are not shown because those counts are all 0. When
n is large, the minimum number of parts j for which c2(n, j) and f2(n, j) are both nonzero is
clearly the smallest positive integer j(n) such that j(n)(j(n)− 1) ≥ n. The largest number
of parts j for which c2(n, j) is nonzero is clearly n/2 since the sequence 2, · · · , 2 (n/2 copies)
is potentially biconnected. The largest number of parts j for which f2(n, j) is nonzero does
not appear to be easily computable. Note that the nonzero values of c2(30, j) and f2(30, j)
both form a unimodal sequence when j increases. Also note that c2(30, j) = f2(30, j) for
j = 6, 7. This shows that all potentially biconnected graphical partitions of 30 with 6 or 7
parts are also forcibly biconnected. That is, 7 is the largest number of parts j such that all
potentially biconnected graphical partitions of 30 with j parts are also forcibly biconnected.
The fact that c2(30, 7) = f2(30, 7) = 16 agrees with the result that C2(7, 30) = F2(7, 30) = 16
in Table 4.

Table 8: Number of potentially (row c2(30, j)) and forcibly (row f2(30, j)) biconnected graph-
ical partitions of 30 with given number of parts j.

number of parts j 6 7 8 9 10 11 12 13 14 15

c2(30, j) 1 16 44 54 30 15 7 3 1 1
f2(30, j) 1 16 30 8 0 0 0 0 0 0

Table 9: Number l2(30, j) of forcibly biconnected graphical partitions of 30 with given largest
term j.

largest part j 4 5 6 7 8

l2(30, j) 2 13 23 13 4

In Table 9 we show itemized counts of forcibly biconnected graphical partitions of 30
based on the largest term. The counts l2(30, j) for which the largest part j is less than 4
or greater than 8 are not shown since those counts are all 0. The nonzero counts l2(30, j)
form a unimodal sequence. Given n the largest j for which l2(n, j) is nonzero can be easily
determined by solving the inequality n ≥ 2(j+1)−4+2j using the Wang and Kleitman [13]
characterization since a potentially biconnected graphical degree sequence of length j + 1
with largest term j is forcibly biconnected. However, the smallest j for which l2(n, j) is
nonzero does not appear to be easily computable. If we use m2(n) to denote this smallest j,
i.e. the minimum largest term of any forcibly biconnected graphical partitions of n, then we
clearly have 2 ≤ m2(n) ≤

√
n. We show the values of m2(n) for some small n based on our

enumerative results in Table 10. The fact that m2(30) = 4 agrees with the fact that in Table
9 the counts l2(30, j) are all 0 for largest part j less than 4. In [14] we have defined m(n) as
the minimum largest term of any forcibly connected graphical partition of n (m(n) = m1(n)
in the notation mk(n) of Table 2). Clearly we have m(n) ≤ m2(n) by definition. We can see
that m2(n) happen to agree with m(n) for those n listed in Table 10.
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Table 10: Minimum largest term m2(n) (resp. m(n)) of forcibly biconnected (resp. con-
nected) graphical partitions of n.

n 10 20 30 40 50 60 70 80 90 100

m2(n) 2 3 4 5 5 6 6 6 7 7
m(n) 2 3 4 5 5 6 6 6 7 7

4.3 Disproof of a previous conjecture regarding D1 f(n)

In [14] we conjectured that limn→∞
D1 f (n)

D(n)
= 1 purely based on the available enumerative

results of D1 f (n) for n up to 26. Now we refute this conjecture:

Proposition 4.1. limn→∞
D1 f (n)

D(n)
6= 1.

Proof. Let Dpd(n) denote the number of zero-free graphical degree sequences of length n that
are potentially disconnected. Obviously D(n) = D1 f (n) + Dpd(n). We also have Dpd(n) ≥
D(n − 2) since the set of zero-free potentially disconnected graphical degree sequences of
length n includes those that are concatenations of a zero-free graphical degree sequence of
length n−2 and the graphical degree sequence (1,1) of length 2. It is known from [15, Section

7] that limn→∞
D(n−2)
D(n)

6= 0. Now suppose limn→∞
D1 f (n)

D(n)
= 1. Then limn→∞

Dpd(n)

D(n)
= 0. This

leads to limn→∞
D(n−2)
D(n)

= 0, which is a contradiction. �

4.4 Questions and conjectures

Based on the obtained enumerative results we ask the following questions and make certain
conjectures:

1. What is the growth order of D2 f (n) relative to D1 f (n) and D(n)? We conjecture

that both
D2 f (n)

D1 f (n)
and

D2 f (n)

D(n)
tend to a constant less than 1. However, they cannot tend

to the same constant because limn→∞
D1 f (n)

D(n)
6= 1 according to Proposition 4.1. Is it true

that limn→∞
D2 f (n)

D2 f (n−1)
= 4? Furthermore, we conjecture that

D2 f (n)

D1 f (n)
and

D2 f (n)

D(n)
are both

monotonically increasing when n ≥ 8. What can be said about the relative orders of Dk c(n),
Dk f (n) and D(n) when k ≥ 3?

2. What is the growth order of g2 f (2n) relative to g1 f (2n) and g(2n)? We conjec-

ture that limn→∞
g2 f (2n)

g1 f (2n)
= 0 and limn→∞

g2 f (2n)

g(2n)
= 0. Furthermore, we conjecture that

g2 f (2n)/g1 f (2n) is monotonically decreasing when n ≥ 5. Is it true that limn→∞
gk f (2n)

gk−1 f (2n)
=

0 for fixed k ≥ 3?
3. We conjecture that the numbers F2(n,N) of forcibly biconnected graphical degree

sequences of length n with degree sum N , when N runs through 2n − 2, 2n, · · · , n(n − 1),
give a unimodal sequence. (There may be some zeros in the sequence.)

4. Let t(n) be the smallest positive integer such that t(n)(t(n)− 1) ≥ n. We conjecture
that the numbers f2(n, j) of forcibly biconnected graphical partitions of n with j parts, when
j runs through t(n), t(n) + 1, · · · , n/2, give a unimodal sequence. (There may be some zeros
in the sequence.)
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5. What is the growth order of M2(n), the minimum largest term in any forcibly bicon-

nected graphical sequence of length n? Is there a constant C > 0 such that limn→∞
M2(n)

n
=

C? Is it true that M2(n) = Θ(M(n))? Is there an efficient algorithm to compute M2(n)?
What can be said about the growth order of Mk(n) for fixed k ≥ 3?

6. What is the growth order of m2(n), the minimum largest term in any forcibly bicon-

nected graphical partition of n? Is there a constant C > 0 such that limn→∞
m2(n)√

n
= C? Is

there an efficient algorithm to compute m2(n)? What can be said about the growth order
of mk(n) for fixed k ≥ 3?

7. We conjecture that the numbers l2(n,∆) of forcibly biconnected graphical partitions
of an even n with largest part exactly ∆, when ∆ runs through m2(n),m2(n) + 1, · · · , n/2,
give a unimodal sequence. (There may be some zeros in the sequence.)

5 Conclusions

In this paper we presented a much more efficient algorithm than the basic version in [14] to
test whether a given graphical degree sequence is forcibly biconnected or not. We also dis-
cussed the possible extension of the idea used in the algorithm to test forcibly k-connectedness
of graphical degree sequences for fixed k ≥ 3. The worst case run time complexity of the
algorithm is exponential. However, extensive performance evaluations on a wide range of
random graphical degree sequences demonstrate its average case efficiency. We incorporated
this testing algorithm into existing algorithms that enumerate zero-free graphical degree se-
quences of length n and graphical partitions of an even integer n to obtain some enumerative
results. Questions and conjectures based on these enumerative results are proposed which
warrant much further research.
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