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Poisson’s Equation

By Ehren Braun



\ Poisson’s Equation

e Generalization of Laplace’s EquationAu =0



\ Poisson’s Equation

e Generalization of Laplace’s EquationAu =0
e Poisson’s Equation: Au=Q
o Qrepresentssourcesinregion



\ Poisson’s Equation

e Generalization of Laplace’s EquationAu =0
e Poisson’s Equation: Au=Q

o Qrepresentssourcesinregion
e Sources:

o Voltage

o Heat

o Gravity



Poisson’s Equation

e Generalization of Laplace’s EquationAu =0
e Poisson’s Equation: Au=Q
o Qrepresentssourcesinregion
e Sources:
o Voltage
o Heat
o Gravity
e Time-independent(Steady State)



Poisson’s Equation

e Generalization of Laplace’s EquationAu =0
e Poisson’s Equation: Au=Q

o Qrepresentssourcesinregion
e Sources:

o Voltage

o Heat

o Gravity
e Time-independent(Steady State)
e GeometrydeterminesA
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\ Poisson’s Equation Example

e Rectangular Plate
o Edges(boundary) given by u =
m ocanvary
o Restgivenby Au=0Q
e Nonhomogenous from Q and «
e Easier with homogenous components
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\ Solving Au = Q, U =t on Boundary

e To Simplify: Break into two parts
o Letu=u+u
o Au; =Q, u = 0on boundary
o Au, =0, U =aon boundary

e This satisfiesAu = Q, U =t on boundary
e Two “easier” problems to solve
e Similar for other regions
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\ Solving Au, = Q, y = Oon Boundary

e With homogeneous boundaries
e Implies eigenfunction expansion method
e Two different ways of Expansion
o Eigenfunctions related toAu; = 0
o Eigenfunctions related to A¢p + A¢p =0
e Methods are different, but related
o One-dimensional vs Twadimensional
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e Relating to Laplace’s EquationAu, =0
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e Separation of Variables: u; = XY
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\ One-Dimensional Eigenfunctions for u,

e Relating to Laplace’s EquationAu, =0
e Laplacian:uy,,+u;,, =0

e Separation of Variables: u; = XY

o X'Y+XY"=0

> G (i
X

X — =V
e L==L"— )

o Note:Could subtract Xs instead



One-Dimensional Eigenfunctions for u,

e
Il
J
<
||
l
e
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\ One-Dimensional Eigenfunctions for u,
X X't
= A

X
X" = )X
3Cases: A >0 A <0 A=0 .

Looking for Non-Trivial Solutions (Only A > 0)

L >0 ¢ sin(\Ax) + ¢,cos(\Ax)

Boundary Conditions => X, = cnsin(%) N = 1, 2,




\ One-Dimensional Eigenfunctions for u,
X' X'
X Y A

Note:



\ One-Dimensional Eigenfunctions for u,

X" — X —

%4 Y A A= (L&

Y" = },Y Note: L
n=1,2,..

From Xs,A>0



\ One-Dimensional Eigenfunctions for u,
X' X'
X Y A
Y"

},Y Note:

Y,=a,e”y +b,e™



\ One-Dimensional Eigenfunctions for u,
X' X'
X Y A
Y"

__ [ nm\2
KY Note: x_(L)

I A

Y,=a,e”y +b,e™

Y, = a,sinh(\y) + Z;;,,cosh(?Ly)

Can be rewritten as:
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o0

Now that we have X and Yu,;= ZIX"Y”

e e = (nL_n)2
— = nmx

Xn = cpsin(=7)
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\ One-Dimensional Eigenfunctions for u,

o0

Now that we have X and Yu,;= ZIX"Y”
Yo=ane? +be™ 3= (”’L—’T)2
— . ( NIX
Xn = cpsin(“7) .
For One-Dimensional: #; = Y bu(y)sin(*}*)
n=1

Now apply the laplacian



Note: Q = Q(X, y)
Ty, =0

\ One-Dimensional Eigenfunctions for u,

Uy = ; bn(y)sin(“") U

Xy



One-Dimensional Eigenfunctions for u,
Note: Q = Q(X, y)

i, =

=z ba)'Sin(™=) = 3 — (E)b (y)sin(Z)

n=1

Xy

Uy = ; bu(y)sin(“;*) Uy



One-Dimensional Eigenfunctions for u,
Note: Q = Q(X, y)

U, = Zl b, (y)sin(*F) uy tuy = O
ny, = 3 ba0)'Sin("E) = 3 = (F)b,()sin("E)

i[b”(y)"_ (%)an(y)]sz'n(%) =0



One-Dimensional Eigenfunctions for u,
Note: Q = Q(X, y)

U, = Zl b, (y)sin(*F) uy tup = Q
SPaDICE Gy e 2= (%), (v)sin( ")

i[b”(y)"_ (%)an@)]sm(%) =0

Now we just want only Ys



\ One-Dimensional Eigenfunctions for u,

(0.0}

Y [6a(0)"— ()b (1)]sin(ZE) = O

n=1



\ One-Dimensional Eigenfunctions for u,

3 16,0 CF)'b, 0)sin(%) = 0

n;[bn(y)"_ (2)’b (y)]sin("=)sin("E2) = Osin( ")



\ One-Dimensional Eigenfunctions for u,
Y [ba(r)"= (F)°B,()lsin() = ©
3 (Ba)"= CFYb, 0)lsinC"F)sin("E) = Osin("F)

Z[bn(y)"—(”“) b (V)]I sin(";" )sin( L )dx = I Osin("} " )dx

Now we have 3 cases(Orthogonality): m#n, m=n#0, m=n=0
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\ One-Dimensional Eigenfunctions for u,

Z[bn(v)"— (F)’'b (V)]I sin(“7" )sin(*7 " )dx = I Osin(™} ™ )dx

L
Doing these cases, only m=n#0 is nonzero => [ anz(%)dx — %

0



\ One-Dimensional Eigenfunctions for u,

Z[bn(v)"—(”“) b (V)]I sin(“7" )sin(*7 " )dx = I Osin(™} ™ )dx

L
Doing these cases, only m=n#*0 is nonzero => I Sfﬂz(%)dr — 12;

0

oo L
3 [n(9)" (=Y°b (v)] = %i Osin(")dx = q,,(y)

0- E 4, (v)sin( =)



\ One-Dimensional Eigenfunctions for u,

All there is left is () Y, = apsinh(Wy) + bycosh(\y)

0o

L
Y [6)"— (Z)°b ()] = 2 J Osin("F)dx = 4,(7)

= |
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All there is left is () Y, = apsinh(Wy) + bycosh(\y)

0o

L
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= |

Solving for b,(y) is now just an ODE with IC K0)=b.(H)=0

For Nonhomogeneous ODEs: Variation of Parameters (y= v;y;+
V,Y5)



One-Dimensional Eigenfunctions for u,

All there is left is () Y, = apsinh(Wy) + bycosh(\y)

0o

L
> [6.00)"— () °b,0)] = g Osin(“" )dx = q,(y)

= |

Solving for b,(y) is now just an ODE with IC K0)=b.(H)=0

For Nonhomogeneous ODEs: Variation of Parameters (y= v;y;+
VaoYs

1.4
ba(y) = sinh(ZE2) [ g (&)sinh(Z2)de
0

H
+ sinh( ?) [ g, (&)sinh( @ )dE
y



\ Finishing One -Dimensional Eigenfunctions



\ Finishing One -Dimensional Eigenfunctions

(0.0}
We now have our solution: #; = ) bn()’)Sin(%f)
n=1



\ Finishing One -Dimensional Eigenfunctions

We now have our solution: #; = Z bn()’)sm(”%x)
Where £,(») = sinh(*“72)S [ g, E)sini )

+3mh( )I g,,(&)sinh( = Lo _a))d’é



\ Finishing One -Dimensional Eigenfunctions

We now have our solution: #; = ) bn(y)sm(ﬁ'?)
n=1
: nu[H-y] 4 : nnt,
Where 0n(y) = sinh(—5=)1 q,,(&)sinh(—7>)d&
0
" H H
+ sinh( ?} I q,(E)sinh( M)ﬁ
Ja'

Two-Dimensional Eigenfunctions are easier
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\ Two-Dimensional Eigenfunctions for u,

e RelatingtoA¢g +A¢p =0

e Laplacian: @yt P\=-A
e Separation of Variables: ¢ = XY

o X"Y+XY"=-AXY
Xﬂ' Yﬂ' — K
X

e FEach term should be constant (A not dependent)

o Let ASAHA,
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\ Two-Dimensional Eigenfunctions for u,

Tty = (athy)
e =—Xxx =

Similar to previous 3 casesandresul } >0, A <0, AL =0

dary Condi - (X _ 2
Boundary noi To;s = X bnSln( - ) xx _(mr.)

m=12 . Ym=bmsin(=) A, =2y
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Two-Dimensional Eigenfunctions for u,

Dy = ”’I( )Sln( I ) Morrrs = (1’2_71:)2 ¢ (%)2
uy = E: ; nmSln("“)sm(m“)

n=1 m=1



\ Two-Dimensional Eigenfunctions for u,

Dy = ”’I( )Sln( I ) Morrrs = (1’2_71:)2 ¢ (%)2
48— E: ; bumsin(‘T)sin( %)
n=1 m=1

Since AD,,., = M P,



\ Two-Dimensional Eigenfunctions for u,

Dy = ”’I( )Sln( I ) Morrrs = (1’2_71:)2 ¢ (%)2

U = E: E“ bumsin(‘T)sin( %)

3
i
S
L

Since AD,,,,, =— lnm D , Substitute

5§ b 0



\ Finishing Two -Dimensional Eigenfunctions
= 0 Dymsin(= . )Sm(my

o — By demSin("=)sin("2y = O

n=1 m=1
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\ Finishing Two -Dimensional Eigenfunctions
Z Z Do Sm( )Sm(my

n=1 m=1 o

. mmy
All we have left is coefficients Y, » — b mAmSin( mx)Sm(?) =
n=1 m=1

Orthogonality(3 cases): s#n/t#m, s=n#0/t=m#0, s=n=0/t=m=0
NTX miy
Now for both Sln( ) Sln(

gL HL

— Bumhonm I I sin’( m)smz(m)drajz = I I QSIH(”H)SI??( bedy

nd

I I stn(%)sm(my Ydxdy
o bnm)"nm = ;E

| [ sin?()sin?(= )dxdy
00




\ Finishing Two -Dimensional Eigenfunctions
Z Z Do Sm( )Sm(my

n=1 m=1 S mmy
All we have left is coefficients Y, » — byumAnmsin(*;- i )s in(—) =0
n=1 m=1

Orthogonality(3 cases): s#n/t#m, s=n#0/t=m#0, s=n=0/t=m=0
NTX miy
Now for both Sln( ) Sln(

gL HL

— Bramhoam | | sin?("=)sin? ("2 Ydxdy = i I Osin("™™)sin("2 )dxdy
00

nd

HL
I { Qsin(Z)sin(™2 )dxdy Ny (”") + (m“)
_ 00
= bnm)"nm — HI

[ | sin2("=>)sin2(Z2 )dxdy 1 — oy 2 1=l ey
00
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Finishing Solutionstou

We now have our solutions for y
Both One and TwoDimensional
u=u+u,

u, left

Thankfully, similar
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\ Solving Au, = 0, U, = a on Boundary

e To identify different edges
e To deal with nonhomogeneous boundary:

Let u,(X,y) = v(Xy) + w(x,y)
e Where v(X, y) represents boundary

and w(x,y) = 0 on boundary
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\ Solving Au, = 0, U, = a on Boundary

* Uy(XYy) = V(Xy) + w(xy)

o Au2: u2xx+ u2yy

o u2xx: Vxx+ Wxx

® U= Vyy+ Wy



Solving Au, = 0, U, = a on Boundary

o Uy(XY) = V(Xy) + w(Xy)
¢ Au2: u2xx+ u2yy

o u2xx: Vxx+ Wxx

® U= Vyy+ Wy

® Auy= Wyt Wyt Vi + Wy



Solving Au, = 0, U, = a on Boundary

o Uy(XY) = V(Xy) + w(Xy)
¢ Au2: u2xx+ u2yy

o u2xx: Vxx+ Wxx

®  Upy= Vyyt Wy
® Auy= Wyt Wyt Vi + Wy

® V,=V,~0



Solving v(X,y)

V= Vi,= 0 Note: a, ;= a(y);
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Solving v(X,y)

Vo= V= 0 Note: a, ;= a(y);

V(X,Y)x=0 V(Xy),= f(y) V(Xy) = f(y)x + g(

vO.y)=9(y) = a;



Solving v(X,y)

Vo= V= 0 Note: a, ;= a(y);

V(X,Y)x=0 V(Xy),= f(y) V(Xy) = f(y)x + g(

vOy)=g@y)=a; v(Ly)=fy)Lta;=a,

0;—03

1) = —7




Solving v(X,y)

Vo= V= 0 Note: a, ;= a(y);

V(X,Y)x=0 V(Xy),= f(y) V(Xy) = f(y)x + g(

vOy)=g@y)=a; v(Ly)=fy)Lta;=a,

fy)= -=

V_(alL )X+U"3



\ Solving v(X,y)

Similarly for v,,:




\ Solving v(X,y)

Similarly for v,,:

V(X,y),= 0 V(X,y)= h(x)




Solving v(X,y)

Similarly for v,,:

V(X,y),= 0 V(X,y)= h(x)

v(x,0) = q(x) =,



Solving v(X,y)

Similarly for v,,:

V(X,y),= 0 V(X,y)= h(x) v(X,y) = h(X)y + g

v(x,0) = q(x) =,  V(Hy)=h(X)H+ a, = a,

o) = %5



Solving v(X,y)

Similarly for v,,: ] a,

V(X,Y),,= 0 vixyl=h)  vixy) = h(x)y + of e

v(x,0) = q(x) =,  V(Hy)=h(X)H+ a, = a,

h(x)= 2=  v=(ZH)y+a,




Solving v(X,y)

Similarly for v,,: ] a,

V(X,Y),,= 0 vixyl=h)  vixy) = h(x)y + of e

v(x,0) = q(x) =,  V(Hy)=h(X)H+ a, = a,

h(x)= 2=  v=(ZH)y+a,

o, —0 —Q
Add solution of v, V(X,)) = (%)x T (%H Sy t+agtoy
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o Aw =w,+ w,= 0, w(x,y)=0 on boundary
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\ Solving w(X,y)
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\ Solving w(x,y)

o Aw =w,+ w,= 0, w(x,y)=0 on boundary
e Reminder: Timeindependent
e The plate is O everywhere

e w(x,y)=0




\ Finishing U,

* Uy(Xy) = V(Xy) + w(xy)



\ Finishing U,

o U (0y) = VxY) WO

s O —0y
e Substitution: u,(X,y) = ( )x i ( )y L 3 + Oy

e \We now have the solutions to y and u,



\ Concluding Poisson’s Equation
Au = Q, U =@ on boundary

U= u+ U= Z ba(y)sin("=) (“1_“‘3

Whel’e n-[[H —y ]

b,(y) = sinh(

X+ (=7 )y toay+aoy

)J Gn(E)sinh(==2)dE

+ sinh(") I g”(é)smh( )

For one-dimensional




\ Concluding Poisson’s Equation
Au = Q, U = on boundary

:,?ZI ;l Domsin(cT )Sm(m} (%)x + (%)y s O3 + Oy

I j Osin( ™= )sin( = )dxdy

Where bppy, = —

A | | sin?("2)sin?(Z5 )dxdy
00

For two-dimensional




\ Finishing u,

® Uy(Xy) = V(X,y) + w(X,V)

(Cw+ (G o +ay

e Substitution: u,(x,y) =



\ In Summary

Purpose of Poisson’s Equation

Solved Poisson’s Equation
Nonhomogeneous Internal and boundaries
One and Two dimensional ways
Separation of Variables

Orthogonality
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