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On Constructions Preserving the Asymptotic Topology of Metric Spaces

Gregory C. Bell and Danielle S. Moran

ABSTRACT. We prove that graph products constructed over infinite graphs with bounded clique
number preserve finite asymptotic dimension. We also study the extent to which Dranishnikov’s
asymptotic property C and Dranishnikov and Zarichnyi’s straight finite decomposition complexity
are preserved by constructions such as unions, free products, and group extensions.

1. Introduction

The asymptotic dimension of a metric space was introduced by Gromov (1993) in his study of
large-scale invariants of finitely generated groups. It is the large-scale analog of covering dimen-
sion in topology. Although interesting in its own right, asymptotic dimension gained the interest
of the larger mathematical community following the work of Yu (1998). Yu showed that a finitely
generated group with finite asymptotic dimension satisfies the famous Novikov higher signature
conjecture. This generated interest in determining whether the asymptotic dimension of various
groups and classes of groups is finite. Although later work (e.g. Yu, 2000; Kasparov and Yu, 2012,
among others) has refined the technology to determine whether a group satisfies the Novikov (or
related) conjectures, there is still a great deal of interest in this simple large-scale invariant.

The asymptotic dimension is a coarse invariant. Each countable group can be endowed with
a proper left-multiplication invariant metric that is unique up to coarse equivalence (see Section
2). This means that the large-scale invariants associated to a group with such a metric are group
invariants and are independent of choices involved in determining the specific metric. This also
makes the class of countable groups a natural one for the study of asymptotic invariants. On the
other hand, proper left-invariant metrics are not always natural, e.g. Q with its usual metric is not
proper.

The class of groups with finite asymptotic dimension is vast and contains (among many others)
hyperbolic groups, considered by Roe (2005), nilpotent groups considered by Bell and Dranish-
nikov (2006), solvable groups with rational Hirsch length considered by Dranishnikov and Smith
(2006), Coxeter groups considered by Dranishnikov and Januszkiewicz (1999), mapping class
groups considered by Bestvina et al. (2012), and groups admitting a proper isometric action on
finite dimensional CAT(0)-cube complexes considered by Wright (2012). Moreover this class is
closed under the operations of (finite) direct product, free products with amalgamation, and group
extensions, see Bell and Dranishnikov (2006). Recently, Antolı́n and Dressen (2013) computed a
formula for the asymptotic dimension of a graph product of groups using results of Dranishnikov
(2008) and Green (1990). The first main result of this paper is to extend this result to certain graph
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products over infinite graphs: Theorem 3.4. Because these graphs are infinite, the techniques used
by Antolı́n and Dreesen are not applicable. Instead we exploit the structure of these graph products
to explicitly construct the covers from the definition of asymptotic dimension at each scale R.

Dranishnikov et al. (1998) showed that asdimZn = n, so any group that contains a copy of Zn
for each n will necessarily have infinite asymptotic dimension. Such groups are not difficult to
construct (for example, see Roe, 2003). For groups and spaces whose asymptotic dimension may
be infinite, one can consider other dimension-like coarse invariants, such as asymptotic property C,
finite decomposition complexity, straight finite decomposition complexity, or property A. For met-
ric spaces with bounded geometry, finite asymptotic dimension implies both asymptotic property
C and finite decomposition complexity. Both of these notions imply straight finite decomposition
complexity. Finally, spaces with straight finite decomposition complexity have Yu’s property A.
See Goldfarb (2013) for a nice summary of these implications.

The second goal of this paper is to apply the techniques of Antolı́n and Dressen (2013) to point
out that graph products of groups with property A have property A. Although, we would like to
extend this result to asymptotic property C, it is not clear that it does extend. In particular, the
standard approach to such properties breaks down completely in the case of property C. We were
only able to show that asymptotic property C is preserved by certain infinite unions (Theorem 4.2).
We cannot show that it is preserved by amalgamated free products or direct products. If amalgams
and direct products could be shown to preserve asymptotic property C, then the techniques of
Antolı́n and Dressen (2013) could be applied to show that graph products preserve it. In light of
Pol and Pol (2009), it is conceivable that there is some space (or even a group) with asymptotic
property C whose square does not have asymptotic property C.

The final goal of the paper is to prove some permanence results for straight finite decomposition
complexity along the lines of those shown in Guentner et al. (2013).

The paper is organized as follows. In the next section we recall some of basic facts and give
precise definitions. In Section 3 we state and prove the main theorem concerning infinite graph
products and asymptotic dimension. We also show that property A is preserved by finite graph
products. In the fourth section, we prove that asymptotic property C is preserved by certain infinite
unions and state some open questions concerning asymptotic property C. The permanence proper-
ties of straight finite decomposition complexity appear in the final section. It should be noted that
many of the goals of this paper align with the excellent survey by Guentner (2014).

The authors wish to thank the anonymous referees of this paper for careful reading, corrections,
and for helping to clarify several points.

2. Preliminary notions and definitions

Let (X, dX) and (Y, dY ) be metric spaces. Recall that a map f : X → Y is called proper if the
preimage of every compact set is compact. A metric is called proper if the distance function is a
proper map, i.e., if closed balls are compact. A function f : X → Y is called uniformly expansive
if there is a non-decreasing ρ2 : [0,∞)→ [0,∞) such that

dY (f(x), f(x′)) ≤ ρ2(dX(x, x′)).

The function f : X → Y is called effectively proper if there is some proper, non-decreasing
ρ1 : [0,∞)→ [0,∞) such that

ρ1(dX(x, x′)) ≤ dY (f(x), f(x′)).
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The function f : X → Y is called a coarsely uniform embedding if there exist functions ρ1, ρ2 :
[0,∞)→ [0,∞) such that,

ρ1(dX(x, x′)) ≤ dY (f(x), f(x′)) ≤ ρ2(dX(x, x′))

and ρ1 →∞. The spaces X and Y are said to be coarsely equivalent if there is a coarsely uniform
embedding of X to Y and there is some R > 0 so that for each y ∈ Y there is some x ∈ X so that
dY (f(x), y) ≤ R. When the ρi can be taken to be linear, f is called a quasi-isometric embedding
and the corresponding equivalence is quasi-isometry.

Let R > 0 be a (large) real number. A collection U of subsets of the metric space X is said to
be uniformly bounded if there is a uniform bound on the diameter of the sets in U ; a collection U
is said to be R-disjoint if, whenever U 6= U ′ are sets in U , then d(U,U ′) > R, where d(U,U ′) =
inf{d(x, x′) | x ∈ U, x′ ∈ U ′}. A family that is uniformly bounded and R-disjoint will be called
R-discrete. Gromov (1993) describes this situation by saying that ∪U∈UU is 0-dimensional on
R-scale.

We say that the asymptotic dimension of the metric space X does not exceed n and write
asdimX ≤ n if for each (large) R > 0, X can be written as a union of n + 1 sets with di-
mension 0 at scale R. There are several other useful formulations of the definition (see Bell and
Dranishnikov (2008)) but we shall content ourselves with this one.

Yu (2000) defined property A for discrete metric spaces as a generalization of amenability of
groups. A discrete metric space X has property A if for any r > 0 and any ε > 0, there is a
collection of finite subsets {Ax}x∈X , where Ax ⊂ X × N, so that

(1) (x, 1) ∈ Ax for each x ∈ X;
(2) for every pair x and y in X with d(x, y) < r, |Ax∆Ay |

|Ax∩Ay | < ε; and
(3) there is some R so that for every n such that (y, n) ∈ Ax, d(x, y) ≤ R.

The asymptotic analog of Haver’s property C for metric spaces was defined by Dranishnikov
(2000). We say that a metric space X has asymptotic property C if for any given number sequence
R1 ≤ R2 ≤ R3 ≤ · · · there exists some integer n and a cover of X that can be decomposed
into n uniformly bounded families U1,U2, . . . ,Un in such a way that each U i is Ri-disjoint (and
∪ni=1U i covers X). It is clear that a metric space with finite asymptotic dimension will have as-
ymptotic property C. Dranishnikov showed that a discrete metric space with bounded geometry
and asymptotic property C also has property A, see Dranishnikov (2000, Theorem 7.11).

Guentner et al. (2013, 2012) defined another coarse invariant of groups that is applicable when
the asymptotic dimension is infinite: finite decomposition complexity. Following this, Dransih-
nikov and Zarichnyi defined a related notion: straight finite decomposition complexity. By way of
notation, we write A = tR-disjointAi to mean that the subsetA can be decomposed as a union of sets
Ai in such a way that d(Ai, Aj) > R whenever i 6= j. Let X and Y be families of metric spaces.
For a positive R, we say that X is R-decomposable over Y and write X R−→ Y if for any X ∈ X
one can write

X = Y 0 ∪ Y 1 where Y i =
⊔

R-disjoint

Y ij, for i=0,1,

where the sets Y ij ∈ Y .
We begin by describing the metric decomposition game for X . In this game two players take

turns. First, Player 1 asserts a number R1. Player 2 responds by finding a metric family Y1 and a
R1-decomposition of {X} over Y1. Then, Player 1 selects a number R2 and Player 2 again finds
a family Y2 and an R2-decomposition of Y1 over Y2. Player 2 wins if the game ends in finitely
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many steps with a family that consists of uniformly bounded subsets. The metric spaceX is said to
have finite composition complexity or FDC, if there is a winning strategy for Player 2 in the metric
decomposition game for X , see Guentner et al. (2013).

Let X be a family of metric spaces. We say that the metric family X has straight finite decompo-
sition complexity sFDC if for every sequence R1 ≤ R2 ≤ · · · there exists an n and metric families
Y i (i = 1, 2, 3, . . . , n) so that with X = Y0, Y i−1 Ri−→ Y i for i = 1, 2, 3, . . . , n, and such that Yn
is uniformly bounded, see Dranishnikov and Zarichnyi (2014). The metric space X will be said to
have sFDC if the family {X} does. It is clear that by restricting the families, this property can be
seen to pass to subsets.

A finitely generated group with generating set S = S−1 can be endowed with a left-invariant
metric called the word metric by taking dS(g, h) = ‖g−1h‖S , where the norm ‖γ‖S is zero at the
identity and otherwise is the length of a shortest S-word that presents γ. It is easy to see that if S
and S ′ are finite generating sets on the finitely generated group Γ, then the metric spaces (Γ, dS)
and (Γ, dS′) are quasi-isometric.

The situation for non-finitely generated groups is less clear. Ideally, one would like to endow
any countable group with a metric structure that is an invariant of coarse isometry. Smith (2006)
showed that on a countable group any two left-invariant, proper metrics are coarsely equivalent.
Moreover he shows that a weight function (defined below) on a countable group induces a left-
invariant, proper metric. By a weight function on a generating set S = S−1 for a group, we mean
a function w : S → R+ for which

(1) if w(s) = 0 then s is the group identity e;
(2) w(s) = w(s−1); and
(3) for each N ∈ N, w−1([0, N ]) is finite.

One then defines a norm by ‖γ‖ = inf{
∑
w(si) | x = s1s2 · · · sn}, where the norm of the

identity is defined to be 0 (i.e. it is presented by the empty product).
Let Γ be an undirected graph without loops or multiple edges. Let V (Γ) and E(Γ) be the set of

vertices and edges of Γ, respectively. Suppose that G = {Gv} is a collection of groups indexed
by the elements of V (Γ). The graph product ΓG of the collection G over the graph Γ is defined
to be the free product of the Gv with the additional relations that whenever {v, v′} is an edge in
Γ, then gg′ = g′g for all g ∈ Gv and g′ ∈ Gv′ . Thus, if E(Γ) = ∅, then ΓG is the free product
of the groups Gv, i.e. ∗Gv. If Γ is the complete graph on n vertices, we obtain the direct product
ΓG = Gv1 × · · · ×Gvn . Graph products were introduced in Green (1990).

We will often refer to a word in a graph product (or free product) as being expressed in syllables.
We say that the word g1 · · · g` is an expression of g in syllables if each gi is a reduced, nontrivial
word in some single vertex group, and no two consecutive gi and gi+1 belong to the same vertex
group.

Let Γ be a countable graph and let G = {Gv}v∈V (Γ) be a collection of countable groups indexed
by the vertices of Γ. We may endow ΓG with a proper left-invariant metric by choosing generating
sets Sv for each group and assigning a weight function w : tSv → N. For each r ∈ N, define
a graph Γr by taking the collection of vertices v ∈ V (Γr) to be precisely those vertices v for
which some element of Sv is assigned a weight ≤ r. Thus, outside of this vertex set, all weights
exceed r. An edge connects two vertices of Γr if and only if there is an edge in Γ connecting the
corresponding vertices of Γ.

We will say that an element x ∈ ΓG is r-permissible (or simply permissible when r is under-
stood) if no reduced word presenting the element x can be made to end with a non-trivial element
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of a group Gv with v ∈ Γr. Thus, the group identity is r-permissible for all r. By way of notation,
let ΓrG denote those element of ΓG that can be expressed in terms of Gv with v ∈ Γr.

Finally, for a graph Γ, we recall that the clique number ω(Γ) is the maximum number of vertices
in a clique in Γ; i.e., the size of the largest set of vertices for which each pair is connected by an
edge in Γ.

3. Asymptotic dimension of graph products

In this section we extend the result of Antolı́n and Dressen (2013) concerning asymptotic di-
mension of graph products of groups in two directions. First, we extend the asymptotic dimension
result to include certain infinite graphs. Second, we show that one can replace finite asymptotic
dimension everywhere with property A and arrive at the corresponding conclusion. An anonymous
referee suggested an alternate approach to ours: one can apply the result of Antolı́n and Dressen
(2013) and a result of Dranishnikov and Smith (2006), which shows that the asymptotic dimension
of a countable group is the supremum of the asymptotic dimensions of its finitely generated sub-
groups and then use the fact that a graph product on a countable graph is obtained as a union over
subgraphs. Instead, we pursue a more elementary approach.

Lemma 3.1. Let ΓG be a graph product of countable groups G = {Gv} over a countable graph
Γ with a proper metric given by a weight function as described above. Let r > 0 be given and take
Γr as above. Then, each element of ΓG can be written in the form xb, where x is permissible and
b ∈ ΓrG. Moreover, if x 6= x′ are permissible, then d(xb, x′b′) > r.

Proof. First, we check that each element has such a form. To this end, let g ∈ ΓG be given
and write g = g1 · · · gt as an expression in syllables. We proceed by induction on the number of
syllables t. If t = 1, then either g1 is in ΓrG or not. In the first case, it can be written as xg1, where
x = e. In the latter case, x = g1 is permissible.

Suppose now that every word of syllable length at most t− 1 can be written in the form xb with
x permissible and b ∈ ΓrG. Then, consider g = g1 · · · gt. Since g1 · · · gt−1 has syllable length
shorter than t it can be written in the form xb. Therefore, express x and b in syllables so that we
have g = x1 · · ·xpbp+1 · · · bt−1gt. If gt itself is in ΓrG, then this word is already in permissible
form.

Suppose therefore, that gt /∈ ΓrG. If it commutes with bt−1, then we can write bt−1gt = gtbt−1

and therefore we have g = x1 · · · bt−1gt = x1 · · · gtbt−1. Now, since its length is less than t, the
element x1 · · · gt can be written as some x′b′ in permissible form. But, then g = x′b′bt−1 is a
permissible presentation of g.

Finally, we consider the case in which gt does not commute with bt−1. If any rearrangement
of this word allows gt to commute past a syllable, then we apply the argument of the preceding
paragraph to obtain a word in permissible form. Otherwise, x = g is already permissible.

Now, we show the disjointness condition holds. Suppose that x and x′ are distinct, but permissi-
ble. Then, write x−1x′ = z for some z ∈ ΓG. Observe that z /∈ ΓrG, as, if it were, then xz would
be a presentation of x′ that ends with a non-trivial element of ΓrG, which is not allowed. Thus, z
must contain some element that is not in ΓrG. Hence it contains a generator s from a group with
weight > r. Thus, d(xb, x′b′) = ‖b−1zb′‖ ≥ ‖s‖ > r. �

Theorem 3.2 (Antolı́n and Dressen (2013, Theorem 6.3)). Let Γ be a finite simplicial graph and
let G be a family of finitely generated groups indexed by vertices of V (Γ). Let G = ΓG. Let C be
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the collection of subsets of V (Γ) spanning a complete graph. Then

asdimG ≤ max
C∈C

∑
v∈C

max(1, asdimGv).

For our present purposes, we need a slightly weaker result that we state as a corollary.

Corollary 3.3. Let Γ be a finite simplicial graph with ω(Γ) ≤ k and let G be a collection of
finitely generated groups indexed by v ∈ V (Γ) such that 0 < asdimGv ≤ n for all v ∈ V (Γ).
Then, asdim ΓG ≤ nk.

Proof. We have that max(1, asdimGv) = asdimGv for each v. Also, there is at least one C ∈ C
with ω(Γ) elements. Thus,

asdimG ≤ max
C∈C

∑
v∈C

max(1, asdimGv) ≤ ω(Γ) max
v∈V (Γ)

{asdimGv} ≤ kn.

�

Really, all that is necessary for the preceding proof to work is that at least one of the Gv should
be infinite, forcing n > 0. If all Gv are finite, then asdimG ≤ k instead of the estimate given
above, which would be 0 = nk.

Theorem 3.4. Let Γ be a countable graph with clique number ω(Γ) ≤ k. Suppose that {Gv}v∈V (Γ)

is a collection of countable groups (in proper metrics) with 0 < asdimGv ≤ n for all v ∈ V (Γ).
Then, in a left-invariant proper metric, asdim ΓG ≤ nk.

Proof. For a given r > 0 we will construct a cover by nk+1 uniformly bounded, r-disjoint families
of subsets of ΓG. Since ΓG is a countable group that is not finitely generated, we endow it with a
metric arising from a weight function w̄ : V (Γ)→ N as described above.

Define a subgraph Γr of Γ by setting V (Γr) = w̄−1([0, r]) and by defining an edge between
two vertices of Γr if and only if there is an edge between these vertices in Γ. By Corollary 3.3,
we know that asdim ΓrG ≤ nk. Thus, there is a cover by nk + 1 r-disjoint families of uniformly
bounded sets, say U0,U1, . . . ,Unk. Let P ⊂ ΓG denote the set of all Γr-permissible elements.

For each i define the collection {xU | x ∈ P,U ∈ U i}. We claim that for each i, the collection
is r-disjoint and uniformly bounded. Moreover, we claim that the union of these collections covers
ΓG.

Let x ∈ P . Since the metric on ΓG is left-invariant, we know that d(xu, xu′) = d(u, u′), for all
xu and xu′ in xU . Since diam(U) is uniformly bounded, we have that diam(xU) is also uniformly
bounded.

Next, suppose that xU and x′U ′ are distinct sets, where x, x′ ∈ P and U,U ′ ∈ U i. If x = x′,
then we have d(xU, x′U ′) = d(xU, xU ′) = d(U,U ′), and since these sets must be different (yet still
in the same family U i), they are at least r-disjoint. If x 6= x′, then by Lemma 3.1 d(xu, x′u′) > r
and so these two families are r-disjoint.

Finally, we show that the collection of all such families covers ΓG. To this end, let g ∈ ΓG be
given. Then, by Lemma 3.1 g = xb, where x ∈ P and b ∈ ΓrG. Thus, there is some i and some
U ∈ U i so that b ∈ U . Thus, g ∈ xU , as required. �

The following result and proof follow are similar to Antolı́n and Dressen (2013, Theorem 6.3).

Proposition 3.5. Let Γ be a finite graph and let G = {Gv}v∈V (Γ) be a collection of countable
groups with proper left-invariant metrics. If all the Gv have property A, then ΓG has property A.
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Proof. We proceed by induction on |V (Γ)|. We note that if |V (Γ)| = 1, then ΓG = Gv which is
assumed to have property A.

Now we suppose that |V (Γ)| = n > 1 and also that the theorem holds for graphs with fewer
than n vertices.

Then let v ∈ V (Γ) be any vertex, and put A = {v} ∪ lk(v), B = Γ− {v}, C = lk(v). Then, by
Green (1990) we have that ΓG = GA ∗GC

GB.
Now, we have two cases. In the first case, A = Γ. Then, since v is connected to each vertex of

C and this encompasses all vertices of Γ, we have that ΓG = Gv × GC . Now Gv has property A
by assumption. Since |V (C)| < |V (Γ)| the induction hypothesis implies that GC has property A.
Since property A is preserved by direct products (by Yu (2000)), ΓG has property A.

In the second case, where A 6= Γ, we have then that |V (A)| < |V (Γ)|. By definition, we have
that |V (B)| < |V (Γ)|. And so, by our induction hypothesis, GA and GB both have property A.
Since amalgamated free products preserve property A (see Dykema, 2004; Tu, 2001; Bell, 2003),
we conclude that ΓG has property A. �

We end this section with an open problem, which we phrase as a conjecture. The techniques that
we use in this paper cannot easily be applied in this situation.

Conjecture 3.6. Let Γ be a countably infinite graph and suppose that all Gv ∈ G have property
A. Then in a proper, left-invariant metric, ΓG has property A.

4. Asymptotic property C

The goal of this section is to show that asymptotic property C is preserved by some infinite
unions.

We consider the case whereX can be expressed as a union of a collection of spaces with uniform
asymptotic property C with the additional property that for each r > 0 there is a “core” space such
that removing this core from the families leaves the families r-disjoint. We begin by stating some
results from Bell and Dranishnikov (2001).

Let U and V be families of subsets of a metric space X . Let V ∈ V and d > 0. Let Nd(V ;U) be
the union of V and the set of all U ∈ U such that d(V, U) ≤ d. The d-saturated union of V in U is
the set V ∪d U = {Nd(V ;U) | V ∈ V} ∪ {U ∈ U | d(V, U) > d ∀V ∈ V}. Note that (in general)
V ∪d U 6= U ∪d V and that ∅ ∪d U = U = U ∪d ∅.
Proposition 4.1 (Bell and Dranishnikov (2001, Proposition 2)). Assume that U is a collection of
subsets of a metric space X that is d-disjoint and R-bounded, with R ≥ d. Assume that V is a
collection of subsets that is 5R-disjoint and uniformly bounded. Then, V ∪d U is d-disjoint and
uniformly bounded.

Let {Xα}α be a family of metric spaces. We will say that the family Xα satisfies asymptotic
property C uniformly in α if for every sequence R1 < R2 < · · · there exists an n and B1 <
B2 < · · · < Bn so that for each α there exist families U iα of Ri-disjoint, Bi-bounded families
(i = 1, . . . , n) so that ∪ni=1U iα covers Xα.

Theorem 4.2. Suppose that X = ∪αXα is a countable union of spaces that have uniform asymp-
totic property C. Suppose further that for each r > 0 there is a Yr ⊂ X so that Yr has asymptotic
property C and such that the family {Xα− Yr}α is r-disjoint. Then, X has asymptotic property C.

Proof. Let d1 < d2 < · · · be a sequence of positive numbers. For each α, choose families U iα of
di-disjoint, Ri-bounded sets, i = 1, 2, . . . , n. Since Ri are upper bounds on diameters, we may
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take them to be increasing and insist that Ri ≥ di. Put r = 5Rn. Take Yr as in the statement of the
theorem.

Let V1,V2, . . . ,Vk be 5Ri-disjoint, Bi-bounded families of sets whose union covers Yr.
Let U iα denote the restriction of U iα to Xα − Yr. Next, put U i = ∪αU iα. Note that U i is Ri-

bounded and di disjoint. Finally, setW i = V i ∪di U i, for i = 1, 2, . . . ,max{k, n}. Here, we take
V i = ∅ or U i = ∅ if i > k or i > n, respectively. Thus, in these cases, we have W i = U i or
W i = V i, respectively. By the above proposition,W i is di-disjoint and uniformly bounded.

Finally, we show that the collection {W i} covers X . To this end, suppose that x ∈ X is given.
Suppose first that x ∈ Yr. Then, since the collection {V i}ki=1 covers Yr, there is some i0 so that
x ∈ V0 ∈ V i0 . Now, sinceW i0 contains the set Nd(V0;U i0), we see that every element of V0 is in
some set inside ofW i0 . Thus, in this case, x is covered by some set in {W i}max{k,n}

i=1 .
Next, suppose that x /∈ Yr. Then, there is some j0 and an α0 so that there is some U0 ∈ U j0α0

that
contains x. Either d(U0,Vj0) ≤ d or d(U0,Vj0) > d. In the former case, we see that all elements
of U0 will be in some element of the type Nd(V,U j0α0

). Thus, this x is in some element of {W i}.
In the latter case, U0 is among the collection {U ∈ U j0α0

| d(V, U) > d ∀ V ∈ Vj0} and thus, is in
some element of {W i}. �

We end this section with some open problems.

Question 4.3. Is asymptotic property C preserved by free products or amalgamated free products?

Note that in a recent preprint, Beckhardt (2015) has shown that a group acting by isometries on
a metric space with asymptotic property C in such a way that the stabilizers have finite asymptotic
dimension will have property C. This result is related to this question since the original proof that
finite asymptotic dimension was preserved by amalgamated products used the action of the product
on its Bass-Serre tree. This action is by isometries, the stabilizers have finite asymptotic dimension
and the tree on which the space acts has finite asymptotic dimension.

Question 4.4. Is asymptotic property C preserved by direct products?

If the answers to the previous two questions are both yes, then it would immediately follow that
the following question also has a positive answer.

Question 4.5. Let Γ be a finite graph. If all the Gv have asymptotic property C, does GΓ have
asymptotic property C?

If the answer to that question is yes, one could additionally ask the following.

Question 4.6. Let Γ be a countably infinite graph with bounded clique number. Suppose that all
Gv have asymptotic property C. Then, in a proper, left-invariant metric, does G have asymptotic
property C?

5. Straight finite decomposition complexity

The goal of this section is to apply the techniques of Guentner et al. (2013, 2012) to the notion
of straight finite decomposition complexity defined by Dranishnikov and Zarichnyi (2014). It is
shown in Dranishnikov and Zarichnyi (2014) that sFDC is a coarse invariant, is preserved by finite
unions, and is preserved by some infinite unions (analogous to our theorem above about property
C). We extend these results to show that sFDC is preserved by fiberings and conclude that it is
preserved by amalgamated products and graph products.

We begin by recalling some of the results from Dranishnikov and Zarichnyi (2014).
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Theorem 5.1 (Dranishnikov and Zarichnyi (2014, Theorem 3.1)). If f : X → Y is a coarse
equivalence and if Y has sFDC, then so does X .

We include a proof for the reader’s convenience and also because we will use the same technique
to prove our fibering theorem, Theorem 5.2.

Proof. Let f : X → Y be uniformly expansive and effectively proper. Suppose that ρ : [0,∞)→
[0,∞) is an increasing function for which d(f(x), f(x′)) ≤ ρ(d(x, x′)) for all x and x′ in X .

Let R1 < R2 < · · · be given and set Si = ρ(Ri) for each i. By way of notation, put {Y } = V0.
Then, since Y has sFDC, there is some m ∈ N and metric families V1,V2, . . . ,Vm so that V0 S1−→
V1 S2−→ V2 S3−→ · · · Sm−−→ Vm with Vm bounded. According to Guentner et al. (2013, Lemma 3.1.1),
if V i−1 Si−→ V i then f−1(V i−1)

Ri−→ f−1(V i).
More explicitly, write Y = V 1

0 ∪ V 1
1 , where

V 1
i =

⊔
S1-disjoint

V 1
ij ,

and V 1
ij ∈ V1. Then X = f−1(Y ) = f−1(V 1

0 ) ∪ f−1(V 1
1 ), with

f−1(V 1
i ) =

⊔
R1-disjoint

f−1(V 1
ij).

Then, for each V ∈ V1, write V = V 2
0 ∪ V 2

1 where

V 2
i =

⊔
S2-disjoint

V 2
ij ,

and V 2
ij ∈ V2. Then, as above, obtain anR2-decomposition of f−1(V1) over f−1(V2). We continue

in this way until we eventually find an Rm-decomposition of f−1(Vm−1) over f−1(Vm). Since f is
effectively proper and Vm is bounded, we apply Guentner et al. (2013, Lemma 3.1.2) to conclude
that f−1(Vm) is bounded, as required. �

Next, we obtain a version of Guentner et al. (2013, Theorem 3.1.4) for straight finite decompo-
sition complexity.

Theorem 5.2. Let X and Y be metric spaces and let f : X → Y be a uniformly expansive map.
Assume that Y has sFDC and that for every bounded family V in Y , the inverse image f−1(V) has
sFDC. Then, X has sFDC.

Proof. Let R1 < R2 < · · · be given. Set {Y } = V0. Since Y has straight finite decomposition
complexity, and since f is uniformly expansive, we take Si = ρ(Ri) as in Theorem 5.1 to find
an m and families V1,V2, . . . ,Vm so that V i−1 Si−→ V i and for which Vm is bounded. Then, as
before, we pull these families back to X to obtain f−1(V i−1)

Ri−→ f−1(V i). Since we assume that
f−1(Vm) has straight finite decomposition complexity, we take the sequence Rm+1, Rm+2, . . . and

find n and families Um+1,Um+2, . . . ,Um+n so that f−1(Vm)
Rm+1−−−→ Um+1; Um+j−1 Rm+j−−−→ Um+j

for j > 1; and such that Um+n bounded. Then, with U i = f−1(V i) for i = 0, 1, . . . ,m we have
U i−1 Ri−→ U i for all i = 1, 2, . . . ,m+ n as required. �

Proposition 5.3. Let G be a countable group expressed as a union of subgroups G = ∪Gi where
each Gi has straight finite decomposition complexity. Then, G has straight finite decomposition
complexity.
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Proof. We equip G with a proper left-invariant metric. Let R1 < R2 < · · · be given. Since the
metric is proper, there is some Gi that contains BR1(e). Then, the decomposition of G into cosets
of Gi is R1-disjoint and each coset is isometric to Gi, which is assumed to have sFDC. �

Suppose that G is a group acting by isometries (on the left) on the metric space X . For R > 0,
the R-coarse stabilizer of x ∈ X is the set {g ∈ G | d(g.x, x) < R}, see Bell and Dranishnikov
(2001); Guentner et al. (2013).

Proposition 5.4. Let X be a metric space with sFDC. Suppose that X = {Xα} is a family of
metric spaces such that for each α there is an isometry ϕα : Xα → X . Then, {Xα} has sFDC as
a family.

Proof. Let R1 ≤ R2 ≤ · · · be given. Since X is assumed to have sFDC we can find n and families
{X} = Y0,Y1,Y2, . . . ,Yn so that Y i−1 Ri−→ Y i, and Yn is bounded. Define Ỹ0 = {f−1

α (X)}α.
For i ≥ 1 define Ỹ i = {f−1

α (Y ) | Y ∈ Y i, α}. Now, any element of Ỹ0 is equal to Xα for some α.
Then, since X = Y 0 ∪ Y 1 with each Y i decomposing as an Ri disjoint union of sets Y ij ∈ Y i, we
see that Xα = f−1

α (Y 0) ∪ f−1
α (Y 1). Then, f−1

α (Y i) = tf−1
α (Y ij), with f−1(Y ij) ∈ Ỹ1. Finally

if x ∈ f−1
α (Y ij) while x′ ∈ f−1

α (Y ij′) with j 6= j′, then d(x, x′) = d(fα(x), fα(x′)) ≥ R. Thus
Ỹ0 R1−→ Ỹ1. A similar argument shows that Ỹ i−1 Ri−→ Ỹ i.

Finally, we show that Ỹ n is uniformly bounded. By assumption Yn is uniformly bounded. Thus,
there is some D > 0 so that diam(Y ) ≤ D for every Y ∈ Yn. Now, suppose that Y ′ ∈ Ỹn. Then,
Y ′ = f−1

α (Y ′′) for some Y ′′ ∈ Yn and some α. Since fα is an isometry, diam(Y ′) ≤ D.
�

Proposition 5.5. Let G be a countable group in a proper left-invariant metric as in Section 2.
Suppose G acts by isometries on the metric space X on the left. Then, for each γ ∈ G, there is an
isometry WR(x)→ WR(γx) given by γ 7→ γgγ−1.

Proof. First we observe that g → γgγ−1 is a bijection from WR(x) to WR(γx) for each γ:
g ∈ WR(x) ⇐⇒ d(gx, x) < R

⇐⇒ d(γgx, γx) < R
⇐⇒ d(γgγ−1(γx), γx) < R
⇐⇒ γgγ−1 ∈ WR(γx).

Now, for each γ this map is an isometry. Indeed, if g, h ∈ WR(x), then d(g, h) = ‖g−1h‖ =
‖γg−1γ−1γhγ−1‖ = d(γgγ−1, γhγ−1). �

Proposition 5.6. Let G be a countable group in a left-invariant proper metric acting on a metric
space X by isometries. Suppose that X has straight finite decomposition complexity. If there is
a x0 ∈ X so that for every R > 0 the R-coarse stabilizer of x0 has straight finite decomposition
complexity, then G has straight finite decomposition complexity.

Proof. We follow the reasoning of Guentner et al. (2013, Proposition 3.2.3).
We may restrict our attention to the subset G.x0 of X . We wish to apply the fibering theorem

(Theorem 5.2). To this end, we define π : G → G.x0 by π(g) = g.x0. It is shown by Guentner
et al. (2013, Lemma 3.2.2) that this map is uniformly expansive. Thus, it remains only to show
that π−1(V) has sFDC for each bounded family V in G.x0.

Let V be a bounded family in G.x0. Let R be so large that diam(V ) ≤ R for all V ∈ V . Thus,
(with BR(·) denoting the open ball of radius R), we have that for each V ∈ V there is a γV ∈ G
such that BR(γV .x0) contains V . Next, we observe that π−1(BR(γV .x0)) = WR(γV .x0). Thus the
family π−1(V) consists of sets that are themselves subsets of sets in the family {WR(γV .x0)}.
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Using the assumption that WR(x0) has sFDC, we apply Proposition 5.4 and Proposition 5.5
to conclude that the family {WR(γ.x0)}γ∈G has sFDC. Thus, by restricting the families Y i from
the realization of sFDC for the family {WR(γ.x0)}γ to subsets, we find that π−1(V) has sFDC
whenever V is a bounded family in G.x0.

Thus, G has sFDC by Theorem 5.2. �

Corollary 5.7. The following results easily follow from this proposition.
(1) sFDC is closed under group extensions.
(2) sFDC is closed under free products with amalgamation and HNN extensions.
(3) sFDC is closed under finite graph products.
(4) FDC is closed under finite graph products.

Proof. (1) Suppose that 1 → K → G
φ−→ H → 1 is an exact sequence of countable groups

with H and K both having straight finite decomposition complexity. Let G act on H by
the rule g.h = φ(g)h. The R-coarse stabilizer is coarsely equivalent to K, so it has sFDC.
Thus, by Proposition 5.6, G has sFDC.

(2) This follows from the Bass-Serre theory of graphs of groups. More precisely, if G is an
amalgamated product (or HNN extension), then there is a tree T and an action of G on
that T by isometries with vertex stabilizers isomorphic to the factors of the amalgam. The
coarse stabilizers of the action will therefore have sFDC and so G itself will.

(3) This follows from parts (1) and (2) using the technique of Proposition 3.5 or Antolı́n and
Dressen (2013).

(4) This is immediate from the results of Guentner et al. (2013) using the technique of Propo-
sition 3.5 or Antolı́n and Dressen (2013).

�
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