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Constructing r-Uniform Hypergraphs with Restricted Clique Numbers

Mark Budden and Aaron Rapp

ABSTRACT. Ramsey theory has posed many interesting questions for graph theorists that have yet
to be solved. Many different methods have been used to find Ramsey numbers, though very few
are actually known. Because of this, more mathematical tools are needed to prove exact values of
Ramsey numbers and their generalizations. Budden, Hiller, Lambert, and Sanford have created a
lifting from graphs to 3-uniform hypergraphs that has shown promise in extending known Ramsey
results to hypergraphs. This paper will consider another analogous lifting for r-uniform hypergraphs
and investigate the lifting of Turán graphs.

1. Introduction

Ramsey theory for graphs began when Ramsey (1930) posed the question “How many people
must be gathered to guarantee that there are three mutual acquaintances or three mutual strangers?”
This question can be answered by considering an arbitrary red/blue coloring of the edges of a
complete graph Kn on n vertices. The vertices represent the people at a gathering with mutual
acquaintances connected by red edges and mutual strangers connected by blue edges. One then
defines the Ramsey number R(G1, G2) to be the least n ∈ N such that every red/blue coloring of
the edges of Kn contains a red G1-subgraph (a subgraph isomorphic to G1) or a blue G2-subgraph.
Ramsey’s question is equivalent to finding the value of R(K3, K3). The proof that R(K3, K3) = 6
can be found in many undergraduate textbooks on graph theory and the question even appeared on
the Putnam exam in 1953 (Chartrand and Zhang, 2012).

In general, it is very difficult to determine specific Ramsey numbers and few exact values are
known. However, many lower and upper bounds are known and the reader is referred to Radzis-
zowski (2014) for an up-to-date listing of known results. Even less understood is the corresponding
theory in the setting of r-uniform hypergraphs. An r-uniform hypergraph H = (V,E) consists of a
set V of vertices and a set E of hyperedges (r-edges) of unordered r-tuples of vertices. Of course,
a 2-uniform hypergraph is just a graph. It is standard to write V (H) in place of V and E(H) in
place of E when we wish to emphasize the particular hypergraph being considered.

Recently, Budden et al. described a method of “lifting” a graph to form a 3-uniform hypergraph
in such a way as to make the clique number of the resulting hypergraph bounded in terms of the
clique number of the underlying graph. The significance of the lifting is that it also preserves
complements, allowing one to transfer certain Ramsey results on graphs to corresponding results
on 3-uniform hypergraphs.

Our goal in this paper is to consider one possible way in which one can generalize the lifting in
Budden et al. to construct r-uniform hypergraphs with bounded clique numbers. Unfortunately,
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we will find that complements are not preserved in general, preventing applications to Ramsey
theory. So, we will turn our attention to another application: Turán numbers.

2. Lifting graphs to r-uniform hypergraphs

In order to describe the lifting defined in Budden et al., let G2 denote the set of all graphs
containing at least 3 vertices and G3 the set of all 3-uniform hypergraphs containing at least 3
vertices. Then the lifting ϕ : G2 −→ G3 sends a graph Γ ∈ G2 to the 3-uniform hypergraph
ϕ(Γ) ∈ G3 having vertices V (ϕ(Γ)) = V (Γ) and hyperedges

E(ϕ(Γ)) := {abc | exactly one of or all of ab, bc, ca ∈ E(Γ)}.
It is easily checked that ϕ preserves complements:

ϕ(Γ) = ϕ(Γ), for all Γ ∈ G2.
Here, the complement Γ of a graph (or hypergraph) Γ has vertex set V (Γ) := V (Γ) and edge
(hyperedge) set given by

E(Γ) := {e | e 6∈ E(Γ)}.
Throughout the rest of this paper, fix r ≥ 3 and assume that G2 is the set of all graphs of order

at least r. Let Gr denote the set of all r-uniform hypergraphs of order at least r. For any graph
Γ ∈ G2 and any nonempty subset S ⊆ V (Γ), the subgraph induced by S, denoted Γ[S], has vertex
set S and edge set

E(Γ[S]) := {xy | x, y ∈ S and xy ∈ E(Γ)}.
Define the lifting

ϕ(r) : G2 −→ Gr
to be the map that sends a graph Γ ∈ G2 to the r-uniform hypergraph having the same vertex
set and with x1x2 · · ·xr forming a hyperedge in ϕ(r)(Γ) if and only if Γ[{x1, x2, . . . , xr}] is the
disjoint union of at most r − 1 complete subgraphs (including the possibility that it is complete
itself). Note that this definition satisfies ϕ = ϕ(3). Following the approach used in Budden et al.,
we now focus on determining which subgraphs map to complete subhypergraphs.

Theorem 2.1. Let Γ ∈ G2, S ⊂ V (Γ) a subset containing at least r elements, and H := Γ[S].
Then ϕ(r)(H) is complete if and only if H is the disjoint union of at most r−1 complete subgraphs.

Proof. Assume that H is the disjoint union of complete subgraphs C1, C2, . . . , C`, where 1 ≤ ` ≤
r − 1. Let x1, x2, . . . , xr be any subset of r distinct vertices in S. If xi ∈ Ci and xj ∈ Cj with
i 6= j, then xixj 6∈ E(H) since Ci and Cj are disconnected. Also, for any two vertices y, z ∈ Ci,
yz ∈ E(H) since Ci is complete. Thus, any collection of r distinct vertices in S is a disjoint union
of at most r − 1 complete subgraphs in H , and ϕ(r)(H) is complete. It remains to be shown that
if ϕ(r)(H) is complete, then H is the disjoint union of at most r − 1 complete subgraphs. Since
ϕ(r)(H) is assumed to be complete, it follows that the induced subgraph for every subset of exactly
r vertices in H is the disjoint union of at most r − 1 complete subgraphs. Draw H one vertex at
a time, beginning with k = r vertices and including all edges incident with each new vertex and
the vertices contained in the previous graph. Let Hk be the graph after k vertices have been drawn.
We proceed by induction on k. In the initial case k = r, the r vertices lift to a hyperedge, so
the preimage is a disjoint union of at most r − 1 complete subgraphs by definition. Now suppose
that for k ≥ r, Hk is the disjoint union of at most r − 1 complete subgraphs and consider Hk+1,
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where V (Hk+1) = V (Hk) ∪ {x}. Assume that Hk is composed of ` disjoint complete subgraphs
C1, C2, . . . , C`, where 1 ≤ ` ≤ r − 1. The first case we consider is when x is is an isolated vertex
in Hk+1. Then Hk+1 is the disjoint union of ` + 1 complete subgraphs. If ` = r − 1, then picking
a vertex xi from each Ci, we find that xx1x2 · · · xr−1 is not a hyperedge in ϕ(Γ), contradicting the
assumption that it is complete. Hence, ` < r − 1 and we find that Hk+1 is the disjoint union of at
most r − 1 complete subgraphs. In the remaining cases, x is incident with some vertex in Hk, so
Hk+1 has the same number of components as Hk (or possibly fewer). It remains to be shown that if
x is incident with a vertex in Ci, then it must be incident with every vertex in Ci and that x cannot
be incident with vertices from more than one copy of component. If x is incident with xi ∈ Ci and
xj ∈ Cj for i 6= j, then any subset of r vertices from Hk+1 that contains x, xi, and xj cannot be
the disjoint union of complete subgraphs since xi is not adjacent to xj . Finally, suppose that the
(nonempty) neighborhood of x is entirely contained in Ci for a fixed value of i. If Ci consists of a
single vertex, then {x} ∪ Ci forms a K2 and Hk+1 is still the disjoint union of ` ≤ r − 1 complete
subgraphs. Otherwise, Ci must contain at least 2 vertices. Suppose that x is adjacent with y ∈ Ci

and z is some other vertex in Ci. Then any collection of r vertices that includes x, y, and z must be
a disjoint union of complete subgraphs, forcing xz to also be an edge. Thus, x must be adjacent to
all vertices in Ci. We have shown that Hk+1 must be the disjoint union of at most r − 1 complete
subgraphs and the same must be true for H . �

Recall that the clique number of a graph Γ, denoted ω(Γ), is the maximum order of a complete
subgraph. For an r-uniform hypergraph H , the clique number ω(H) is analogously defined to
be the maximum order of a complete subhypergraph. Using the previous theorem, we are able
to construct r-uniform hypergraphs that have bounded clique numbers. We obtain the following
corollary relating the clique number for Γ ∈ G2 to that of its image ϕ(r)(Γ).

Corollary 2.2. For all Γ ∈ G2 for which the clique number satisfies ω(Γ) ≥ r, we have that

ω(Γ) ≤ ω(ϕ(r)(Γ)) ≤ (r − 1)ω(Γ).

Proof. The first inequality follows from the fact that every clique in Γ of order at least r maps to a
clique of the same order in ϕ(r)(Γ). The second inequality follows from considering the possibility
that Γ could contain r − 1 disjoint complete subgraphs of order k ≥ r (this is a “worst case”
scenario). When this occurs and ω(Γ) = k, Theorem 2.1 implies that ω(ϕ(r)(Γ)) = (r − 1)k. �

Unless r = 3, the map ϕ(r) does not preserve complements in general:

ϕ(r)(Γ) 6= ϕ(r)(Γ).

For example, if P is a path on four vertices, then P is also a path on four vertices and ϕ(4) lifts both
P and P to empty hypergraphs on four vertices. Thus, our results do not immediately imply lower
bounds for two-colored hypergraph Ramsey numbers. Still, being able to construct r-uniform
hypergraphs with restricted clique numbers is useful for other aspects of extremal graph theory. In
particular, we turn our attention to the determination of Turán numbers.

3. Lifting Turán graphs

Now that we can construct r-uniform hypergraphs with restricted clique numbers, we consider a
class of hypergraphs in the image of ϕ(r) in which the clique numbers can be further restricted. For
a fixed r-uniform hypergraph H , define the Turán number ex(n,H) to be the maximum number
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of hyperedges in an H-free r-uniform hypergraph on n vertices. When r = 2, Turán (1941)
determined the value of ex(n,Kq+1). In this case, the optimal graph Tq(n) is known as a Turán
graph. It is a complete q-partite graph that is balanced (the number of vertices in any two partite
sets differ by at most 1).

In general, if we write n = mq + k, where 0 ≤ k < q, then Tq(n) contains k partite sets of
cardinality dn

q
e and q − k partite sets of cardinality bn

q
c. Here, d·e and b·c are the ceiling and floor

functions, respectively. One can show that Tq(n) has size b (q−1)n2

2q
c and Turán (1941) proved that

Tq(n) is optimal, giving the value of ex(n,Kq+1). The determination of ex(n,K
(r)
q+1) for complete

r-uniform hypergraphs has proven to be much more difficult and the reader is referred to Keevash
(2011) and Nagle (1999) for an overview of the Turán hypergraph problem.

From Corollary 2.2 we have that

q ≤ ω(ϕ(r)(Tq(n))) ≤ (r − 1)q,

but we can actually do much better. Recall that an r-uniform hypergraph is q-partite (with q ≥ r)
if its vertex set can be partitioned into q subsets such that each hyperedge contains at most one
vertex from any given partite set.

Theorem 3.1. The hypergraph ϕ(r)(Tq(n)) is the complete r-uniform q-partite hypergraph on n
vertices that is balanced. Hence, ω(ϕ(r)(Tq(n))) = q.

Proof. By construction, for every r-edge x1x2 · · · xr in ϕ(r)(Tq(n)), the subgraph Tq(n)[{x1, x2, . . . , xr}]
is the disjoint union of at most r − 1 complete subgraphs. If any distinct xi, xj ∈ {x1, x2, . . . , xr}
are in the same partite set, then they must be in different complete subgraphs in Tq(n)[{x1, x2, . . . , xr}].
Now suppose that xk ∈ {x1, x2, . . . , xr} is in a different partite set than xi and xj . Then xixk

and xixj are both edges in Tq(n), contradicting the fact that xi and xj are in different complete
subgraphs of Tq(n)[{x1, x2, . . . , xr}]. So, whenever x1x2 · · ·xr is a hyperedge in ϕ(r)(Tq(n)),
all of x1, x2, . . . , xr are in the same partite set or they are all in different partite sets. The first
case cannot occur as the Tq(n)[{x1, x2, . . . , xr}] would be the disjoint union of r copies of K1.
Thus, x1, x2, . . . , xr are all in different partite sets and Tq(n)[{x1, x2, . . . , xr}] is isomorphic to
Kr. On the other hand, Tq(n) is defined to be a complete q-partite graph, so every collection of
r vertices from different partite sets forms a Kr. Furthermore, any complete subhypergraph in
ϕ(r)(Tq(n)) contains at most one vertex from any given partite set and any induced subhypergraph
of ϕ(r)(Tq(n)) containing vertices from distinct partite sets is necessarily complete. �

Now that we know the clique number of ϕ(r)(Tq(n)), we focus on determining its size. Unfortu-
nately, this is very difficult in general. However, in the special case where q divides n, the number
of hyperedges in ϕ(r)(Tq(n)) is(

q
r

)(
n

q

)r

=
(q − 1)(q − 2) · · · (q − r + 1)nr

r!qr−1
.

Note that when r = 2 (viewing ϕ(2) as the identity map), this reduces to (q−1)n2

2q
, as expected. Thus,

we have shown that when q divides n,

ex(n,K
(r)
q+1) ≥

(q − 1)(q − 2) · · · (q − r + 1)nr

r!qr−1
.
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When r > 2, this bound is not tight as adding hyperedges to form a K
(r)
q+1 would require that

two vertices in the K
(r)
q+1 come from the same partite set and at least

(
q − 1
r − 2

)
new hyperedges

would have to be added. Despite this limitation, concrete bounds for hypergraph Turán numbers
are elusive and this application demonstrates the potential of the r-uniform lifting for addressing
extremal problems.
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