
Introduction

The spatial distribution of physical and hydraulic
properties in natural materials is difficult to predict
deterministically. Scarcity related to sampling pro-
grams is another factor that complicates the predic-
tion of the subsurface properties. Hence, prediction
of the spatial occurrence of rock properties via sto-
chastic process ought to be done for effective nume-

rical modelling of physical and hydraulic processes
that act on heterogeneous properties.

Geostatistics is a branch of applied statistics
developed by George Matheron of the Centre de
Morphologie Mathematicque in Fontainebleau,
France (Dorsel and Breche, 1996) and it original
purpose was centered on estimating changes in ore
grade within a mine. Geostatistic uses the regionali-
zed variables; a regionalized variable varies in a
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ABSTRACT

In this article objective have been made to reviews different geostatistical methods
available to estimate and simulate petrophysical properties (porosity and permeability) of
the reservoir.

Different geostatistical techniques that allow the combination of hard and soft data
are taken into account and one refers the main reason to use the geostatistical simulation
rather than estimation. Uncertainty in reservoir characterization due to variogram
assumption, which is a strict mathematical equation and can leads to serious simplifica-
tion on description of the natural processes or phenomena under consideration, is treated
here. Mutiple-point geostatistics methods based on the concept of training images, sug-
gested by Strebelle (2000) and Caers (2003) owing to variogram limitation to capture
complex heterogeneity, is another subject presented.

This article intends to provide a review of geostatistical methods to serve the interest
of students and researchers.
Key words: Petrophysical properties, Geostatistic, Estimation, Simulation, Uncertainty.

RESUMEN

Este artículo presenta una revisión de diversos métodos geoestatísticos disponibles
para estimar y para simular características petrofísicas (porosidad y permeabilidad) de la
formación geológica (roca depósito del petróleo).

Se presentan diversas técnicas geostatísticas que permiten la combinación de datos
hard y soft y se explica la razón principal para utilizar la simulación geoestatística en vez
de estimación. También se explica la incertidumbre en la caracterización del depósito
debido a la asunción del variogram. El hecho de que el variogram sea una simple ecua-
ción matemática conduce a la simplificación seria en la descripción de los procesos o de
los fenómenos naturales bajo consideración. Los «métodos geostatísticos del Multiple-
point» (Multiple-point geostatistics methods) basados en el concepto de training images,
sugerido por Strebelle (2000) y Caers (2003), debido a la limitación del variogram para
capturar heterogeneidad compleja es otro tema presentado.

Este artículo se propone proporcionar una revisión de métodos geostatísticos que sean
de interés para estudiantes e investigadores.
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continuous manner spatially so that data values
from points nearer each other are more correlated.
Regionalized variables describe phenomena with
geographical distribution (e.g. distance downwards,
elevation of ground surface, etc.). The phenomenon
exhibit spatial continuity; however, it is not always
possible to sample every location. Therefore, unk-
nown values must be estimated from data taken at
specific locations that can be sampled. The size,
shape, orientation, and spatial arrangement of the
sample locations are termed the support and
influence the capability to predict the unknown
samples. If any of these characteristics change, then
the unknown values will change. The sampling and
estimating of regionalized variables are done so
that a pattern of variation in the phenomenon under
investigation can be mapped such as a contour map
for a geographical region. Therefore, contrary to
traditional statistics where independence between
samples is generally assumed, geostatistics takes
advantage of the fact that samples located in proxi-
mity to one another are often more similar than
those obtained at large separation distances, i.e., it
provides a means of quantifying this spatial correla-
tion in material properties and then exploiting that
information for use in both interpolation and sto-
chastic simulation techniques.

Samples data are interpreted as from a random
process, in geostatistical models (Soares, 2000).
According to the same author, a stochastic process is
only, in model context, a way to analyses data from
experimental samples. Hence, the first step of geos-
tatistical modeling is to concept a random process
that matches the experimental data or observations.

The geostatistic allows the quantification of natu-
ral resources characteristics or spatial phenomena
(e.g. mining resource). Therefore, one must have
models that allow deduce the magnitude of pheno-
mena in the not sampled space from available infor-
mation (Soares, 2000).

In order to perform any type of geostatistical esti-
mation or simulation one requires an assumption of
stationarity. Geostatistic is completely imbibed by
the principle of stationarity. To determine the histo-
gram of the petrophysical property (porosity, per-
meability) of a reservoir one relies on stationarity in
the sense that information from various wells are
pooled together into one single histogram. Impli-
citly, it is assumed that, in terms of a histogram, all
the property values in that histogram originate from
a single «population». Both histogram and vario-
gram (based on the assumptions of stationarity) are
used for estimation and simulation purpose throug-
hout the reservoir, frequently in interwell region
where a few a-priori information is present (Caers
and Zhang, 2002).

Different reservoir rocks shows differences in
pores/fracture dimension and connection, (…)
which can change with depth and areal location.
Hence, one must understand as well as possible the
distribution of reservoir properties, i.e. reservoir
characterization, in order to enhance oil recovery.

In the last years geostatistical methods have been
used for stochastic characterization of the reservoir
rocks by generating multiple reservoir models cons-
trained to geologic, seismic and production data
(Caers and Zhang, 2002). According to the same
authors geostatistic intends to achieve the following
three objectives: i) provide reservoir models that
depict a certain believed or interpreted geological
heterogeneity; ii) provide a quantification of uncer-
tainty through multiple reservoir models, all hono-
ring that same geological heterogeneity; and iii)
integrate various types of data, each type bringing
information on possibly different scales and with
different precision.

This section presents several geostatistical techni-
ques used to estimate and simulate the porosity and
permeability of the reservoir rocks.

It is explained how log and core porosity/permea-
bility measurements and soft information on poro-
sity/permeability can be used in the simulation of
spatial variable realizations.

Reasons to use geostatistics

Geostatistical techniques is considered suitable to
study spatially distributed phenomena due to theirs
capability to quantify the uncertainty in the derived
estimates (Gandin, 1970; Matheron, 1970; Delhom-
me, 1978; de Marsily, 1986).

Geostatistics allows a good estimate of property
values between data points – interwell properties. The
conjugation of these property values (data and estima-
ted) is a property grid. Geostatistics methods, such as,
kriging and conditional simulation, make accurate
grids and can combine, by cokriging and cosimula-
tion, many different types of hard and soft data, and
is able to quantify the uncertainty in a reservoir des-
cription. Geostatistical should be viewed as a tool to
integrate data (e.g., geological interpretation, core and
log data, seismic dada and production data). Table 1
presents some examples of hard and soft data (soft
data must be calibrated to the hard data).

Table 1.—Examples of Hard and Soft data

Hard Data Soft Data

Lithofacies assignments from core Seismic data
Core porosity Well log porosity
Core permeability Well log permeability
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One use grid to characterize a reservoir because it
is the form of input data required for reservoir flow
simulator and others software. Usually grid corres-
ponds to rock properties but, for instance, reservoir
fluid can be used too. This situation avoids the pro-
blem due to different data structures (data inconsis-
tency) that usually require a great number of pro-
grams and procedures to do simply data conversion.

Geostatistical methods provide an appreciable
accuracy of forecasting based on the reservoir
model because they produce grids which represents
reservoir heterogeneity; can quantitatively combine
many different types of hard and soft data; and, can
quantify the uncertainty in a reservoir description.
Although, geostatistical quantification and formali-
zation of physical concepts relies on strict mathe-
matical rules and equations which leads to serious
simplification on description of the natural proces-
ses or phenomena under investigation (Caers and
Zhang, 2002).

Geostatistical estimation and simulation

In this section one presents a brief description of
basic geostatistical theory and the methods of geos-
tatistical interpolation and simulation that are com-
monly used for reservoir modelling purpose.

Geostatistical estimation, kriging, is used to
obtain the unbiased estimates with minimum
variance. The kriging methods are in general not so
interesting for reservoir study because the use of
kriged fields as input parameters to the reservoir
flow equation yields biased estimates of fluid flow
velocities. More interesting are geostatistical simu-
lation methods that give multiple equally likely rea-
lizations of the attribute at any location in the
domain and an «unbiased» (it is not really unbiased
but less biased or more close to field condition)
estimate of the reservoir flow velocities may be
obtained.

All geostatistical methods are based on stationa-
rity principles, since different measurement data
within the study domain are pooled together in
order to estimate the statistics. The mean is estima-
ted by calculating the arithmetical average in case
no preferential sampling was done. However, it is
very common the use of a preferential sampling
scheme. This may be due to physical constraints or
because a zone of study domain is of special inte-
rest. In case of a preferential sampling scheme the
cell declustering technique (Deutsch and Journel,
1998) can be used to estimate the mean.

The covariance function is calculated by plotting
the separation distance of the all pairs of measure-
ment data versus the variance for those pairs of mea-

surement data. The result is a data set with for each
of the comparison pairs a covariance and the separa-
tion distance. However, in practice, the variogram is
normally used to model the spatial correlation.

The semivariogram (see figure 1) is estimated by
grouping pairs of measurement data in distance clas-
ses. The pairs in one distance class have a similar,
but not necessarily equal, separation distance. The
experimental semivariogram [γ*(h)] is defined as:

(1)

where: h - is a directional vector; γ*(h) - is the
experimental semivariagram for a vector h; N(h) - is
the number of pairs of data locations a vector h; z(xi)
- is the value for attribute z at location xi, and
z(xi + h) - is the value for attribute z at a vector h
from location xi.

By the way, it is important to refer that the defini-
tion of the variogram does not require the existence
of a constant mean and finite variance for the ran-
dom function. In this case a sufficient condition is
that the random function increments Z(x) - Z(x+h)
(h being the separation distance) are stationary of
order two (Goovaerts, 1997). This condition is also
called the intrinsic hypothesis (Journel and Huij-
bregts, 1992).

Normally the semivariogram is estimated by allo-
wing a tolerance of ∆h around the separation distan-
ce h, in order to get enough comparison pairs in
each class. After estimating the experimental semi-
variances for different distance classes a model
variogram has to be obtained because semivariances
for any possible separation vector h will be needed.
Not any function can be used as a variogram model:
the positive definite condition should hold. Some

  
γ *(h) =

1
2N(h) z(xi )− z(xi + h)[ ]2

i=1

N(h)

∑
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models are commonly used because they are known
to be positive definite.

The Spherical model:

(2)

where: co is the nugget effect, c the sill minus the
nugget and a the range. Others parameters have the
same meaning referenced before.

The Exponential model:

(3)

The Gaussian model:

(4)

The Power model:

(5)

Since the positive definite condition holds for any
linear combination of the models above, a vario-
gram model can be a combination of two or more of
the specified models, each model having different
values for its parameters.

The models presented above (equation 2 to 5) are
for isotropic variogram models. But, one knows that
in reality we are facing with the anisotropy, i.e. the
change of the pattern of spatial variability with
orientation. Anisotropy can be distinguishes betwe-
en geometric and zonal anisotropy (see, for instan-
ce, Hendricks Franssen, 2000; Soares, 2000; Pebes-
ma, 2001).

Geometric anisotropy: directional semivariogram
have same shapes and sill values, but different
range values.

Zonal anisotropy: means that the sill value is a
function of the direction. There is situation in which
both sill and range values are a function of direction.

This category of anisotropy is typical in stratified
phenomenon whose the spatial continuity through
the layer is widely different from the variability bet-
ween layers (Hendricks Franssen, 2000).

The definition of the variogram is quite important
since the result of stochastic simulation is based on it.
According to Wingle (1997) and Ortiz and Deutsch
(2002) by evaluating the uncertainty in the vario-
gram, the greater range of uncertainty associated
with the simulated results becomes apparent. Wingle
(1997) refers that the uncertainty in the simulation
process can be more completely evaluated by using
methods such as jackknifing, latin-hypercube sam-

pling, and expert opinion in defining the semivario-
gram models to be used for stochastic simulation.

Jackknifing: in this procedure the experimental semivario-
gram is calculated with one (or more) data point(s) removed
from the data set. By repeating this procedure for every point in
the data set, a series of n (n = number of samples) experimental
semivariograms is calculated. For each lag distance there are
now n γ*(h) values. Using these values, confidence limits can
be approximately determined, for the mean γ*(h) at a particular
distance. When these are plotted, the error bars define the pos-
sible range of the modeled variogram (given a specific confi-
dence level – 95% is usually used). This technique intend to
help the modeler in optimizing further data collection or iden-
tifying a likely range of reasonable model variograms.

Latin-Hypercube: once statistical distribution of the experi-
mental semivariograms has been calculated, variograms can be
fit through the zone defined by the error-bars. The objective is
not to make a single best estimate of the character of the sub-
surface (i.e. a single variogram), rather the objective is to select
model semivariograms representative of the range of possible
conditions at the site. This range of variograms should be used
with the original data to conduct kriging and stochastic simula-
tion to generate multiple interpretations of the subsurface.

One is convinced that expert opinion is more use-
ful to contribute to the definition of an accurate
variogram model. Indeed, another methodologies
follow mathematical rules and equations which
obviously simplify the reality. According to Soares
(2000), the process of fitting experimental semiva-
riogram by a theoretical model is widely constraint
to the expert opinion of the modeler about the spa-
tial phenomenon under studying.

Cautionary notes about semivariogram definition

After the calculation of the semivariogram values
for different h, one needs to fit the variogram which
represents the total area. This is one of the most
important (or most important) geostatistical steps
because it summarizes the structural characteristics
(dispersion or continuity, anisotropy, nested structu-
res) of the spatial phenomenon in a single vario-
gram model (Soares, 2000).

«Variogram modelling is a critical step in any geostatistical
study; however, a reliable variogram is difficult to infer in pre-
sence of sparse data».

Ortiz and Deutsch, 2002

The process of defining the variogram is decisive
and requires that the modeler be conscious about
the following:

Wingle (1997)
— There is not a method to directly measure the

uncertainty, error, or confidence limits associated
with an experimental semivariogram;

— γ*(h) is calculated as the mean of squared dif-
ferences for a given distance. Therefore, it is a
variance of the data for that distance and not really
a mean;

— the variance about γ*(h) increases with sepa-
ration distance;

  γ (h) = co + c(hω ) 0 < ω< 2

  
γ (h) = co + c 1− exp

−3h2

a2


















  
γ (h) = co + c 1− exp

−3h
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— the expert of the modeler is determinant to
reduce uncertainty in the variogram definition;

— the variogram cannot reproduce with comple-
te accuracy the field heterogeneity since it is a sta-
tistical tool (guided by strict mathematical rules and
equations) which unavoidably cause serious simpli-
fication on description of the natural processes or
phenomenon (Caers and Zhang, 2002);

— outliers can perturb the interpretation of data
because they distort the variogram shape. So it should
be removed if the calculated variogram without
outlier match, in a better way, others values of γ*(h)
(Soares, 2000). But it should not be removed without
further justification (for more about outliers see Igle-
wicz and Hoaglin, 1993 and Belsley et al., 2004).

Geostatistical estimation

The first geostatistical step, described above, is to
obtain the parameters of a given random function.
The next step corresponds to the use of the random
function model to estimate (or interpolate) the attri-
bute (e.g. porosity, permeability) of interest at loca-
tions where there are not measurements.

The variograms explained above is used to obtain
model covariance: i) for any pair of locations; ii)
between measurement points; and, iii) between a
measurement point and a location where one want
to estimate the value of the attribute.

There is several form of kriging developed for
estimation purpose. The estimation algorithms most
commonly used are the following:

Continuous variables Categorical variables

Simple kriging (SK)*. Indicator kriging 
(with or not soft data).

Ordinary kriging (OK)*. Maximum probability classification.
Universal kriging (UK)*. Rescaled maximum probability 

classification.
Ordinary Kriging with external Dynamic classification.

drift (KED)*.
Cokriging and collocated cokriging*.
Indicator kriging*.
Indicator collocated cokriging.

* These methods are described, below, in this study.

Simple kriging (SK)

The SK is the most vulgar form of kriging. One
assumes that the mean of a set of random variable
related to sampled values and non-sampled points
are known. This algorithm is applied whether one
must know the mean of random function or good
information about the trend of phenomenon is avai-
lable (Soares, 2000).

The simple kriging unbiased estimator with mini-
mum variance for the value of an attribute at a cer-
tain location is given by:

(6)

where: N(x) - is the number of measurement data;
λi

SK(x) - the assigned kriging weight to each of the
observation data. The following factors could be
considered in assigning the weights: closeness of
the data to the location being estimated, clustering
of the data locations, anisotropic continuity (prefe-
rential direction) and magnitude of continuity/varia-
bility; Z(xi) - the data value at the i-th observation
location; and m - the stationary constant mean. The
term λi

SK(x) is obtained by solving the simple kri-
ging system.

The variance of the SK is expressed as follows:

(7)

where: C - is the model spatial covariances; and
C(0) - is the spatial covariance for separation dis-
tance zero.

Ordinary kriging (OK)

Ordinary kriging (also called punctual kriging)
«allows to accounts for local variations in the mean
by limiting the domain of stationarity to the local
neighbourhood centred on the location where an
estimation of the attribute value is required». Due to
this particularity, OK is more robust to non-statio-
narity (Hendricks Franssen, 2000). The ordinary
kriging estimate is:

(8)

The unknown local mean does not appear in the
expression because it is filtered out by forcing the
kriging weights to sum to one:

(9)

From the following system of equations the kri-
ging weights are calculated:

(10)

   

C(x1 − x1) L C(x1 − xN(x) ) 1
M O M 1

C(xN(x) − x1) L C(xN(x) − xN(x) ) 1
1 1 1 0

















λ1
OK (x)

M
λN(x)

OK (x)
µOK (x)

















=

C(x1 −
M

C(xN(x) −
1









  
λi

OK (x) = 1
i=1

N(x)

∑

  
ZOK (x)[ ]* = λi

OK (x)Z(xi )
i=1

N(x)

∑

  
σSK

2 (x) = C(0)− λi
SK (x)C(xi − x)

i=1

N(x)

∑

  
ZSK (x)[ ]* = λi

SK (x) Z(xi )−m[ ] + m
i=1

N(x)

∑
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where µ (x) is the Lagrande multiplier which is
introduced to guarantee that the kriging weights
sum to one under the condition that an unbiased
estimate with minimum variance is obtained.

The variance is calculated as follows:

(11)

Universal kriging (UK)

In some cases it may be inappropriate to consider
the mean even constant in a local neighbourhood. In
such a case the local mean in a neighbourhood is
modelled as a function of the coordinates. The uni-
versal kriging is similar to that of ordinary kriging,
but used when a trend, or slow change in average
values, in the samples exists.

The UK is a kriging with trend estimator and is
given by:

(12a)

with the following constraints:

(12b)

where: (x) - is the location where an estimation is
required; (xi) - is one of the N measurement loca-
tions; fk - are known trend function; fk(xi) - is the
function value at a measurement location; and fk(x)
- is the function value at a location (grid cell) where
an estimation is required.

In order to make uncomplicated the demonstra-
tion of the UK, let the variable Z(x) be equal to the
sum between a mean m(x) and a residual R(x) with a
null mean and covariance CR:

Z(x) = m(x) + R(x) (13)

For the UK the variance is given as follows:

(14)

In some cases one can consider the trend m(x) as
a linear function of an external auxiliary variable
Y(x) (Marechal, 1984: in Soares, 2000). This pro-
cess is called Kriging with external drift, which can
be seen as a branch of universal kriging, and
accounts for more complex trends.

Cokriging

When, beyond the principal variable Z1, one has a
secondary variable Z2 (covering the field) strongly

correlated with the variable Z1, estimation process
by kriging ought to takes account of secondary
information wherever possible (Goovaerts, 1997;
Soares, 2000).

To estimate the variable Z1(x) in an unsampled
location, the values of both variable [Z1(xi) and
Z2(xj)] are linearly combined as follows:

(15a)

where: N1(x) - is the number of data for the princi-
pal variable Z1; N2(x) - is the number of data for the
secondary variable Z2; Z1(xi) and Z2(xj) - are respec-
tively the value of the principal variable at the i-th
measurement location and the value of the secon-
dary variable at the j-th measurement location; and
ai and bi – are the cokriging weights.

In order to guarantee an unbiased estimator, the
following constraints are imposed to the weights:

(15b)

The cokriging weights are obtained by solving
the following system:

(15c)

where: Mii, Mji, Mij and Mjj are the matrices with the
covariances and cross-covariances for the principal
and secondary variable; Cii(xi – x) and Cji(xj – x) are
covariances and cross-covariances between the data
and the location where the estimate is required; 1i,
1j, 0i and 0j are unit and null vectors and the supers-
cript T means transpose.

The variance is expressed as:

(16)

Indicator kriging

Indicator kriging (Journel, 1983) differs from
simple or ordinary kriging in that a range of para-
meter values are reduced to discrete indicators
(integer values) by defining threshold values.
Indicator description makes it possible to «krige»
qualitative parameters such as lithology which,
for instance, could be defined as indicator 1 for
silt, indicator 2 for silty-sand, and indicator 3 for
fine sand.

  
σCK

2 (x) = Cii(0)− bi − aiCii(xi − x)− ajCji(xi − x)
j=1

N2 (x)

∑
i=1

N1(x)

∑

 

Mii Mij 1i 0i

Mji Mjj 0 j 1j

1i
T 0 j

T 0 0
0i

T 1j
T 0 0

















ai
aj

bi

bj

















=

[Cii(xi − x)]T

[Cji(xj − x)]T

1
0



















 
ai = 1 and bj = 0

j=1

N2 (x)

∑
i=1

N1(x)

∑

 
ZCK (x)[ ]* = aiZ1(xi ) + bjZ2(xj )

j=1

N2 (x)

∑
i=1

N1(x)

∑

  
σUK

2 (x) = CR(0)− λi
UK (x)CR(xi − x)

i=1

N(x)

∑

  
λi

UK (x) f k (xi ) = f k (x), k = 0,...,K
i=1

N(x)

∑

  
[ZUK (x)]* = λi

UK

i=1

N(x)

∑ (x)Z(xi )

  
σOK

2 (x) = C(0)− λi
OK

i=1

N(x)

∑ (x)C(xi − x)−µOK (x)
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In this technique the measurement data re trans-
formed into indicator data by the following trans-
form:

(17)

where: iz - is the indicator transform and z the thres-
hold value (which represent the values of especial
interest like an established critical porosity/permea-
bility.

The ordinary indicator kriging estimate is:

(18)

where Iz is the indicator data and z the threshold.
The indicator kriging system that gives the indi-

cator kriging weights is expressed by:

(19)

In the next section one presents the simulation
techniques that ought to be used instead the interpo-
lation algorithms since its produce more accurate
results for spatial variable.

For a full explanation of the methods, briefly des-
cribed above, see Olea (1974); Journel and Huij-
bregts (1992); Davis (1986, 1987); Goovaerts
(1997); Wingle (1997); Deutsch and Journel (1998);
and Soares (2000).

Geostatistical simulation

In the first place it is important to stress that inter-
polations process explained above do not give accu-
rate results as the simulation of multiple equally
likely realizations. The reason is because the interpo-
lation methods do not represent the «realistic» maps
due to smoothing. Estimation is locally accurate and
smooth, appropriate for visualizing trends, inappro-
priate for flow simulation where extreme values are
important, and does not assess of global uncertainty;
while simulation reproduces histogram, honors spa-
tial variability (variogram), allows an assessment of
uncertainty with alternative realizations possible, and
is appropriate for flow simulation.

The main goal of simulation in geostatistics is to
produce «realistic» maps of a phenomenon rather
than minimizing the prediction error, which usually
leads to smooth maps, not really representative of
the real field. As referred by Soares (2002), simula-
tion model for spatial phenomenon intend to generate
images which characterize the resource by reprodu-

cing the proportion and high or low spatial continuity
of different structures, heterogeneities and extreme
classes of related histograms. Reproduces the histo-
gram of an original variable is an obligation of any
simulation approach. The simulation is performed to
reproduces the variability of the phenomenon
through the distribution function of Z(x) – Fz(z) =
prob{Z(x) < z} and the variogram γ(h).

Continuous variables Categorical variables

Sequential Gaussian Sequential Indicator Simulation.
Simulation (SGS)*.

Direct Sequential Simulation Simulated Annealing.
and Cosimulation (Co-DSS)*.

Probability Field Gaussian Post Processing of Simulation using
Simulation . Annealing.

Sequential Indicator Truncated Gaussian with or without 
Simulation (SIS). a linear trend.

Simulate Annealing. Categorical to continuous 
(facies to physical property) 
using SGS.

Cloud transform. Categorical to continuous using 
cloud transform.

Examples: i) continuous variables: lithotypes, soil types, forest
species, etc.; ii) Categorical variables: grades, porosity, etc.

Sequential simulation is a stochastic algorithm
widely used in geostatistical to reproduce spatial
distribution and uncertainty of variables of different
natural resources, in part, owing to its simple imple-
mentation (Soares, 2001).

Sequential Gaussian Simulation (SGS)

The Sequential Gaussian Simulation (SGS) is
widely used in geostatistics (Deutsch and Journel,
1998). To produce «realistic» maps when data are
normally distributed, one estimates the parameters
of the local probability density function at each
location of the test set, and randomly generates a
value from this distribution.

The first part of a SGS is to check if the known
data are normally distributed, and if not, to apply
normal-score transformation on them (Deutsch and
Journel, 1998). Then, one calculates the variogram
of the transformed data according to equation 1.
The next part is the simulation process itself.

1. One chooses at random a point to estimate
inside the unknown data set.

2. Apply the kriging procedure, using the
known data set and the modelised variogram, to
estimate the mean µkrig and variance σkrig

2 of this
value. These two parameters are then considered
respectively as the mean and variance of the local
Gaussian probability density function of the point.

   

C1(x1 − x1;z) L C1(x1 − xN(x);z) 1
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3. One randomly chooses a value for the unk-
nown point, following the law N(µkrig,σkrig

2).
4. The simulated point is then considered as a

known point and will be used to simulate the next
randomly chose unknown point.

5. Repeat from step 1, until there are no more
unknown points.

Gilardi et al. (2001), refer that «the result of one
simulation is thus a «noisy» version of a kriging
procedure, which reproduces the statistical histo-
gram and the variogram of the known data, giving a
more realistic aspect to the output but a lower pre-
diction performance». However, when performing
multiple sequences of simulation, one is able to
draw reliable probability maps.

Confidence interval calculation

As the simulated data are normally distributed, it
is also easy to estimate the confidence interval of a
prediction for each data point. The procedure used
by Gilardi et al. (2001), is the following:

— Compute the mean µsim and standard devia-
tion σsim of the simulation of each data point;

— Define the 95% confidence interval bounds as
the 2.5% and 97% quantils of the cumulative den-
sity function of the normal law defined by N(µsim,
σkrig). When these bounds have been calculated, one
is applying the N-Score back-transformation both
on them and on the mean, in order to get back the
real output space.

Procedure of SGS experiments

One has to simulate a test set using the informa-
tion given by a train set. The SGS 95% confidence
interval calculation may be done like this:

1. Normal score transformation of the train out-
puts if necessary;

2. Variogram modelling using the transformed
outputs of the test set;

3. 100 or more sequential Gaussian simulation
procedures of the set;

4. Evaluation of the confidence intervals as des-
cribed above (confidence interval calculation);

5. Back-transformation of the confidence inter-
vals bounds if necessary.

For the SGS the Gaussian hypothesis imposes a
normal-score transformation and back-transforma-
tion of data if they are not yet normal. Such trans-
formation seems to cause artifacts in solutions as
observed by Gilardi et al. (2001). The consequence

of mathematical simplicity is the characteristic of
maximum spatial entropy, i.e., low and high values
are disconnected. The SGS is recommended for
porosity and not appropriate for permeability.

For permeability simulation the simulate annea-
ling is becoming very popular.

Direct Sequential Simulation 
and Cosimulation (DSS)

The Direct Sequential Simulation and Cosimula-
tion (Co-DSS) was proposed by Soares (2001) and
has been used in several study developed by Center
for Petroleum Modelling of Technical University of
Lisbon (CMRP/IST), concerning to simulation of
petrophysical properties (e.g. porosity and permea-
bility), with satisfactory results.

Sounds like the DSS intend to substitute the
Sequential Indicator Simulation (SIS) and Sequen-
tial Gaussian Simulation (SGS) since it does not
require the transformation of continuous variable
into a binary or a Gaussian variable. As refers Soa-
res (2001), the goal «is to use the local simple kri-
ging estimates of the mean and variance, not to
define the local cumulative distribution function
(cdf) but to sample from the global cdf. Simulated
values of the original variable are drawn from inter-
vals of the global cdf, which are calculated with the
local estimates of the mean and variance». The DSS
entails the co-simulation procedure in the absence
of any transformation (e.g. into a set of indicator
variables or a standard Gaussian variable) of the
original variables.

This method is fully described in Soares (2000,
2001), hence it is not extensively treated in this work.

The method (Co-DSS) proposed by Soares
(2001) is based in the following principle:

If the local cdf’s are centered at the simple kri-
ging estimate

(20)

xα being the conditioning data (original and pre-
viously simulated values), with a conditional
variance identified with the simple kriging variance
σsk

2 (xu); no matter what probability distribution we
choose, the spatial covariance model or variograms
are reproduced in the final simulated maps.

One of the main advantages of this algorithm
(DSS) over traditional SIS and SGS is that it allows
a joint simulation dealing directly with the original
variables (Soares, 2001). The DSS method is
recommend both for porosity and permeability.

The results of any sequential simulation must be
checks according to the following questions: i) honor

  
Z(xu )* = m + λα (xu )[z(xα )−m]

α
∑
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data?; ii) honor global proportions?; iii) honor vario-
gram?; and, iv) honor concept of geology?

Final Remarks

Stochastic modeling of reservoir properties typi-
cally includes two steps: the geometry of facies is
simulated first and then the spatial distribution of
petrophysical variables (e.g., porosity and permea-
bility) is simulated within each facies (Haldorsen
and Damsleth, 1990). This two-step approach
allows reproduce large scale heterogeneities as
generate by facies boundaries and smaller scale
variability within facies. In his article Azpiritxaga et
al. (2000) refers a more detailed description about
the steps concerned to reservoir study: i) the first
approach is to perform a calibration between seis-
mic and well stratigraphy; ii) attribute calculation is
done for each horizon; iii) geostatistical techniques
are applied to build a quantitative relationship bet-
ween rock quality and attributes. This relation is
then incorporated into a stochastic model in order to
characterize the reservoir and a fluid flow simula-
tion is performed.

As referred before, there are several algorithms
available to simulate categorical variables: Boolean
algorithms (Ripley, 1987; Haldorsen et al., 1988;
Suro-Pérez, 1991), multiple truncations of a Gaus-
sian field (Journel and Isaaks, 1984; Matheron et
al., 1987; Xu and Journel, 1993), sequential Gaus-
sian simulation and indicator-based algorithms
(Deutsch and Journel, 1998), simulate annealing
(Farmer, 1991; Deutsch and Journel, 1994), and
direct sequential co-simulation (Soares, 2001). Each
algorithm generates a set of alternative, equally pro-
bable, categorical maps conditional to available
information such as facies-type at sample locations,
spatial continuity and transition probabilities among
categories as deduced from a training image or a
structural analysis of the data.

Although multiple realizations are necessary for
the user to appreciate the uncertainty in the spatial
distribution of facies, there is a tendency in retai-
ning a single realization. This unique categorical
map may be the realization that pleases best the
geologist or, more often, it is the first realization
generated (Goovaerts, 1994). The author proposes
that, in such case, an alternative would consist of
using a single estimated (rather than simulated)
categorical map deduced from a classification of
the grid nodes. Soares (1992) developed a classifi-
cation algorithm that preferentially allocates nodes
to the category with largest local probability of
occurrence under the constraint of reproduction of
global proportions. Because local probabilities are

established using kriging algorithm, Soares’ clas-
sification is typically too smooth and does not
reproduce (cross) variograms models (Goovaerts,
1994). To correct for this smoothing effect and
reproduce better transition probabilities between
categories Goovaerts (1994) proposes to post-pro-
cess Soares’ or any other estimated categorical
map by a MAP (maximum a posteriori or steepest
descent-type) algorithm with a three-components
objective function.

Annealing allows integration of disparate sources
of information (multiple-points statistics, connecti-
vity functions) which cannot be readily taken into
account by other simulation algorithms (simulation
annealing is more often used to describe reservoir
permeability). Indicator-based algorithms can pro-
vide local probabilities for any specific facies to
prevail at any location; such local probabilities are
convenient vehicles to integrate prior information
such as trends in facies proportions or the absence
of a facies in a particular area.

Goovaerts (1994), proposes two criteria for the
incorporation of local probabilities into a simulated
annealing objective function: i) maximization of the
average local probability, and ii) reproduction of
local class proportions. But this criterion was not
described here because one believes that the direct
sequential co-simulation is a very suitable method
to simulate porosity and permeability with suffi-
cient accuracy.

Well and seismic information give vertical and
lateral characterization of the reservoir, respecti-
vely. Geostatistical techniques could be seen as a
way to combine well and seismic data to produce
best description of the reservoir. Boechmann
(2000), refers that 3D seismic data is possibly the
only data source for detecting reservoir heterogenei-
ties in the interwell regions.

Todini (2001) refers that no account of the effects
of uncertainty in parameters estimates is commonly
made, wich may lead to three major inconsistencies:
i) a bias in the point estimation of the multi-dimen-
sional variable; ii) a different spatial distribution of
the measure of uncertainty; and iii) an inappropriate
model choice for the variogram.

Although geostatistic is able to evaluate property
values between data points and produces grids
which represent reservoir heterogeneity, it cannot
reproduce with complete accuracy the field hetero-
geneity. Geostatistics techniques might allows a
good reduction of the magnitude of error because
they (kriging and conditional simulation) make
accurate grids and can combine, by cokriging and
cosimulation, many different types of hard and soft
data, and is able to quantify the uncertainty in a
reservoir description.
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Caers and Zhang (2002) brought up that the vario-
gram is a statistical tool (guided by strict mathemati-
cal rules and equations) which unavoidably cause
serious simplification on description of the natural
processes or phenomenon and obviously might not
reproduce the reality, since it is too limiting in captu-
ring geological heterogeneity from outcrops. Hence,
different types of reservoir heterogeneities may pro-
duce a similar experimental variogram (see figure 2).

Due to the limitation of the variogram to capture
complex heterogeneity several authors (Strebelle,
2000, 2002, Strebelle and Journel, 2001, Caers and
Zhang, 2002) have suggested a multiple-point geos-
tatistics methods based on the concept of training
images. However, the geostatistical assumption is
preserved, i.e. when the information is not repetitive
(stationary) it cannot be captured and reproduced by
a model that relies on stationarity and because that
some outcrop models cannot be directly used in
multiple-point geostatistics as a reservoir analog or
training image (Caers and Zhang, 2002).

In the other hand, Ortiz and Deutsch (2002) pre-
sent an approach to calculate the uncertainty in the
variogram and a methodology to transfer this uncer-
tainty through geostatistical simulation and decision
making.
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