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ABSTRACT 

 

Software in today’s world is used more and in different ways as well than ever 

before. From microwaves and vehicles to space rockets and smart cards. Usually, a 

software programmer goes through a certain process to establish a software that 

will follow a given specification. Despite the hard work of the programmer, 

sometimes they make mistakes or sometimes they forget to include all the 

possibilities of the question for which they are writing the program, which is very 

humanly in nature. And for those mistakes, a testing unit is always there. 

There are numerous techniques of Software Testing, one of which is Boundary 

Value Analysis. A modified version of Boundary Value Analysis using input 

parameters with functional dependency is proposed in this work. The idea is 

derived from the inter dependency of functions among the input parameters. With 

this modified algorithm, an automated testing tool is created and implemented. 

This testing tool shows the advantages of the modified algorithm developed over 

the Functional Tree Approach and reduces a significant amount of test cases that 

leads to an exhaustive testing. This modified method will test almost every 

possible required test case increasing the system’s efficiency. This method will be 

a very good help for any product based company saving a huge amount of money 

and time. 

Generalized BVA generates 5*n number of test cases where n is number of 

variables while Function Tree method generates the highest of all three that is 

n*5^(n-1) and the modified approach generates 7*n + k number of test cases where 
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k is the number of mutants killed at each step. So, it shows that the number of test 

cases in case of modified algorithm is significantly lower than the Function Tree 

algorithm while almost similar as regular BVA but it covers more functionalities 

and features 

Keywords: Software Testing, Boundary Value Analysis, Functional Dependency, 

Functional Tree, Mutation Testing, Automation Testing. 
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CHAPTER – 1 

 

1.1 Introduction 

Despite the hard work of the programmer, sometimes they make mistakes or 

sometimes they forget to include all the possibilities of the question for which they 

are writing the program, which is very humanly in nature. And for those mistakes, 

a testing unit is always there. The job of this unit is to figure out what mistake has 

the programmer made or what did he/she forget to include. In some of the big 

organizations, they have huge teams of testing for their products because they have 

an important consideration in mind of the consequences of a software error.  

Most of the software usually need to stick to a single rule, i.e. to make sure that 

what is expected, it does. To use all the available resources in better sense, 

computers should also be helpful in “the art of software testing” to an improved 

extent, than is currently the case today. One of the issues today is if humans can 

make errors in coding then they can also make errors in software testing.  

The solution of this is not to remove human beings from the process of software 

testing but to use today’s software development art form and make computers also 

participate. This thesis will present research aimed at classifying, examining, and 

improving the basic concept of boundary value analysis through automated 

software testing. To describe it further, we should first talk about software testing, 

boundary value analysis, functional dependencies and then possibility of creating a 

method that will solve the problem. 
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Software testing is defined as a formal process in which a software unit, several 

integrated software units or an entire package are examined by running the 

programs on a computer. All the associated tests are performed according to 

approved test procedures on approved test cases (Galin, 2004). Software testing, is 

to test or check whether the software is executing perfectly and the necessary 

requirements are fulfilled. It is a human tendency to make errors and for 

elimination of these, tests are done on the product being developed to find out the 

problem in the software, that is why software testing is necessary.  

Software Testing is very expensive method in terms of time and money but it is 

the only way to find out bugs in the system. Due to time and budget constraints, it 

is impossible for us to perform exhausting testing for every set of test data, 

especially when there are enormous pools of input combinations. It requires an 

easy way or special techniques which will select test cases intelligently from the 

pool of cases, so that every test scenario is covered. So, optimal testing is 

necessary to save time and money. 

The hard part in this procedure of testing is to generate the test cases. A test case 

is a condition put on each input parameter and those sets of conditions will give the 

tester an output which will help in the testing objective. A good testing technique 

is the one which covers every aspect of the requirement and the objective of 

testing. In the Late 90’s test cases were derived manually but for some products 

this procedure takes time much more than the time of required for the 

development. So, the method of automated testing is introduced to test the product 
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automatically using program. Detecting and removing errors in the earlier phases 

will even reduce the cost of whole development. 

 

1.2 Boundary Value Analysis 

There are numerous techniques of Software Testing, one of which is Boundary 

Value Analysis. Regarding boundary value analysis, NIST defines it as [6], a 

selection technique in which test data are chosen to lie along ‘boundaries’ of the 

input domain [or output range] classes, data structures, procedure parameters. The 

basic idea of boundary value analysis can be judged from the word boundary, as 

we know most of things in this world have boundaries. Such bounded values are 

used in this procedure. This process tests the product being developed on the 

boundary values of each input parameter and then generate the desired test cases.  

The basic idea of boundary value analysis(BVA) is to generate the number of 

test cases using the parameter values at their boundary points such as minimum 

(min) and maximum (max), the values next to the boundary points such as just 

above the minimum (min +) and just below the maximum (max −) and the median 

i.e. the nominal value (nom).  

In a program, the input parameters consist of the upper and lower bounds, so the 

test cases are obtained following the boundary value analysis, by holding the 

values of all but one parameter at their nominal values and letting that parameter 

assume its extreme values [1]. 
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Fig 1.1 [4]: Boundary Value Analysis Range 

 

1.3 Functional Dependencies 

There are various examples of programs on which boundary value analysis works, 

one of which is Next Date function. Though it seems like a perfect method for 

software testing but it has some limitations too. It does not work on input 

parameters with functional dependencies e.g. X, Y and Z are three input 

parameters, now Y = f(X) and Z = g (X, Y), thus, Y is a function of X and Z is a 

function of X and Y, so the above method may not be applied. These input 

parameters with functional dependencies were studied previously. One of the 

previous methods in [2] uses the boundary value analysis with divide and rule 

approach. The other method in [3] uses the function tree for generalization of 

boundary value analysis to input parameters that are functionally dependent. 

 

 

Fig 1.2 [5]: Functional Dependencies 
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1.4 Automation Testing 

The aspect of automation in software testing is focused on keeping human 

involvement to a minimum. Software Test automation uses specialized tools for 

the execution of tests of the product and compares the actual results against the 

expected result. But the question here is, why we need automation testing. Well, 

automation testing is important because of many reasons. One such reason is that it 

increases the speed of the testing process by executing test cases on its own. As we 

know, manual testing is both time and cost consuming and can be boring 

sometimes. An example for difficulty in manually test is testing for multi lingual 

sites. For that, automation testing is required. One of the advantages of automation 

is that we can run the testing overnight even unattended as it does not require 

human interaction. 

So again, through this thesis I am trying to make the technique of boundary 

value analysis more efficient and easy while making the process automated. It is a 

very difficult job to make an automation tool as every piece of program or every 

product requires a different automation tool so that it can create only the test cases 

required for the product. This to go in the aims of the thesis. 

 

1.5 Mutation Testing 

The method of Mutation testing is out there for ages and testers have known this 

for many years. However, few of them are using it for different-different reasons. 

Most of the procedural steps used are automated, for example, mutant software 
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creation and the white box testing. In this kind of testing, modifying a program 

code, re-running a suit of correct tests, and deliberately altering are included 

against the mutated program. The tester can easily assess the quality of a test suite 

using Mutation testing. So, by mutating different elements in the software in the 

product’s source code and after that checking if the test code can find the mutated 

errors and detecting those errors. 

Mutation testing is a misnomer. Mutation testing tool is a super powerful tool 

which can be used for checking coverage or detecting testing inadequacies on 

testing software. It can choose correct mutant programs and going through a 

comprehensive testing of these correctly chosen programs. It is more of an 

analytical method than testing technique. For reliable and better results, one should 

find better methods that can reduce the number of tests and find efficient number 

of mutants. More efficient numbers of mutants lead to longer testing time duration. 

 

1.6 Problem Statement and Justification 

To develop the problem statement, one should know what is the question you are 

trying to answer and why. In this work, I am trying to question whether the testing 

techniques nowadays are enough to answer or test all the possible outcomes that a 

program has. Can I make an automation tool that will help me solve this problem 

of efficient testing? With the functional dependencies of the attributes, is it 

possible to create a testing technique that will be far much better than normal 

Boundary Value Analysis?  
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Now after defining the problem, we should discuss why this problem should be 

solved and who all are affected with this problem solving is discussed. In this 

thesis, the problem is, can I make an automation tool that will help me solve this 

problem of efficient testing? And with the functional dependencies of the 

attributes, is it possible to create a testing technique that will be far much better 

than normal Boundary Value Analysis? 

It is very important that testers of any field should be able to write test cases 

based on Boundary value analysis because the hardest part in the procedure of 

testing is to generate enough test cases which can test all the possibilities of the 

question for which they are writing the program. Testing components will always 

be a challenging area for research. During the design, the component properties are 

going to be adopted. And one of the motive is to validate and test against these 

adopted component properties. We can gain higher productivity with generic 

components. To test a generic component which contains several generic 

parameters is very hard to test. Therefore, all possible applications through 

customization should be tested. 

There are various problems regarding testing in this world. For boundary value 

analysis, an efficient number of test cases should be generated which will check for 

all the wrong and right possible outcomes. But with inputs with functional 

dependencies, sometimes test cases fail to check all the outcomes efficiently. So, in 

this thesis, a modified approach is created which will check for test cases for inputs 

with dependencies. This modified approach will be created using two already 

present techniques known as “Divide-and-Conquer-Approach” and “The Function 
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Tree”. Then an automation tool will be created which will first use mutation testing 

to check and then automatically create all the test cases for those input variables. 

Boundary value analysis is another type of Black box testing and is also a part 

of stress and negative testing. By the name, boundary value analysis indicates 

limitation on something. So, when the inputs are supplied within the boundary 

values, it is positive testing and inputs are considered as negative testing beyond 

the boundary values. For example, if an application accepts VLAN Ids ranging 

from 0–255, then 0, 255 will be the boundary values and any input going below 0 

or above 255 will be invalid and will constitute negative testing.  

 

 

Fig 1.3: Defining the boundary of the values 

 

This technique of Boundary Value Analysis is used for figuring out the bugs 

that usually occurs at the boundaries rather than ones that exist in the center. This 

technique is used to reduce the number of test cases to minimal, while assuring that 
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the test cases selected are effective test cases which would help in testing whole 

scenarios.  

To continuously maintain and improve the efficiency and quality of the 

software system’s development is a very hard challenge for any company or 

organization. In many software projects, because of time or cost constraints 

organizations neglect the testing phase. Sometimes, this might lead to customer 

dissatisfaction, followed by a lack of product quality and ultimately to increased 

overall quality costs.  

Despite the hard work of the programmer and tester, an automation tool will 

reduce the man power in some extent and help the industry save money. Poor test 

strategy, delay in testing, underestimated effort of test case generation and 

subsequent test maintenance might lead to additional cost of the software project.  

Automated tests are fast and can run frequently within different tests due to 

reused modules, and for the software products with a long maintenance life, it is 

cost-effective. While testing in an agile environment, changing software 

requirements of the system is necessary. As the software project progresses, test 

cases should be modified for a period in both manual and automated testing. It is 

important that people should know that using test automation, complete coverage 

of all the tests is unrealistic. Test automation allows performing different types of 

testing efficiently and effectively. 
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Fig 1.4 [9]: Benefits of Automated Testing 

The main reason of using the automation testing is that “Automated regression 

tests which ensure the continuous system stability and functionality after changes 

to the software were made lead to shorter development cycles combined with 

better quality software and thus the benefits of automated testing quickly outgain 

the initial costs” [8].  

 

 

Fig 1.5 [7]: Mutation Testing and its Test Suits 

 

Manual testing can be mundane and exasperating while test automation can 

remove all the frustrations of a tester and allows test execution without human 
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interaction guaranteeing accuracy and testers can now concentrate on more 

difficult test scenarios. 

Sometimes it happens that your tests can not find a bug, will you believe that 

there are no bugs? For that, one of the tests that allow you to assess the tests is 

Mutation testing. Unlike the other testing methods which will give you a proper 

testing result, in mutation testing there is no Pass or Fail result of disposition even 

if the output fails in the test cases to meet the standard output. Instead, to improve 

the lack of whatever is causing it, adjustments are made, then the test is done again 

until we attain a satisfactory score. 
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CHAPTER – 2 

 

In the previous chapter, a description to the effect of solving the problem and who 

all will the effort affect. There have already been some ground-breaking 

discoveries in this matter such as techniques like “Divide-and-Conquer-Approach” 

which deals with inter-dependent parameters and “The Function Tree” which uses 

a technique in which there are various levels of testing the functional 

dependencies. 

 

2.1 DIVIDE AND RULE APPROACH [6] 

This algorithm named divide and rule creates various independent sets of 

parameters by breaking the dependencies among those parameters. This method 

will make sure that there is no interference within the boundary values or with the 

boundary values of each other by the parameters in the new independent sets. And 

this is the reason, why this technique is named Divide and-Rule approach [2]. 

Using this method, different independent parameter sets can be created from the 

dependent parameter sets and after that on these independent parameter sets, the 

traditional method of boundary value analysis is performed. 

This technique usually deals with the inter-dependent parameters which means 

that the boundary values of those parameters are dependent on the value of some 

other parameter. So, such type of dependency in parameters is known as boundary 
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dependency. In this approach, there are 3 types of parameters: Dependent 

Parameters, Independent Parameters, and Boundary-determining Parameters. In the 

next section, written is an algorithm which helps in creating the test cases on 

boundary value analysis using divide-and rule approach.  

 

2.1.1 Algorithm 

This algorithm is based on the idea that a multiple set of independent parameters 

can be generated from a single set of dependent parameters. Using the simple or 

traditional boundary value analysis will not generate various test cases that are 

required for testing all possibilities. Therefore, a generic algorithm is required so 

that we will be able to generate the independent sets of parameters with any kind of 

dependency. This method can be used for generating test cases for programs such 

as Next-Date function [2,12]. 

This program is based on 6 different types of modules and the program results in 

six screens with each representing a module of the tool and the six modules are: 

getVariables, getRelations, getNumOfSets, getBounds, getSetRelations, and 

generateBVATestCases. So, these six modules are shown in the algorithm as well 

as in the flow chart representation of this technique as shown in Fig 2.1. User will 

enter some input and that input will be accepted by each module and then each 

module will forward its output to the next module. There exists a button for each 

and every module that is the “Submit Query” button, which will allow the user 

submission of the input. In the following, the design for each module is presented 

individually. 
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Fig 2.1 [2]: System Flow Chart of Divide and Rule Approach 

 

The above representation is explained as [2]: 

Module1 (getVariables): In this module, the user is prompted to enter all the 

variable names. 10 text boxes are displayed in the screen of this module and all the 

users can enter the names up to 10 variables. Due to some design purposes, there is 

a limitation on the number of variables. 

Module2 (getRelations): In this module, relationships among the variables are 

defined by the user. Based on the relationships entered by the user, the tool 

determines the boundary-determining, boundary-dependent, and independent 
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variables. For n variables, the screen displays n2−1 checkboxes in n rows and n 

columns. To specify the relationship among variables, the proper checkboxes are 

checked. 

For example, to specify that variable i depends on variable j, the checkbox in ith 

row and jth column is checked. 

Module3 (getNumOfSets): Values for all boundary dependent and boundary-

determining variables can be divided into two or more sets. This module prompts 

the user to enter how many sets can be formed for each boundary-dependent and 

boundary-determining variable. These sets are referred to as boundary-dependent 

sets and boundary-determining sets. 

For k boundary-dependent variables and j boundary determining variables, the 

screen displays k + j textboxes. 

Module4 (getBounds): This module prompts the user to specify the {min, min+, 

nom, max−, max} values for every dependent variable, all boundary-dependent 

sets and all boundary-determining sets. 

For p independent variables, 5p text boxes are displayed. 

For q boundary-dependent variables with s1,...,sq sets each, tq = 5(s1 + ··· + sq) 

text boxes are displayed. 

For r boundary-dependent variables with s1,...,sr sets each, tr = 5(s1 × ··· × sr) text 

boxes are displayed. 

Module5 (getSetRelations): This module generates all possible combinations of 

boundary-determining sets for each boundary-dependent variable. It then prompts 
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the user to associate each combination of the boundary determining sets with a 

boundary-dependent set. The screen displays all possible boundary-determining set 

combinations for each boundary-dependent variable. For every combination, it 

displays n radio buttons, where n is the total number of sets for that boundary 

dependent variable. 

Module6 (generateBVATestCases): This module generates all possible 

combinations of all the boundary determining sets. It then associates every 

combination with a boundary-dependent set of every boundary dependent variable, 

based on the associations specified by the user in Module 5. It then associates all 

the combinations with all the independent variables. These boundary-determining 

set combinations associated with boundary-dependent, and independent variables 

form the BVA sets. The module then generates the test cases by performing 

boundary value analysis for every BVA set. 

 

The following algorithm [2] is written in 10 steps:  

Step 1: Divide the parameters in three sets:  

D: dependent parameters,  

B: boundary-determining parameters, 

I: independent parameters. 

Step 2: For every parameter d  D, create a set of its determining parameters. Each 

element of this set shall also be an element of set B. 



23 

 

Step 3: For every parameter d  D, create separate sets of all possible boundary 

value ranges for d. Mark these sets d1 to dx. These sets must contain these bounds 

(min, min+, nom, max−, max) based on its boundary-determining parameters.  

Step 4: For every parameter b  B, create sets of values that will affect its 

dependent parameter on the boundary values. Mark these sets b1 to by. The 

relation between sets (d1 to dx) and sets (b1 to by) are specified in Step 6.  

Step 5: For every parameter d  D, generate all possible combinations of its sets. 

For e.g., if a and b are 2 elements of this set and a has 2 determining sets (a1 and 

a2) and b has 3 determining sets (b1, b2 and b3), then possible combinations will 

be: a1b1, a1b2, a1b3, a2b1, a2b2, a2b3.  

Step 6: Assign a boundary-value set to every possible combination of determining 

sets. The relation between these sets is that if variables a and b assume the values 

from a combination apbq, then d can assume a value from corresponding dr only.  

Step 7: For boundary-determining sets, generate all possible combinations of all 

boundary-determining parameters.  

Step 8: For every combination, there is in the previous step, assign the boundary 

values to the sets for each of the dependent parameters using Step6.  

Step 9: For every combination, there is, assign all the independent parameters 

which will create an independent set of combinations. 

Step 10: For every independent parameter set that is produced, perform traditional 

boundary value analysis to generate test cases. 
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2.2 THE FUNCTION TREE 

The function tree approach is used to generate test cases for the input parameters 

with functional dependencies using boundary value analysis. This method is not 

for any specific ideology or specific problem but this is very generic solution to the 

black box testing technique which can use 2, 3 or even many more input 

parameters dependent on one another. Following are the 3 different levels for 

implementing this technique.  

 

 

Fig 2.2 [3]: Boundary Function Tree for Xmin 

 

Level 1: Assume that the lower and upper bounds for X are given respectively 

Xmin and Xmax. Now, the function tree is drawn for each of the two bounds as 

shown in Fig 2.2. Boundary Test, in this level all the parameters take their 

boundary values for the implementation and those values include min and max. 

The function tree for this level is always a binary tree and every path in that tree is 

a test case. The function tree here is a binary tree which is usually generated by the 

upper and lower bounds function for X and Y. Each path on the function tree 

corresponds to that one test case. There are four testing cases from left to right as: 
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(Xmin, fL (Xmin), gL (Xmin, fL (Xmin)) 

(Xmin, fL (Xmin), gU (Xmin, fL (Xmin)) 

(Xmin, fU (Xmin), gL (Xmin, fU (Xmin)) 

(Xmin, fU (Xmin), gU (Xmin, fL (Xmin)) 

There are some test cases that may be same and some may not satisfy the 

constraint function. The function tree for Xmax and function tree for Xmin can be 

drew similarly except that all the Xmin is replaced by Xmax and that to everywhere in 

the tree. So, the four testing cases that can be generated from the function tree for 

Xmax are: 

(Xmax, fL (Xmax), gL (Xmax, fL (Xmax)) 

(Xmax, fL (Xmax), gU (Xmax, fL (Xmax)) 

(Xmax, fU (Xmax), gL (Xmax, fU (Xmax)) 

(Xmax,fU(Xmax), gU(Xmax,fL(Xmax)) 

Boundary tests can be formed by remove the duplicated and those that do not 

satisfy the condition h (X, Y, Z) ≥ 0 or h (X, Y, Z) = 0. 

 

Level 2: Next-To-Boundary Test, in this level of test at least 1 of the parameters 

has the next to boundary values that includes max-1 or min+1 and all the other 

parameters can have any value. So, in total there are 4 values assigned to any 

parameter which includes min, max, min+1, max-1. 
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Fig 2.3 [3]: Next-to-boundary Function Tree for Xmin 

 

Next-to-Boundary tests can be formed by selecting the one’s that has at least one 

of parameters is not boundary value and remove the duplicated and those that do 

not satisfy the condition h (X, Y, Z) ≥ 0 or h (X, Y, Z) = 0. 

The Next-to-boundary Function Tree for Xmax can easily be obtained by 

replacing Xmin with Xmax. Next-to-boundary Function Trees for Xmin+ and Xmax− 

would be different with Figure 2. For example, to obtain the tree for Xmin+, we first 

replacing Xmin in Figure 2 by Xmin+, then we need to connect the paths from fL(•) to 

gL(•,fL(•)) and from fL(•) to gU(•,fL(•)) respectively.  

Other the right most side, we need to connect the paths from fU(•) to gL(•,fU(•)) 

and from fU(•) to gU(•,fU(•)) respectively. This is because these four test cases were 

not included in the cases generated in Step 1. Similar changes need to be made to 

get the Next-to-boundary Function Trees for Xmax−. 
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Fig 2.4 [3]: Middle Function Tree for Xmin 

 

Level 3: Normal Test, in this level of test there is a middle value included with 

the 4 values of Level 2 that is nom. At least one of these parameters has the middle 

value. This level is almost like traditional boundary value analysis except that in 

traditional boundary value analysis, all except 1 has the middle value. 

Level 3 tests or Middle tests are same as the cases in the traditional boundary 

value analysis, thus 2 of the 3 parameters taking middle values. The third 

parameters go through its 5 elements sequence: min, min+, nom, max− and max. 

Similar as in step 1 and 2, we use the Middle Function Tree to generate test cases 

in level 3. The middle function tree is the most complete tree. Every element in the 

X’s 5 elements sequence Xmin, Xmin+, Xnom, Xmax−, and Xmax has a middle 

function tree.  

So, using these 3 levels, an algorithm is designed which will automatically 

generate test cases.  There are two real time systems working on this algorithm. 
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One of which is Net Provision Activator (NPA), a product of Syndesis Limit where 

this algorithm is being used for generation of their test cases. And the second one 

resides in the Atmospheric Physics Lab at Trent University is a Celestial Tracking 

Software (CTS). It is used to conduct spectral analysis of light from different-

different sources such as the Sun, hardware such as spectroscope and mirrors used 

in the analysis are being controlled by (CTS). 

So, shown above are the previously defined work that has been already done 

but, the Function tree approach induces a lot of test cases of order n*5^(n-1). So, it 

is difficult to cope with such a large data and to check on these values which are 

more than 18k if n=6 and this results in exhaustive testing. While Divide-and-Rule 

approach is efficient but this method is limited to some extent e.g. it can solve Next 

Date problem and those like this problem. That is why a new method is required so 

that it can generalize the problem solving for input variables with functional 

dependencies. 
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CHAPTER – 3 

 

3.1. Introduction 

Software testing is one of the most widely and vividly used software analysis 

techniques in today’s world, one of which is Boundary Value Analysis (BVA). A 

modified version of BVA using input parameters with functional dependency is 

proposed in this chapter. The idea is derived from the inter dependency of 

functions among the input parameters. With this modified algorithm, an automated 

testing tool is created and implemented. 

 

3.2. Implementation 

In this chapter, three different models of BVA with respect to their functional 

dependencies are discussed and implemented. A comparison amongst them is 

made to find out the most suitable method as far as execution time. 

 

3.3. Implementing General BVA 

One of the three methods that is compared in this thesis is the general BVA. 

Boundary value analysis can be referred to as a technique or a method of a black 

box testing in which all the values as input at the boundaries of the domain of the 

input are tested. However, it has been widely recognized that the values at the 
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extreme ends of the input, and may be just on the outside of, domains may tend to 

create significant amount of errors in system functionality. 

This technique helps in boundary value testing which generally is done between 

both the valid and the invalid boundary partitions. With the help of this method or 

technique, all the boundary values are tested by creating the number of those test 

cases for a particular input field. This method does generate a very small number 

of test cases but it surely does not cover all the necessary cases as well. In general, 

this method generates 7*n number of test cases, with n being number of variables. 

 

3.3.1 Example of BVA 

Consider an organization that should test a software program which takes the 

values of the integers ranging between -100 to +100. Now in this case, total of 

three different sets of the valid equivalent partitions should be taken, which must 

be – the negative range which is from -100 to -1, the zero (0), and the positive 

range which is from 1 to 100. 

All these ranges have a maximum and a minimum boundary value. A lower 

value of -100 and -1 as the upper value will be the negative range and the positive 

range will contain 1 as the lower value and the upper value as 100. Though, while 

testing these values, we should consider the fact that some of the values will 

overlap once the boundary values for each partition are selected. So, during the 

testing of these conditions, the overlapping values will appear when these 

boundaries being checked. 
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These values that have been overlapping must be removed so that the 

elimination of these redundant test cases can be done with ease. Now, after doing 

all that, the input box test cases that accepts the range of the integers between -100 

and +100 through BVA are: 

i All the test cases which have the same data as the input boundaries of input 

domain: in this case, -100 and +100. 

ii All the test cases that have values just below the extreme edges of input 

domain: in this case, -101 and 99 

iii All the test cases having values which are just above the extreme edges of 

input domain: in this case, -99 and 101 

With the BVA technique, it is quite an easy task of testing such a small piece of 

data instead of doing a test on the whole data set. That is the reason, in major 

testing fields such as quality management services and software testing, this 

method is often adopted instead of other testing methods. 

 

 

Fig 3.1: Boundary Value Analysis 
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3.3.2 BVA Analysis 

For the generalized BVA method, the following are the advantages and the 

disadvantages: 

Advantages are: 

1. This technique is very good at exposing the potential user interface or user 

input problems 

2. It has very clear guidelines on determining test cases 

3. It is the best approach in all the cases in which the software functionality is 

based on numerous variables which generally represents the physical 

quantities. 

4. It generates very small set of test cases 

Disadvantages are: 

1. It does not test all the possible inputs 

2. It does not fit well with respect to the Boolean Variables 

3. It generally works well only with those independent variables that usually 

depict quantity 

4. It does not test the dependencies between combinations of inputs 

 

Now, as this work is based on solving the problem of functional dependencies in 

the input variables, there is no scope for this generalized approach of boundary 

value analysis since this method does not deal with the dependencies. 
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3.4 Implementing Function Tree Algorithm 

As discussed in Chapter 2, Function Tree Algorithm has in total three levels. Each 

level is an upgrade of the other. So, it’s decided only to implement the last level 

i.e. Level 3. The reason for this choice is that this level is almost like the traditional 

boundary value analysis except that in traditional boundary value analysis, all 

except 1 has the middle value but in Level 3 of Function Tree Algorithm has the 

middle value in at-least one of these parameters.  

Now, let assume that these three input parameters are X, Y and Z. Also, the 

following assumptions are made relating to the functions to be constrained: 

(1) Xmin will be the lower bound and Xmax will be the upper bound for X. For 

Y, the upper bound and the lower bound will be the functions of X. So, 

Ymax = fU(X) ……………………………... equation 3.1 

Ymin = fL(X) ……………………………… equation 3.2 

(2) For the third parameter, the upper bound and the lower bound will be 

functions of X and Y. So, 

Zmin = gL(X, Y) …………………………... equation 3.3 

Zmax = gU(X, Y) ………………………….. equation 3.4 

(3) All the three parameters: X, Y and Z must satisfy the following constraint 

function: 

h(X, Y, Z) ≥ 0 or h(X, Y, Z) = 0 ……………. equation 3.5 
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Now, it is known in general that the test cases which might involve the boundary 

values are usually more important than those cases which involve “middle” values. 

Though, it does not necessary mean that the “middle” value is required for testing, 

especially when factors such as cost and time are permitted. 

The test cases in this method are almost like the cases in the general boundary 

value analysis, taking two of the three parameters as middle values. The third 

parameters must go through the defined five elements sequence which is: min, 

min+, nom, max− and max. The most complete tree is the middle function tree. 

Every element has a middle function tree in the five elements sequence of the X’s 

that is: Xmin, Xmin+, Xnom, Xmax−, and Xmax. 

Using this method, a total of five test cases can be generated from the left most 

path. So, in total, there are 25 test cases that are being generated from the Level 3 

tree shown in Chapter 2. Though some of these test cases might not satisfy the 

Function Tree definition of the test cases. So, we will have to use constraint 

functions to remove all these unwanted or repetitive cases that do not satisfy the 

method’s conditions. However, if a test case satisfies the Function Tree definition 

of the test cases, it will be added to the test case list. 

The Level 3 approach of the function tree method was originally inspired from 

the general geometry view point. Fig 3.2 shows a representation of the boundary 

value selection for each parameter in a geometry point of view. 
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Fig 3.2: Geometry view of the implementation 

 

An algorithm was devised for the automation testing tool. Note that due to 

complexity constraint, the algorithm caters for only two cases.  

For two parameters (X, Y): 

• Generate x’s 5-element sequence x-lower, x-lower+ 1, x-middle, x-upper- 1, 

x-upper, where x-middle = (x-lower + x-upper) / 2. 

• Loop through x in x-sequence to find the y’s bounds. 

• Generate y’s 5-element sequence y-lower, y-lower+ 1, y-middle, y-upper - 1, 

y-upper. 

• Loop through y in y-sequence. For each pair (x, y) if at least one element is a 

middle element then add it to the test cases list. 

For three parameters (X, Y, Z): 

• Generate x’s 5-element sequence x-lower, x-lower+ 1, x-middle, x-upper- 1, 

x-upper. 



36 

 

• Loop through x in x-sequence to find the y’s bounds. Generate y’s 5-element 

sequence y-lower, y-lower + 1, y-middle, y-upper - 1, y-upper. 

• Loop through y in y-sequence. For each pair (x, y) if it satisfies the 

constraints is In-Z-Constraints (x, y) find z’s lower and upper bounds. 

• Generate z’s 5-element sequence z-lower, z-lower+ 1, z-middle, z-upper- 1, 

z-upper. 

• For each triple (x, y, z) if at least one element is a middle element then add it 

to the test cases list. 

Though, only algorithms for two cases are written i.e. two and three parameters 

but the function tree approach shown in this work is general and one can apply this 

approach to any constraints even with more than three parameters. Using this 

function tree algorithm, an automation testing tool was designed and implemented 

to decrease the time of testing. 

 

3.5 Implementing the Proposed Approach 

In the proposed approach, a new modified, based on boundary value analysis 

(BVA) algorithm works on the input parameters with functional dependencies 

being generated even with the invalid cases alongside valid cases to give more 

precise testing objectives.  

Figure 3.5 represents the proposed modified method which works on the 

algorithm. Then, the variables defined will be designated its value. As you know, 

each variable will be given a boundary value that is, min as in minimum value of 
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the range and max as in maximum value of the range. This summarizes the block 

number 2 of the block diagram.  

 

 

Fig 3.4: Block Diagram of the modified approach 

 

The following will explain the algorithm below in conjunction with fig.3.5 

above, which represents the proposed modified method. For figure 3.5, starting 

with the stage number 1 and Step 1 in the algorithm by asking for variables details. 

First, it asks for the number of variables and their names. Then, we must define the 

number of dependent and independent variables. Though in this case, it is taken for 
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granted that the first variable taken is the only independent variable and the other 

variables are dependent variables. 

After designating the variable values, the algorithm moves to stage 3 in which 

various functions are created known as variable functions that are basically 

functions to represent the dependencies of the dependent variable. The values for 

the coefficients and the constant term are then entered for the function. For 

example, suppose x is the independent variable and y is the dependent variable. 

Then the function will look like: 

Y = f(X) = aX4 + bX3 + cX2 + dX + e ………………………………. Equation 3.6 

Depending on the function type that whether the function is linear or non-linear 

and if non-linear then what degree. These are various factors that concludes the 

creation of the function. According to equation 3.6, if the function is linear, then 

value of a, b, and c will be 0. Otherwise, the values of a, b, and c depends on the 

degree of the function and dependency. 

Now, after creating these variable functions, they are divided into monomials by 

making them dependent on each variable one at a time. And if you are dividing a 

polynomial function by a monomial, it means that you are splitting the problem 

into different pieces. For instance, suppose if Y = 3X4 + 2X2 +5, then by dividing 

this polynomial function by X2 and if we assume X2 as Z, we can split the problem 

and make this polynomial function a monomial. 

After dealing with the variable function, we will now generate random mutants 

in the function. For example, consider the following C++ code fragment: 
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* This is a generic example to prove the case* 

* It is not from the code * 

if (a && b) { 

    c = 1; 

}  

else { 

    c = 0;} 

The condition mutation operator would replace && with || and produce the 

following mutant: 

if (a || b) { 

    c = 1; 

} 

else { 

    c = 0; 

} 

This is how the mutants are generated. After we finish installing a mutant at 

every step of the monomial, several test cases are generated. Now these test cases 

are generated according to the traditional boundary value analysis methods or 

techniques. 
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Now, with these mutants generated at every step, we will compare the values of 

the functions as well as the monomials also at every step respect to the mutation 

and the test case. If the value at the variable function is equal to the value at the 

monomials, then we should repeat the step of mutation and test case generation 

again because it means mutant is still there and nothing happened to it. Otherwise, 

we will follow the next step because mutant is killed. 

As soon as the mutant is killed, the random value used to generate the test cases 

and the mutants is chosen and returned to be the kth test case where k being the 

number of mutants killed. So, this is how we create mutants and kill them to 

generate test cases. This concludes the step 6 of the algorithm.  

Now, all the test cases are generated which are required or necessary to generate 

by an easy and efficient automation testing method using the mutation testing. 

 

3.5.1 Modified Algorithm: 

1) First 7*n test cases are computed by applying the traditional approach on the 

matrix??? created by Level 3 algorithm. 

2) The dependent variable functions or polynomials are generated. 

3) These functions are divided into monomials by making them dependent on 

each variable one at a time. 

4) Generate test cases by randomly creating the mutants at every step. 

5) If the computed value of the F(Polynomial) is equal to the computed 

monomial value then repeat Step 4 and Step 5 else Mutant is killed. 
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6) Return the random value as soon as the mutant is killed being the 5*n +kth 

test case, with K being the number of mutants killed up to this point. 

 

Now, in the algorithm given in chapter 2 i.e. the Function tree, there are five 

values for every parameter min, min+1, nom, max-1 and max. However, a 

modification is made by the inclusion of two parameters i.e. min-1 and max+1 

thereby giving the advantage of testing on the invalid cases. 

In level 3 of the Function tree i.e. the Normal Test in which at-least one of the 

parameters should be nom, others now can have seven different values which will 

make the testing objective more precise. The seven values considered as 

parameters are min-1, min, min+1, nom, max-1, max and max+1. For instance, X, 

Y and Z are the three parameters with Y = f (X) and Z = f (X, Y). There are seven 

boundary values for every parameter. 

Now assign all but one parameter the middle value, i.e.  nom, and that parameter 

can have any value of those seven. So, X can have any of the seven values then Y 

and Z can only have the nom value out of those seven. So, the total combinations 

for X = 7 and again same goes with Y and Z. So, the total number of possible 

combinations for three input parameters with functional dependency comes out to 

be 7*3 i.e. 21. These test cases include invalid cases for testing too. So, in general 

total number of possible test cases for n input parameters with functional 

dependencies are:  

# Test Cases = (n*7). 
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Fig 3.3: Flowchart of the new modified method 

 

Next Step in the algorithm is to divide the polynomial function into subsequent 

monomial function for each dependent variable. The test cases are generated by 

randomly creating the mutants at every step. If the computed value of 

F(Polynomial) is not equal to computed monomial mutant value, then generate this 

Note: 

K - Numbers of Mutants Killed 

N – Number of Variables 
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random number as the kth test case else repeat the previous step 50 times, which is 

an arbitrary number, till the condition is satisfied.  

For instance, if Z= f (X, Y) such that Z=2X+3Y. Now Z is divided into two 

functions, 2X and 3Y. Basically the coefficient of the other parameter is reduced to 

0. This will create mutants in the program causing a deliberate fault in the 

algorithm to check whether the test cases are still working or not. In this example if 

X=2 and Y=3 is given then Z will be either 4 or 9 but it should give the output 13. 

So, the test cases should not work due to the mutant present in it. So, the algorithm 

randomly creating and killing the mutant before some unknown error can create a 

mutant by mistake. This will reduce the unwanted errors. 
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CHAPTER – 4 

 

4.1. Introduction 

In the previous chapter, different algorithms, and different types of techniques on 

how software technology in terms of testing is improving largely.  

In this chapter, the difference amongst all the implementations in technical terms 

as well as their result are discussed namely Traditional approach, Function Tree 

approach, and the proposed approach the results of which are analyzed, and 

compared. Note that chapter 4 test results are based on 30 different cases, values, 

and different number of variables, however, only few cases are shown. 

 

4.2. Analyzing General Boundary Value Analysis 

The following are made for the implementation of the generalized BVA.  

• Enter the number of variables to be tested. 

• Enter the name of those variables. 

• Enter the Min and the Max value of those variables. 

Also, for the above implementation, the following assumptions are made: 

• It does not check for the values outside the range of Min-Max. 

• There are no dependent variables. 

• It largely depends on the Mid-value or the average value. 
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Case 4.2.1: 

 

 

Fig 4.1: Result of Case 4.2.1 

 

Number of Variables: 3 

Name of the variables: a, b, c 

Min & Max value of a: 10, 100 

Min & Max value of b: 5, 50 

Min & Max value of c: -100, 100 

Total Number of test cases generated: 15 

Figure 4.2, below, shows the actual number of test cases versus number of 

variables that are made throughout this implementation.  
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Fig 4.2: Number of Test Cases per Number of Variables in General BVA 

 

In general, this technique generates 5*n number of test cases where n is the 

number of variables. Five different cases being min, min+1, mid, max-1 and max. 

The dawn side of this method is that it does not solve the problem of 

dependency while the task for presented work is based on solving the BVA for 

input variables with functional dependency. 

 

4.3. Analyzing Function Tree Approach 

As compared with general BVA above, this method will deal with functional 

dependency and it is based upon the following; 

• To check dependency, it is required to enter at-least 2 variables. 

• The first variable to enter is always independent as the dependent variable 

needs a variable to depend upon as well. 
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• The highest degree considered in the equation of the dependent variable is 

three because of the complexity issue. 

Also, the following are the steps for method implementation: 

• Enter the number of variables to be tested. 

• Enter the name of the variables. 

• Enter the Min and Max of the first variable  

[Note: 1st variable is assumed to be independent] 

• Enter the coefficients based on the nature of variable’s degree. 

For computational complexities, the highest degree considered is three. If the 

variable is dependent on the other variable linearly, then the coefficients of other 

degrees in the equations are made zero. The equations that are being created are 

there to measure the quantity of dependency or may be to tell the degree of 

dependency of one variable to the other. 

 

Case 4.3.1: 

Number of Variables: 2 

Name of the variables: a, b 

Min & Max value of a: 14, 67 

Equation for F(b): 

Constant Term: 56 

Coefficient of a1: 6 

Coefficient of a2: -7 

Coefficient of a3: 0 
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Total Number of test cases generated: 10 

 

 

Fig 4.3: Results of Case 4.3.1 

 

Case 4.3.2: 

Number of Variables: 3 

Name of the variables: a, b, c 

Min & Max value of a: -14, 89 

Equation for F(b): 

3+4a-8a2+12a3 

Equation for F(c): 

7+18a-3a2+b+4b2 
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Fig 4.4: Inputs for Test Case 4.3.2 

 

 

Fig 4.5: Results of Case 4.3.2 
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Figure 4.5 below, shows the actual number of test cases versus number of variables 

that are made throughout this implementation.  

 

 

Fig 4.6: Number of Test Cases per Number of Variables in the Function Tree Approach 

 

As shown in fig. 4.5, in the case of 2 variables, total number of test case 

generated are 10. Similarly, in the case of 3 variables, 75 test cases are being 

generated and similarly in the case of 4 variables, 500 test cases are being 

generated and so on. In general, this technique generates n*5(n-1) number of test 

cases where n is the number of variables. Five different cases being min, min+1, 

mid, max-1 and max. This approach theoretically gives significantly better results 

in terms of efficiency but produce more test cases. 
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4.4. Analyzing the Modified Approach 

In the previous section, the Function Tree approach was analyzed through which it 

was found that the approach provides overwhelming test cases to deal with. In this 

section, the proposed method is to deal with the problem of functional dependency 

efficiently with an average number of test cases. 

The inputs used to implement this modified approach is almost like the Function 

Tree approach.  

• Enter the number of variables to be tested. 

• Enter the name of the variables. 

• Enter the Min and Max of the first variable  

• Enter the coefficients based on the nature of variable’s degree. 

 

Case 4.4.1: 

Number of Variables: 3 

Name of the variables: a, b, c 

Min & Max value of a: 1, 10 

Equation for F(b): 

10+5a+3a2-a3 

Equation for F(c): 

7+3a+2a2+ a3+8b+3b2-b3 

 

Fig 4.7 shows that total number of test cases for “Case 4.4.1” in which only 

three variables are used generates 21 regular test cases and 2 additional test cases. 
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Fig 4.7: Results of Case 4.4.1 

 

Case 4.4.2: 

Number of Variables: 4 

Name of the variables: a, b, c, d 

Min value of a: -1 

Max value of a: 10 

Equation for F(b): 

10+5a+3a2+2a3 

Equation for F(c):  

15+3a+7a2-a3+4b+2b2-b3 

Function for F(d): 

1+a+a2+a3+b+b2+b3+c+c2+c3 



53 

 

 

Fig 4.8: Results of Case 4.4.2 

 

Total number of test cases generated in this case are 28 + 3 = 31. 

In general, this technique generates (7*n) + k number of test cases where n is the 

number of variables and k is the number of mutants killed. Seven different cases 

being min-1, min, min+1, mid, max-1, max, and max+1. 

This approach theoretically gives significantly better results in terms of 

efficiency compared to the regular BVA technique but provides average amount of 
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test cases. In some scenarios, this method is much better than the traditional BVA 

method as well the Function Tree method. 

 

4.5. Comparison Amongst General BVA, Function Tree, and 

Modified Approach 

Fig 4.9 shows the outcome achieved through this work. The modified method 

shows good improvement in lowering the number of test cases, with much more 

improvements as the number of input variables increases.  

 

 

Fig 4.9: General BVA vs Function Tree vs Modified Approach 

 

The proposed method will evaluate almost every possible required test case 

increasing the system’s efficiency.  
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 Generalized BVA Function Tree Modified BVA 

Number of Test 

Cases 

5*n n*5^(n-1) (7*n) + k 

Mutation Score Least Lesser than Modified 

BVA 

More than both 

Generalized BVA and 

FTA  

Equivalent 

Mutants > 0 

Works Works Doesn’t work 

Number of 

Variables 

Works with finite 

number of variables 

Difficult to implement 

if n > 4 

Works with finite number 

of variables 

Range Check Between min and max Between min and max Checks for entire range 

Table 1: Generalized BVA vs Function Tree Algorithm vs Modified Algorithm 

 

The table 1 shows a comparison amongst the generalized BVA method, 

Function Tree approach, and the modified method. In table 1, the red marking of 

the modified approach shows how it is better in some ways than the other two 

methods compared with. In the modified BVA, mutation testing is also included 

due to which mutation score is counted and the table is created according to the 

hypothetical inclusion of the mutation in other two techniques.  

The elements of the Mutation Score (MS) are;  

D = Dead Mutants; 

N = Number of Mutants; 
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E = Equivalent Mutants; 

Where; 

MS= (D / (N-E)) -----------------------------Eq. 4.1 

Mutation Score will be significantly more than the other two approaches because 

the implementation of this modified method is done considering there are no 

Equivalent Mutants. If there are equivalent mutants, the modified BVA will not 

recognize it and will fail to work on it while other will work in the case of 

Equivalent Mutants.  

Now, moving on to the numbers of test cases and variables. Generalized BVA 

generates 5*n number of test cases while Function Tree method generates the 

highest of all three i.e. n*5^(n-1) and the modified approach generates 7*n + k 

number of test cases where n is number of variables and k being the number of 

mutants killed at each step. Both generalized BVA and the proposed technique 

(modified BVA) works well with finite number of variables which can be 5, 10, 20 

etc. But in the case of Function tree algorithm, it only works till 4 or 5 variables, 

since the number of test cases will become so large that it will be impossible to test 

and will therefore encounter complexity issues. 
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CHAPTER 5 

 

5.1. Conclusion 

There are several techniques of Software Testing in this world but people do not 

know which technique to use and when. So, this work is a help to understand 

testing a little better. One of which is Boundary Value Analysis. A modified 

version of Boundary Value Analysis using input parameters with functional 

dependency is proposed in this work. The idea is derived from the inter 

dependency of functions among the input parameters. With this modified 

algorithm, an automated testing tool is created and implemented.  

Generalized BVA generates 5*n number of test cases where n is number of 

variables while Function Tree method generates the highest of all three that is 

n*5^(n-1) and the modified approach generates 7*n + k number of test cases where 

k is the number of mutants killed at each step. So, it shows that the number of test 

cases in case of modified algorithm is significantly lower than the Function Tree 

algorithm while almost similar as regular BVA but it covers more functionalities 

and features as shown in Chapter 4. 

This testing tool shows the advantages of the modified algorithm developed over 

the Functional Tree Approach and reduces a significant amount of test cases that 

leads to an exhaustive testing. This modified method will test almost every 

possible required test case increasing the system’s efficiency compared to regular 
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BVA in terms of speed and number of test cases. This method will be a very good 

help for any product based company saving some amount of money and time. 

 

5.2. Future Work 

In this work, the Function tree approach induces a lot of test cases of order n*5^(n-

1). So, it is difficult to cope with such a large data and to check on these values 

which are more than 18k if n=6 and this results in exhaustive testing. Thus, the 

proposed algorithm reduces the test cases significantly to 7*n +k; k being the killed 

mutants. 

Though the algorithm requires at-least one independent variable so problems 

like triangle inequality can’t be handled. So, for the future algorithm can be further 

modified to incorporate the case when all variables are interdependent.   
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