Augustana College

Augustana Digital Commons
Mathematics

Spring 2019

Poisson's Equation

Ehren Braun
Augustana College, Rock Island Illinois
Andrew P. Sward
Augustana College, Rock Island Illinois

Follow this and additional works at: https://digitalcommons.augustana.edu/mathstudent
Part of the Mathematics Commons

Augustana Digital Commons Citation

Braun, Ehren and Sward, Andrew P.. "Poisson's Equation" (2019). Mathematics: Student Scholarship \& Creative Works. https://digitalcommons.augustana.edu/mathstudent/4

Poisson's Equation

By Ehren Braun

Poisson's Equation

- Generalization of Laplace's Equation $\mathbf{\Delta u}=0$

Poisson's Equation

- Generalization of Laplace's Equation $\mathbf{\Delta u}=0$
- Poisson's Equation: $\Delta \mathrm{u}=\mathrm{Q}$
- Q represents sources in region

Poisson's Equation

- Generalization of Laplace's Equation $\Delta \mathrm{u}=0$
- Poisson's Equation: $\Delta \mathrm{u}=\mathrm{Q}$
- Q represents sources in region
- Sources:
- Voltage
- Heat
- Gravity

Poisson's Equation

- Generalization of Laplace's Equation $\Delta \mathrm{u}=0$
- Poisson's Equation: $\Delta \mathrm{u}=\mathrm{Q}$
- Q represents sources in region
- Sources:
- Voltage
- Heat
- Gravity
- Time-independent(Steady State)

Poisson's Equation

- Generalization of Laplace's Equation $\mathbf{\Delta u}=0$
- Poisson's Equation: $\Delta \mathrm{u}=\mathrm{Q}$

- Q represents sources in region
- Sources:
- Voltage
- Heat
- Gravity
- Time-independent(Steady State)
- Geometry determines $\boldsymbol{\Delta}$

Poisson's Equation Example

Poisson's Equation Example

- Rectangular Plate
- Edges(boundary) given by u =ax
- $\quad \alpha$ can vary

Poisson's Equation Example

- Rectangular Plate
- Edges(boundary) given by u =ax
- \quad can vary
- Rest given by $\Delta \mathrm{u}=\mathrm{Q}$

Poisson's Equation Example

- Rectangular Plate
- Edges(boundary) given by u =ax
- $\quad \alpha$ can vary
- Rest given by $\Delta \mathrm{u}=\mathrm{Q}$

- Nonhomogenous from Q and $\boldsymbol{\alpha}$

Poisson's Equation Example

- Rectangular Plate
- Edges(boundary) given by u =ax
- $\quad \alpha$ can vary
- Rest given by $\Delta \mathrm{u}=\mathrm{Q}$

- Nonhomogenous from Q and $\boldsymbol{\alpha}$
- Easier with homogenous components

Solving $\Delta \mathrm{u}=\mathrm{Q}, \mathrm{u}=\alpha$ on Boundary

- To Simplify: Break into two parts

Solving $\Delta \mathrm{u}=\mathrm{Q}, \mathrm{u}=\boldsymbol{\alpha}$ on Boundary

- To Simplify: Break into two parts

$$
\text { - Let } \mathrm{u}=\mathrm{u}_{1}+\mathrm{u}_{2}
$$

Solving $\Delta \mathrm{u}=\mathrm{Q}, \mathrm{u}=\boldsymbol{\alpha}$ on Boundary

- To Simplify: Break into two parts

$$
\begin{array}{ll}
\circ & \text { Let } \mathrm{u}=\mathrm{u}_{1}+\mathrm{u}_{2} \\
\circ & \Delta \mathrm{u}_{1}=\mathrm{Q}, \mathrm{u}_{1}=0 \text { on boundary }
\end{array}
$$

Solving $\Delta \mathrm{u}=\mathrm{Q}, \mathrm{u}=\boldsymbol{\alpha}$ on Boundary

- To Simplify: Break into two parts
- Let $u=u_{1}+U_{2}$
- $\Delta \mathrm{u}_{1}=\mathrm{Q}, \mathrm{u}_{1}=0$ on boundary

- $\Delta \mathrm{u}_{2}=0, \mathrm{u}_{2}=\alpha$ on boundary

Solving $\Delta \mathrm{u}=\mathrm{Q}, \mathrm{u}=\boldsymbol{\alpha}$ on Boundary

- To Simplify: Break into two parts
- Let $\mathrm{u}=\mathrm{u}_{1}+\mathrm{U}_{2}$
- $\Delta \mathrm{u}_{1}=\mathrm{Q}, \mathrm{u}_{1}=0$ on boundary

- $\Delta \mathrm{u}_{2}=0, \mathrm{u}_{2}=\alpha$ on boundary
- This satisfies $\Delta u=Q, u=\alpha$ on boundary

Solving $\Delta \mathrm{u}=\mathrm{Q}, \mathrm{u}=\boldsymbol{\alpha}$ on Boundary

- To Simplify: Break into two parts
- Let $\mathrm{u}=\mathrm{u}_{1}+\mathrm{U}_{2}$
- $\Delta \mathrm{u}_{1}=\mathrm{Q}, \mathrm{u}_{1}=0$ on boundary

- $\Delta \mathrm{u}_{2}=0, \mathrm{u}_{2}=\alpha$ on boundary
- This satisfies $\Delta \mathrm{u}=\mathrm{Q}, \mathrm{u}=\alpha$ on boundary
- Two "easier" problems to solve

Solving $\Delta \mathrm{u}=\mathrm{Q}, \mathrm{u}=\boldsymbol{\alpha}$ on Boundary

- To Simplify: Break into two parts
- Let $u=u_{1}+u_{2}$
- $\Delta \mathrm{u}_{1}=\mathrm{Q}, \mathrm{u}_{\mathrm{u}}=0$ on boundary

- $\Delta \mathrm{u}_{2}=0, \mathrm{u}_{2}=\alpha$ on boundary
- This satisfies $\Delta \mathrm{u}=\mathrm{Q}, \mathrm{u}=\alpha$ on boundary
- Two "easier" problems to solve
- Similar for other regions

Solving $\Delta \mathrm{u}_{1}=\mathrm{Q}, \mathrm{u}_{1}=0$ on Boundary

Solving $\Delta \mathrm{u}_{1}=\mathrm{Q}, \mathrm{u}_{\mathrm{L}}=0$ on Boundary

- With homogeneous boundaries

Solving $\Delta \mathrm{u}_{1}=\mathrm{Q}, \mathrm{u}_{1}=0$ on Boundary

- With homogeneous boundaries
- Implies eigenfunction expansion method

Solving $\Delta \mathrm{u}_{1}=\mathrm{Q}, \mathrm{u}_{\mathrm{L}}=0$ on Boundary

- With homogeneous boundaries
- Implies eigenfunction expansion method
- Two different ways of Expansion

Solving $\Delta \mathrm{u}_{1}=\mathrm{Q}, \mathrm{u}_{\mathrm{L}}=0$ on Boundary

- With homogeneous boundaries
- Implies eigenfunction expansion method
- Two different ways of Expansion
- Eigenfunctions related to $\Delta \mathrm{u}_{1}=0$

Solving $\Delta \mathrm{u}_{1}=\mathrm{Q}, \mathrm{u}_{1}=0$ on Boundary

- With homogeneous boundaries
- Implies eigenfunction expansion method
- Two different ways of Expansion
- Eigenfunctions related to $\Delta \mathrm{u}_{1}=0$

- Eigenfunctions related to $\Delta \phi+\lambda \phi=0$

Solving $\Delta \mathrm{u}_{1}=\mathrm{Q}, \mathrm{u}_{1}=0$ on Boundary

- With homogeneous boundaries
- Implies eigenfunction expansion method
- Two different ways of Expansion
- Eigenfunctions related to $\Delta \mathrm{u}_{1}=0$

- Eigenfunctions related to $\Delta \phi+\lambda \phi=0$
- Methods are different, but related
- One-dimensional vs Twodimensional

One -Dim ensional Eigenfunctions for U_{1}

One -Dimensional Eigenfunctions for U_{1}

- Relating to Laplace's Equation $\Delta \mathrm{u}_{1}=0$

One -Dim ensional Eigenfunctions for U_{1}

- Relating to Laplace's Equation $\Delta \mathrm{u}_{1}=0$
- Laplacian: $\mathrm{u}_{1 \mathrm{xx}}+\mathrm{u}_{1 \mathrm{yy}}=0$

One -Dim ensional Eigenfunctions for U_{1}

- Relating to Laplace's Equation $\Delta \mathrm{u}_{1}=0$
- Laplacian: $\mathrm{u}_{1 \mathrm{xx}}+\mathrm{u}_{1 \mathrm{yy}}=0$
- Separation of Variables: $\mathrm{u}_{1}=\mathrm{XY}$

One -Dimensional Eigenfunctions for U_{1}

- Relating to Laplace's Equation $\Delta_{u_{1}}=0$
- Laplacian: $\mathrm{u}_{1 \mathrm{xx}}+\mathrm{u}_{1 \mathrm{yy}}=0$
- Separation of Variables: $\mathrm{u}_{1}=\mathrm{XY}$
- $X^{\prime \prime} Y+X Y^{\prime \prime}=0$

One -Dimensional Eigenfunctions for U_{1}

- Relating to Laplace's Equation $\Delta \mathrm{u}_{1}=0$
- Laplacian: $\mathrm{u}_{1 \mathrm{xx}}+\mathrm{u}_{1 \mathrm{yy}}=0$
- Separation of Variables: $\mathrm{u}_{1}=\mathrm{XY}$
- $\mathrm{X}^{\prime \prime} \mathrm{Y}+\mathrm{XY} Y^{\prime \prime}=0$

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0
$$

One -Dimensional Eigenfunctions for U_{1}

- Relating to Laplace's Equation $\Delta \mathrm{u}_{1}=0$
- Laplacian: $\mathrm{u}_{1 \mathrm{xx}}+\mathrm{u}_{1 \mathrm{yy}}=0$
- Separation of Variables: $\mathrm{u}_{1}=\mathrm{XY}$
- $\mathrm{X}^{\prime \prime} \mathrm{Y}+\mathrm{XY}=0$
$\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0$
- $\frac{X^{\prime \prime}}{X}=\frac{-Y^{\prime \prime}}{Y}$

One -Dimensional Eigenfunctions for U_{1}

- Relating to Laplace's Equation $\Delta \mathrm{u}_{1}=0$
- Laplacian: $\mathrm{u}_{1 \mathrm{xx}}+\mathrm{u}_{1 \mathrm{yy}}=0$
- Separation of Variables: $\mathrm{u}_{1}=\mathrm{XY}$
- $\mathrm{X}^{\prime \prime} \mathrm{Y}+\mathrm{XY}=0$
$\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0$
- $\frac{X^{\prime \prime}}{X}=\frac{-Y^{\prime \prime}}{Y}=-\lambda$

One -Dimensional Eigenfunctions for U_{1}

- Relating to Laplace's Equation $\Delta_{u_{1}}=0$
- Laplacian: $\mathrm{u}_{1 \mathrm{xx}}+\mathrm{u}_{1 \mathrm{yy}}=0$
- Separation of Variables: $\mathrm{u}_{1}=\mathrm{XY}$
- $\mathrm{X}^{\prime \prime} \mathrm{Y}+\mathrm{XY} Y^{\prime \prime}=0$
$\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0$
- $\frac{X^{\prime \prime}}{X}=\frac{-Y^{\prime \prime}}{Y}=-\lambda$
- Note: Could subtract Xs instead

One -Dimensional Eigenfunctions for U_{1}

$$
\frac{X^{\prime \prime}}{X}=\frac{-Y^{\prime \prime}}{Y}=-\lambda
$$

One -Dimensional Eig enfunctions for U_{1}

$$
\begin{aligned}
& \frac{X^{\prime \prime}}{X}=\frac{-Y^{\prime \prime}}{Y}=-\lambda \\
& X^{\prime \prime}=-\lambda X
\end{aligned}
$$

One -Dim ensional Eig enfunctions for u_{1}

$\frac{X^{\prime \prime}}{X}=\frac{-Y^{\prime \prime}}{Y}=-\lambda$
$X^{\prime \prime}=-\lambda X$
3 Cases: $\lambda>0 \quad \lambda<0 \quad \lambda=0$
Looking for Non-Trivial Solutions (Only $\lambda>0$)

One -Dimensional Eig enfunctions for U_{1}

$\frac{X^{\prime \prime}}{X}=\frac{-Y^{\prime \prime}}{Y}=-\lambda$
$X^{\prime \prime}=-\lambda X$
3 Cases: $\lambda>0 \quad \lambda<0 \quad \lambda=0$,
Looking for Non-Trivial Solutions (Only $\lambda>0$)

$$
\lambda>0: c_{1} \sin (\sqrt{\lambda} x)+c_{2} \cos (\sqrt{\lambda} x)
$$

One -Dim ensional Eigenfunctions for u_{1}

$\frac{X^{\prime \prime}}{X}=\frac{-Y^{\prime \prime}}{Y}=-\lambda$
$X^{\prime \prime}=-\lambda X$
3 Cases: $\lambda>0 \quad \lambda<0 \quad \lambda=0$
Looking for Non-Trivial Solutions (Only $\lambda>0$)

$\lambda>0: c_{1} \sin (\sqrt{\lambda} x)+c_{2} \cos (\sqrt{\lambda} x)$
Boundary Conditions $\Rightarrow X_{n}=c_{n} \sin \left(\frac{n \pi x}{L}\right), n=1,2, \ldots$

One -Dimensional Eigenfunctions for U_{1}

$$
\frac{X^{\prime \prime}}{X}=\frac{-Y^{\prime \prime}}{Y}=-\lambda
$$

$$
\begin{aligned}
& \lambda=\left(\frac{n \pi}{L}\right)^{2} \\
& n=1,2, \ldots
\end{aligned}
$$

One -Dim ensional Eigenfunctions for U_{1}

$$
\begin{aligned}
& \frac{X^{\prime \prime}}{X}=\frac{-Y^{\prime \prime}}{Y}=-\lambda \\
& Y^{\prime \prime}=\lambda Y
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \lambda=\left(\frac{n \pi}{L}\right)^{2} \\
& n=1,2, \ldots
\end{aligned}
$$

From Xs, $\lambda>0$

One -Dim ensional Eigenfunctions for U_{1}

$$
\begin{array}{ll}
\frac{X^{\prime \prime}}{X}=\frac{-Y^{\prime \prime}}{Y}=-\lambda & \\
Y^{\prime \prime}=\lambda Y & \text { Note: } \\
Y_{n}=a_{n} e^{\lambda y}+b_{n} e^{-\lambda y} & \\
n=\left(\frac{n \pi}{L}\right)^{2} \\
n=1,2, \ldots
\end{array}
$$

One -Dim ensional Eigenfunctions for U_{1}

$$
\begin{aligned}
& \frac{X^{\prime \prime}}{X}=\frac{-Y^{\prime \prime}}{Y}=-\lambda \\
& Y^{\prime \prime}=\lambda Y
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \lambda=\left(\frac{n \pi}{L}\right)^{2} \\
& n=1,2, \ldots
\end{aligned}
$$

$$
Y_{n}=a_{n} e^{\lambda y}+b_{n} e^{-\lambda y}
$$

$$
Y_{n}=\widehat{a_{n}} \sinh (\lambda y)+\widehat{b_{n}} \cosh (\lambda y)
$$

Can be rewritten as:

One -Dim ensional Eigenfunctions for U_{1}

Now that we have X and Y :

One -Dimensional Eig enfunctions for U_{1}

Now that we have X and $\mathrm{Yu}_{1}=\sum_{n=1}^{\infty} X_{n} Y_{n}$

$$
\begin{aligned}
& Y_{n}=a_{n} e^{\lambda y}+b_{n} e^{-\lambda y} \quad \lambda=\left(\frac{n \pi}{L}\right)^{2} \\
& X_{n}=c_{n} \sin \left(\frac{n \pi x}{L}\right)
\end{aligned}
$$

One -Dim ensional Eigenfunctions for U_{1}

Now that we have X and $\mathrm{Yu}_{1}=\sum_{n=1}^{\infty} X_{n} Y_{n}$

$$
Y_{n}=a_{n} e^{\lambda y}+b_{n} e^{-\lambda y} \quad \lambda=\left(\frac{n \pi}{L}\right)^{2}
$$

$$
X_{n}=c_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

For One-Dimensional: $u_{1}=\sum_{n=1}^{\infty} b_{n}(y) \sin \left(\frac{n \pi x}{L}\right)$

One -Dimensional Eigenfunctions for U_{1}

Now that we have X and $\mathrm{Yu}_{1}=\sum_{n=1}^{\infty} X_{n} Y_{n}$

$$
Y_{n}=a_{n} e^{\lambda y}+b_{n} e^{-\lambda y} \quad \lambda=\left(\frac{n \pi}{L}\right)^{2}
$$

$$
X_{n}=c_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

For One-Dimensional: $u_{1}=\sum_{n=1}^{\infty} b_{n}(y) \sin \left(\frac{n \pi x}{L}\right)$
Now apply the laplacian

One -Dim ensional Eig enfunctions for u_{1}

Note: $\mathrm{Q}=\mathrm{Q}(\mathrm{x}, \mathrm{y})$

$$
u_{1}=\sum_{n=1}^{\infty} b_{n}(y) \sin \left(\frac{n \pi x}{L}\right)
$$

$$
u_{1_{y y}}+u_{1_{x x}}=Q
$$

One-Dimensional Eigenfunctions for U_{1}

Note: $\mathrm{Q}=\mathrm{Q}(\mathrm{x}, \mathrm{y})$

$$
\begin{array}{cc}
u_{1}=\sum_{n=1}^{\infty} b_{n}(y) \sin \left(\frac{n \pi x}{L}\right) & u_{1_{y y}}+u_{1_{x x}}=Q \\
u_{1_{y y}}=\sum_{n=1}^{\infty} b_{n}(y)^{\prime \prime} \sin \left(\frac{n \pi x}{L}\right) & u_{1_{x x}}=\sum_{n=1}^{\infty}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y) \sin \left(\frac{n \pi x}{L}\right)
\end{array}
$$

One -Dim ensional Eigen functions for U_{1}

Note: $\mathrm{Q}=\mathrm{Q}(\mathrm{x}, \mathrm{y})$

$$
\begin{array}{ll}
u_{1}=\sum_{n=1}^{\infty} b_{n}(y) \sin \left(\frac{n \pi x}{L}\right) & u_{1_{y y}}+u_{1_{x x}}=Q \\
u_{1_{y y}}=\sum_{n=1}^{\infty} b_{n}(y)^{\prime \prime} \sin \left(\frac{n \pi x}{L}\right) & u_{1_{x x}}=\sum_{n=1}^{\infty}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y) \sin \left(\frac{n \pi x}{L}\right) \\
\sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right] \sin \left(\frac{n \pi x}{L}\right)=Q
\end{array}
$$

One -Dim ensional Eigen functions for U_{1}

Note: $\mathrm{Q}=\mathrm{Q}(\mathrm{x}, \mathrm{y})$

$$
\begin{array}{ll}
u_{1}=\sum_{n=1}^{\infty} b_{n}(y) \sin \left(\frac{n \pi x}{L}\right) & u_{1_{y y}}+u_{1_{x x}}=Q \\
u_{1_{y y}}=\sum_{n=1}^{\infty} b_{n}(y)^{\prime \prime} \sin \left(\frac{n \pi x}{L}\right) & u_{1_{x x}}=\sum_{n=1}^{\infty}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y) \sin \left(\frac{n \pi x}{L}\right) \\
\sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right] \sin \left(\frac{n \pi x}{L}\right)=Q
\end{array}
$$

Now we just want only Ys

One -Dim ensional Eig enfunctions for U_{1}

$$
\sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right] \sin \left(\frac{n \pi x}{L}\right)=Q
$$

One -Dim ensional Eigenfunctions for U_{1}

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right] \sin \left(\frac{n \pi x}{L}\right)=Q \\
& \sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right] \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right)=Q \sin \left(\frac{m \pi x}{L}\right)
\end{aligned}
$$

One -Dim ensional Eigenfunctions for U_{1}

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right] \sin \left(\frac{n \pi x}{L}\right)=Q \\
& \sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right] \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right)=Q \sin \left(\frac{m \pi x}{L}\right) \\
& \sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right] \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m a x}{L}\right) d x=\int_{0}^{L} Q \sin \left(\frac{m a x}{L}\right) d x
\end{aligned}
$$

Now we have 3 cases(Orthogonality): $m \neq n, m=n \neq 0, m=n=0$

One -Dimensional Eigenfunctions for u_{1}

$$
\sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right] \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=\int_{0}^{L} Q \sin \left(\frac{m \pi x}{L}\right) d x
$$

One -Dim ensional Eig enfunctions for u_{1}

$$
\sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right] \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=\int_{0}^{L} Q \sin \left(\frac{m \pi x}{L}\right) d x
$$

Doing these cases, only $\mathrm{m}=\mathrm{n} \neq 0$ is nonzero $\Rightarrow \int_{0}^{L} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x=\frac{L}{2}$

One -Dim ensional Eigenfunctions for U_{1}

Doing these cases, only $\mathrm{m}=\mathrm{n} \neq 0$ is nonzero $\Rightarrow \int_{0}^{L} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x=\frac{L}{2}$
$\sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right]=\frac{2}{L} \int_{0}^{L} Q \sin \left(\frac{n \pi x}{L}\right) d x \equiv q_{n}(y)$
$Q=\sum_{n=1}^{\infty} q_{n}(y) \sin \left(\frac{n \pi x}{L}\right)$

One -Dim ensional Eigen functions for U_{1}

All there is left is $b_{1}(y)$

$$
Y_{n}=\widehat{a_{n}} \sinh (\lambda y)+\widehat{b_{n}} \cosh (\lambda y)
$$

$$
\sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right]=\frac{2}{L} \int_{0}^{L} Q \sin \left(\frac{n \pi x}{L}\right) d x \equiv q_{n}(y)
$$

One -Dim ensional Eigen functions for U_{1}

All there is left is $b_{1}(y)$

$$
Y_{n}=\widehat{a_{n}} \sinh (\lambda y)+\widehat{b_{n}} \cosh (\lambda y)
$$

$$
\sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right]=\frac{2}{L} \int_{0}^{L} Q \sin \left(\frac{n \pi x}{L}\right) d x \equiv q_{n}(y)
$$

Solving for $b_{n}(y)$ is now just an ODE with IC $\not{ }_{\sharp}(0)=b_{n}(H)=0$

One -Dim ensional Eigenfunctions for U_{1}

All there is left is $b_{1}(y)$

$$
Y_{n}=\widehat{a_{n}} \sinh (\lambda y)+\widehat{b_{n}} \cosh (\lambda y)
$$

$$
\sum_{n=1}^{\infty}\left[b_{n}(y)^{n}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right]=\frac{2}{L} \int_{0}^{L} Q \sin \left(\frac{n x}{L}\right) d x \equiv q_{n}(y)
$$

Solving for $b_{n}(y)$ is now just an ODE with IC $\left.\mathfrak{k}_{1} 0\right)=b_{n}(H)=0$
For Nonhomogeneous ODEs: Variation of Parameters ($y=v_{1} y_{1}+$ $\mathrm{v}_{2} \mathrm{y}_{2}$)

One -Dim ensional Eigenfunctions for U_{1}

All there is left is $b_{1}(y)$

$$
Y_{n}=\widehat{a_{n}} \sinh (\lambda y)+\widehat{b_{n}} \cosh (\lambda y)
$$

$$
\sum_{n=1}^{\infty}\left[b_{n}(y)^{\prime \prime}-\left(\frac{n \pi}{L}\right)^{2} b_{n}(y)\right]=\frac{2}{L} \int_{0}^{L} Q \sin \left(\frac{n x}{L}\right) d x \equiv q_{n}(y)
$$

Solving for $b_{n}(y)$ is now just an ODE with IC $\left.\mathfrak{k}_{1} 0\right)=b_{n}(H)=0$
For Nonhomogeneous ODEs: Variation of Parameters ($y=v_{1} y_{1}+$
$\mathrm{V}_{2} \mathrm{y}_{2}$

$$
\begin{aligned}
b_{n}(y)= & \sinh \left(\frac{n \pi[H-y]}{L}\right) \int_{0}^{y} q_{n}(\xi) \sinh \left(\frac{n \pi \xi}{L}\right) d \xi \\
& +\sinh \left(\frac{n \pi y}{L}\right) \int_{y}^{H} q_{n}(\xi) \sinh \left(\frac{n \pi(H-\xi)}{L}\right) d \xi
\end{aligned}
$$

Finishing One -Dimensional Eig en functions

Finishing One -Dim ensional Eigenfunctions

We now have our solution: $u_{1}=\sum_{n=1}^{\infty} b_{n}(y) \sin \left(\frac{n \pi x}{L}\right)$

Finishing One -Dim ensional Eigenfunctions

We now have our solution: $u_{1}=\sum_{n=1}^{\infty} b_{n}(y) \sin \left(\frac{n \pi x}{L}\right)$
Where $\quad b_{n}(y)=\sinh \left(\frac{n n[H-y]}{L}\right) \int_{0}^{y} q_{n}(\xi) \sinh \left(\frac{n \pi \xi}{L}\right) d \xi$

$$
+\sinh \left(\frac{n \pi y}{L}\right) \int_{y}^{H} q_{n}(\xi) \sinh \left(\frac{n \pi(H-\xi)}{L}\right) d \xi
$$

Finishing One -Dim ensional Eigenfunctions

We now have our solution: $u_{1}=\sum_{n=1}^{\infty} b_{n}(y) \sin \left(\frac{n \pi x}{L}\right)$
Where $\quad b_{n}(y)=\sinh \left(\frac{n \pi[H-y]}{L}\right) \int_{0}^{y} q_{n}(\xi) \sinh \left(\frac{n \pi \xi}{L}\right) d \xi$

$$
+\sinh \left(\frac{n \pi y}{L}\right) \int_{y}^{H} q_{n}(\xi) \sinh \left(\frac{n \pi(H-\xi)}{L}\right) d \xi
$$

Two-Dimensional Eigenfunctions are easier

Two-Dim ensional Eigenfunctions for u_{1}

- Relating to $\Delta \phi+\lambda \phi=0$

Two -Dim ensional Eigenfunctions for u_{1}

- Relating to $\Delta \phi+\lambda \phi=0$
- Laplacian: $\boldsymbol{\phi}_{\mathrm{XX}}+\boldsymbol{\phi}_{\mathrm{YY}}=-\lambda \boldsymbol{\phi}$

Two -Dim ensional Eigenfunctions for u_{1}

- Relating to $\Delta \phi+\lambda \phi=0$
- Laplacian: $\boldsymbol{\phi}_{\mathrm{XX}}+\boldsymbol{\phi}_{\mathrm{YY}}=-\lambda \boldsymbol{\phi}$
- Separation of Variables: $\boldsymbol{\phi}=\mathrm{XY}$

Two -Dim ensional Eigenfunctions for u_{1}

- Relating to $\Delta \boldsymbol{\phi}+\lambda \boldsymbol{\phi}=0$
- Laplacian: $\boldsymbol{\phi}_{\mathrm{XX}}+\boldsymbol{\phi}_{\mathrm{YY}}=-\lambda \boldsymbol{\phi}$
- Separation of Variables: $\boldsymbol{\phi}=\mathrm{XY}$
- $\mathrm{X}^{\prime \prime} \mathrm{Y}+\mathrm{XY} \mathrm{Y}^{\prime \prime}=-\lambda \mathrm{XY}$

Two -Dim ensional Eigenfunctions for u_{1}

- Relating to $\Delta \boldsymbol{\phi}+\lambda \boldsymbol{\phi}=0$
- Laplacian: $\boldsymbol{\phi}_{\mathrm{XX}}+\boldsymbol{\phi}_{\mathrm{YY}}=-\lambda \boldsymbol{\phi}$
- Separation of Variables: $\boldsymbol{\phi}=\mathrm{XY}$
- $\mathrm{X}^{\prime \prime} \mathrm{Y}+\mathrm{XY} \mathrm{Y}^{\prime \prime}=-\lambda X Y$

- $\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\lambda$

Two -Dim ensional Eigenfunctions for u_{1}

- Relating to $\boldsymbol{\Delta} \boldsymbol{\phi}+\lambda \boldsymbol{\phi}=0$
- Laplacian: $\boldsymbol{\phi}_{\mathrm{XX}}+\boldsymbol{\phi}_{\mathrm{YY}}=-\lambda \boldsymbol{\phi}$
- Separation of Variables: $\boldsymbol{\phi}=\mathrm{XY}$
- $\mathrm{X}^{\prime \prime} \mathrm{Y}+\mathrm{XY} \mathrm{Y}^{\prime \prime}=-\lambda X Y$

- $\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\lambda$
- Each term should be constant (λ not dependent)

Two -Dim ensional Eigenfunctions for u_{1}

- Relating to $\boldsymbol{\Delta} \boldsymbol{\phi}+\lambda \boldsymbol{\phi}=0$
- Laplacian: $\boldsymbol{\phi}_{\mathrm{XX}}+\boldsymbol{\phi}_{\mathrm{YY}}=-\lambda \boldsymbol{\phi}$
- Separation of Variables: $\boldsymbol{\phi}=\mathrm{XY}$
- $\mathrm{X}^{\prime \prime} \mathrm{Y}+\mathrm{XY} \mathrm{Y}^{\prime \prime}=-\lambda \mathrm{XY}$

- $\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\lambda$
- Each term should be constant (λ not dependent)
- Let $\lambda=\lambda_{\mathrm{x}}+\lambda_{\mathrm{y}}$

Two -Dim ensional Eigenfunctions for u_{1}

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\left(\lambda_{x}+\lambda_{y}\right)
$$

Two-Dimensional Eigenfunctions for u_{1}

$$
\begin{aligned}
& \frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\left(\lambda_{x}+\lambda_{y}\right) \\
& X^{\prime \prime}=-X \lambda_{x} \quad Y^{\prime \prime}=-Y \lambda_{y}
\end{aligned}
$$

Two -Dim ensional Eigenfunctions for u_{1}

$$
\begin{aligned}
& \frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\left(\lambda_{x}+\lambda_{y}\right) \\
& X^{\prime \prime}=-X \lambda_{x} \quad Y^{\prime \prime}=-Y \lambda_{y} \\
& 0,0
\end{aligned}
$$

Similar to previous 3 cases and resul $\lambda>0, \lambda<0, \lambda=0$

Two -Dim ensional Eigenfunctions for u_{1}

$$
\begin{aligned}
& \frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\left(\lambda_{x}+\lambda_{y}\right) \\
& X^{\prime \prime}=-X \lambda_{x} \quad Y^{\prime \prime}=-Y \lambda_{y}
\end{aligned}
$$

Similar to previous 3 cases and resul $\lambda>0, \lambda<0, \lambda=0$

$$
\begin{gathered}
\text { Boundary Conditions } \Rightarrow X_{n}=b_{n} \sin \left(\frac{n \pi x}{L}\right) \quad \lambda_{x_{n}}=\left(\frac{n \pi}{L}\right)^{2} \\
n=1,2, \ldots
\end{gathered}
$$

Two -Dim ensional Eigenfunctions for u_{1}

$$
\begin{aligned}
& \frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\left(\lambda_{x}+\lambda_{y}\right) \\
& X^{\prime \prime}=-X \lambda_{x} \quad Y^{\prime \prime}=-Y \lambda_{y}
\end{aligned}
$$

Similar to previous 3 cases and resul $\lambda>0, \lambda<0, \lambda=0$

$$
\begin{aligned}
\begin{array}{c}
\text { Boundary Conditions } \Rightarrow X_{n}=b_{n} \sin \left(\frac{n \pi x}{L}\right) \\
n=1,2, \ldots
\end{array} & \lambda_{x_{n}}=\left(\frac{n \pi}{L}\right)^{2} \\
m=1,2, \ldots & Y_{m}=b_{m} \sin \left(\frac{m \pi y}{H}\right)
\end{aligned} \lambda_{y_{m}}=\left(\frac{m \pi}{H}\right)^{2} .
$$

Two -Dimensional Eigenfunctions for u_{1}

$$
\Phi_{n m}=\sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right) \quad \lambda_{n m}=\left(\frac{n \pi}{L}\right)^{2}+\left(\frac{m \pi}{H}\right)^{2}
$$

Two -Dimensional Eigenfunctions for u_{1}

$$
\begin{aligned}
& \Phi_{n m}=\sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right) \quad \lambda_{n m}=\left(\frac{n \pi}{L}\right)^{2}+\left(\frac{m \pi}{H}\right)^{2} \\
& u_{1}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{n m} \sin \left(\frac{n \pi}{L}\right) \sin \left(\frac{m \pi}{H}\right)
\end{aligned}
$$

Two-Dim ensional Eigenfunctions for u_{1}

$$
\begin{aligned}
& \Phi_{n m}=\sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right) \quad \lambda_{n m}=\left(\frac{n \pi}{L}\right)^{2}+\left(\frac{m \pi}{H}\right)^{2} \\
& u_{1}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{n m} \sin \left(\frac{n \pi}{L}\right) \sin \left(\frac{m \pi}{H}\right) \\
& \text { Since } \Delta \Phi_{n m}=-\lambda_{n m} \Phi_{n m}
\end{aligned}
$$

Two-Dim ensional Eigenfunctions for u_{1}

$$
\begin{aligned}
& \Phi_{n m}=\sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right) \quad \lambda_{n m}=\left(\frac{n \pi}{L}\right)^{2}+\left(\frac{m \pi}{H}\right)^{2} \\
& u_{1}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{n m} \sin \left(\frac{n \pi}{L}\right) \sin \left(\frac{m \pi}{H}\right) \\
& \text { Since } \Delta \Phi_{n m}=-\lambda_{n m} \Phi_{n m} \quad, \text { substitute } \\
& \Rightarrow \sum_{n=1}^{\infty} \sum_{m=1}^{\infty}-b_{n m} \lambda_{n m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)=Q
\end{aligned}
$$

Finishing Two -Dimensional Eigenfunctions

$$
u_{1}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{n m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right) \sum_{n=1}^{\infty} \sum_{m=1}^{\infty}-b_{n m} \lambda_{n m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)=Q
$$

Finishing Two -Dimensional Eigenfunctions

$$
u_{1}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{n m \cdot \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right), ~ . ~}^{m}
$$

All we have left is coefficients $\sum_{n=1}^{n=1} \sum_{m=1}^{\infty}-b_{n m} \lambda_{n m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)=Q$

Finishing Two -Dimensional Eigenfunctions

$$
u_{1}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{n m \cdot \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right), ~}^{m}
$$

All we have left is coefficients $\sum_{n=1}^{n=1} \sum_{m=1}^{\infty}-b_{n m} \lambda_{n m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)=Q$
Orthogonality (3 cases): $s \neq n / t \neq m, s=n \neq 0 / t=m \neq 0, s=n=0 / t=m=0$

Finishing Two -Dimensional Eigen functions
$u_{1}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{n m \cdot \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)}$
All we have left is coefficients $\sum_{n=1} \sum_{m=1}^{\infty}-b_{n m} \lambda_{n m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)=Q$
Orthogonality (3 cases): $s \neq n / t \neq m, s=n \neq 0 / t=m \neq 0, s=n=0 / t=m=0$
Now for both $\sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)$ nd

Finishing Two -Dimensional Eigen functions

$$
u_{1}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{\left.n m \cdot \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right), ~\right) .}
$$

All we have left is coefficients $\sum_{n=1} \sum_{m=1}^{\infty}-b_{n m} \lambda_{n m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)=Q$
Orthogonality (3 cases): $s \neq n / t \neq m, s=n \neq 0 / t=m \neq 0, s=n=0 / t=m=0$
Now for both $\sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)$ nd

$$
-b_{n m} \lambda_{n m} \int_{0}^{H L} \int_{0}^{H} \sin ^{2}\left(\frac{n \pi x}{L}\right) \sin ^{2}\left(\frac{m \pi y}{H}\right) d x d y=\int_{0}^{H} \int_{0}^{L} Q \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right) d x d y
$$

Finishing Two -Dimensional Eigen functions

$$
u_{1}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{n m \cdot} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)
$$

All we have left is coefficients $\sum_{n=1} \sum_{m=1}-b_{n m} \lambda_{n m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)=Q$
Orthogonality(3 cases): $s \neq n / t \neq m, s=n \neq 0 / t=m \neq 0, s=n=0 / t=m=0$
Now for both $\sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)$ nd
$-b_{n m} \lambda_{n m} \int_{0}^{H L} \int_{0}^{L} \sin ^{2}\left(\frac{n \pi x}{L}\right) \sin ^{2}\left(\frac{m \pi y}{H}\right) d x d y=\int_{0}^{H L} Q \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right) d x d y$
HL
$\iint Q \sin \left(\frac{m x x}{L}\right) \sin \left(\frac{m \pi y}{H}\right) d x d y$
$-b_{n m} \lambda_{n m}=\frac{00}{\int_{0}^{H} \int_{0}^{L} \sin ^{2}\left(\frac{m x x}{L}\right) \sin ^{2}\left(\frac{m \pi y}{H}\right) d x d y}$

Finishing Two -Dimensional Eigen functions

$$
u_{1}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{n m \cdot} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)
$$

All we have left is coefficients $\sum_{n=1} \sum_{m=1}-b_{n m} \lambda_{n m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)=Q$
Orthogonality(3 cases): $s \neq \mathrm{n} / \mathrm{t} \neq \mathrm{m}, \mathrm{s}=\mathrm{n} \neq 0 / \mathrm{t}=\mathrm{m} \neq 0, \mathrm{~s}=\mathrm{n}=0 / \mathrm{t}=\mathrm{m}=0$
Now for both $\sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right) \mathrm{nd}$
$-b_{n m} \lambda_{n m} \int_{0}^{H} \int_{0}^{L} \sin ^{2}\left(\frac{n \pi x}{L}\right) \sin ^{2}\left(\frac{m \pi y}{H}\right) d x d y=\int_{0}^{H} \int_{0}^{L} Q \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right) d x d y$
$\int_{0}^{H L} Q \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right) d x d y$
$-b_{n m} \lambda_{n m}=\frac{00}{\int_{0}^{L} \int_{0} \sin ^{2}\left(\frac{m \pi x}{L}\right) \sin ^{2}\left(\frac{m \pi y}{H}\right) d x d y}$ $\lambda_{n m}=\left(\frac{n \pi}{L}\right)^{2}+\left(\frac{m \pi}{H}\right)^{2}$
$n=1,2, \ldots$
$m=1,2, \ldots$

Finishing Solutions to u

Finishing Solutions to u

- We now have our solutions for u

Finishing Solutions to u

- We now have our solutions for 4
- Both One and Two-Dimensional

Finishing Solutions to u

- We now have our solutions for 4
- Both One and Two-Dimensional
- $\mathrm{u}=\mathrm{u}_{1}+\mathrm{u}_{2}$

Finishing Solutions to u

- We now have our solutions for 4
- Both One and Two-Dimensional
- $\mathrm{u}=\mathrm{u}_{1}+\mathrm{u}_{2}$
- u_{2} left

Finishing Solutions to u

- We now have our solutions for 4
- Both One and Two-Dimensional
- $\mathrm{u}=\mathrm{u}_{1}+\mathrm{u}_{2}$
- u_{2} left
- Thankfully, similar

Solving $\Delta \mathrm{u}_{2}=0, \mathrm{u}_{2}=\alpha$ on Boundary

Solving $\Delta \mathrm{u}_{2}=0, \mathrm{u}_{2}=\alpha$ on Boundary

- To identify different edges

Solving $\Delta \mathrm{u}_{2}=0, \mathrm{u}_{2}=\alpha$ on Boundary

- To identify different edges
- To deal with nonhomogeneous boundary:

Let $\mathrm{u}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{v}(\mathrm{x}, \mathrm{y})+\mathrm{w}(\mathrm{x}, \mathrm{y})$

Solving $\Delta \mathrm{u}_{2}=0, \mathrm{u}_{2}=\alpha$ on Boundary

- To identify different edges
- To deal with nonhomogeneous boundary:

$$
\text { Let } u_{2}(x, y)=v(x, y)+w(x, y)
$$

- Where $\mathrm{v}(\mathrm{x}, \mathrm{y})$ represents boundary

$$
\text { and } w(x, y)=0 \text { on boundary }
$$

Solving $\Delta \mathrm{u}_{2}=0, \mathrm{u}_{2}=\alpha$ on Boundary

- $\mathrm{u}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{v}(\mathrm{x}, \mathrm{y})+\mathrm{w}(\mathrm{x}, \mathrm{y})$

Solving $\Delta \mathrm{u}_{2}=0, \mathrm{u}_{2}=\alpha$ on Boundary

- $\mathrm{u}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{v}(\mathrm{x}, \mathrm{y})+\mathrm{w}(\mathrm{x}, \mathrm{y})$
- $\Delta \mathrm{u}_{2}=\mathrm{u}_{2 x \mathrm{x}}+\mathrm{u}_{2 \mathrm{yy}}$

Solving $\Delta \mathrm{u}_{2}=0, \mathrm{u}_{2}=\alpha$ on Boundary

- $\mathrm{u}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{v}(\mathrm{x}, \mathrm{y})+\mathrm{w}(\mathrm{x}, \mathrm{y})$
- $\Delta \mathrm{u}_{2}=\mathrm{u}_{2 x \mathrm{x}}+\mathrm{u}_{2 \mathrm{yy}}$
- $\mathrm{u}_{2 x \mathrm{x}}=\mathrm{v}_{\mathrm{xx}}+\mathrm{w}_{\mathrm{xx}}$
- $\mathrm{u}_{2 \mathrm{yy}}=\mathrm{v}_{\mathrm{yy}}+\mathrm{w}_{\mathrm{yy}}$

Solving $\Delta \mathrm{u}_{2}=0, \mathrm{u}_{2}=\alpha$ on Boundary

- $\mathrm{u}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{v}(\mathrm{x}, \mathrm{y})+\mathrm{w}(\mathrm{x}, \mathrm{y})$
- $\Delta \mathrm{u}_{2}=\mathrm{u}_{2 x \mathrm{x}}+\mathrm{u}_{2 \mathrm{yy}}$
- $\mathrm{u}_{2 x \mathrm{x}}=\mathrm{v}_{\mathrm{xx}}+\mathrm{w}_{\mathrm{xx}}$
- $\mathrm{u}_{2 \mathrm{yy}}=\mathrm{v}_{\mathrm{yy}}+\mathrm{w}_{\mathrm{yy}}$

- $\Delta \mathrm{u}_{2}=\mathrm{w}_{\mathrm{xx}}+\mathrm{w}_{\mathrm{yy}}+\mathrm{v}_{\mathrm{xx}}+\mathrm{v}_{\mathrm{yy}}$

Solving $\Delta \mathrm{u}_{2}=0, \mathrm{u}_{2}=\alpha$ on Boundary

- $\mathrm{u}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{v}(\mathrm{x}, \mathrm{y})+\mathrm{w}(\mathrm{x}, \mathrm{y})$
- $\Delta \mathrm{u}_{2}=\mathrm{u}_{2 x}+\mathrm{u}_{2 \mathrm{yy}}$
- $\mathrm{u}_{2 x \mathrm{x}}=\mathrm{v}_{\mathrm{xx}}+\mathrm{w}_{\mathrm{xx}}$
- $u_{2 y y}=v_{y y}+w_{y y}$

- $\Delta \mathrm{u}_{2}=\mathrm{w}_{\mathrm{xx}}+\mathrm{w}_{\mathrm{yy}}+\mathrm{v}_{\mathrm{xx}}+\mathrm{v}_{\mathrm{yy}}$
- $v_{x x}=v_{y y}=0$

Solving $v(x, y)$

$v_{x x}=v_{y y}=0$
Note: $\boldsymbol{\alpha}_{1,3}=\boldsymbol{\alpha}(\mathrm{y})_{1}$,

Solving $v(x, y)$

$$
\begin{aligned}
& v_{x x}=v_{y y}=0 \\
& v(x, y)_{x x}=0
\end{aligned}
$$

Note: $\boldsymbol{\alpha}_{1,3}=\boldsymbol{\alpha}(\mathrm{y})_{1}$,

$$
\mathrm{v}(\mathrm{x}, \mathrm{y})_{\mathrm{x}}=\mathrm{f}(\mathrm{y})
$$

$v(x, y)=f(y) x+g(y)$

Solving $v(x, y)$

$$
\begin{aligned}
& v_{x x}=v_{y y}=0 \\
& v(x, y)_{x x}=0 \quad v(x, y)_{x}=f(y) \\
& v(0, y)=g(y)=\alpha_{3}
\end{aligned}
$$

Solving $v(x, y)$

$$
\begin{aligned}
& v_{x x}=v_{y y}=0 \\
& v(x, y)_{x x}=0
\end{aligned}
$$

$$
\mathrm{v}(\mathrm{x}, \mathrm{y})_{\mathrm{x}}=\mathrm{f}(\mathrm{y})
$$

$\mathrm{v}(0, \mathrm{y})=\mathrm{g}(\mathrm{y})=\boldsymbol{\alpha}_{3} \quad \mathrm{v}(\mathrm{L}, \mathrm{y})=\mathrm{f}(\mathrm{y}) \mathrm{L}+\boldsymbol{\alpha}_{3}=\boldsymbol{\alpha}_{1}$
$f(y)=\frac{\alpha_{1}-\alpha_{3}}{L}$

Solving $v(x, y)$

$$
\begin{aligned}
& v_{x x}=v_{y y}=0 \\
& v(x, y)_{x x}=0
\end{aligned}
$$

Note: $\boldsymbol{\alpha}_{1,3}=\boldsymbol{\alpha}(\mathrm{y})_{1}$,

$$
\mathrm{v}(\mathrm{x}, \mathrm{y})_{\mathrm{x}}=\mathrm{f}(\mathrm{y})
$$

$\mathrm{v}(0, \mathrm{y})=\mathrm{g}(\mathrm{y})=\boldsymbol{\alpha}_{3} \quad \mathrm{v}(\mathrm{L}, \mathrm{y})=\mathrm{f}(\mathrm{y}) \mathrm{L}+\boldsymbol{\alpha}_{3}=\boldsymbol{\alpha}_{1}$
$f(y)=\frac{\alpha_{1}-\alpha_{3}}{L} \quad v=\left(\frac{\alpha_{1}-\alpha_{3}}{L}\right) x+\alpha_{3}$

Solving $v(x, y)$

Similarly for v_{yy} :

Solving $v(x, y)$

Similarly for v_{yy} :
$v(x, y)_{y y}=0 \quad v(x, y)_{y}=h(x)$

$$
v(x, y)=h(x) y+\left.q\right|_{0} ^{1} \alpha_{4}^{{ }^{3}{ }^{1} 5618} x
$$

Solving $v(x, y)$

Similarly for v_{yy} :
$\mathrm{v}(\mathrm{x}, \mathrm{y})_{\mathrm{yy}}=0 \quad \mathrm{v}(\mathrm{x}, \mathrm{y})_{y}=\mathrm{h}(\mathrm{x})$

$v(x, 0)=q(x)=\alpha_{4}$

Solving $v(x, y)$

Similarly for v_{yy} :
$\mathrm{v}(\mathrm{x}, \mathrm{y})_{\mathrm{yy}}=0 \quad \mathrm{v}(\mathrm{x}, \mathrm{y})_{y}=\mathrm{h}(\mathrm{x}) \quad \mathrm{v}(\mathrm{x}, \mathrm{y})=\mathrm{h}(\mathrm{x}) \mathrm{y}+\mathrm{q} \underset{0}{\alpha_{4}{ }^{345678} \mathrm{x}}$
$\mathrm{v}(\mathrm{x}, \mathrm{O})=\mathrm{q}(\mathrm{x})=\boldsymbol{\alpha}_{4} \quad \mathrm{v}(\mathrm{H}, \mathrm{y})=\mathrm{h}(\mathrm{x}) \mathrm{H}+\boldsymbol{\alpha}_{4}=\boldsymbol{\alpha}_{2}$
$h(x)=\frac{\alpha_{2}-a_{4}}{H}$

Solving $v(x, y)$

Similarly for v_{yy} :

$$
\begin{array}{ll}
v(x, y)_{y y}=0 & v(x, y)_{y}=h(x) \quad v(x, y \\
v(x, 0)=q(x)=\alpha_{4} & v(H, y)=h(x) H+\boldsymbol{\alpha}_{4}=\boldsymbol{\alpha}_{2}
\end{array}
$$

$$
v(x, y)=h(x) y+q
$$

$h(x)=\frac{\alpha_{2}-\alpha_{4}}{H} \quad v=\left(\frac{\alpha_{2}-\alpha_{4}}{H}\right) y+\alpha_{4}$

Solving $v(x, y)$

Similarly for v_{yy} :
$v(x, y)_{y y}=0 \quad v(x, y)_{y}=h(x)$

$$
v(x, y)=h(x) y+q
$$

$\mathrm{v}(\mathrm{x}, 0)=\mathrm{q}(\mathrm{x})=\boldsymbol{\alpha}_{4} \quad \mathrm{v}(\mathrm{H}, \mathrm{y})=\mathrm{h}(\mathrm{x}) \mathrm{H}+\boldsymbol{\alpha}_{4}=\boldsymbol{\alpha}_{2}$
$h(x)=\frac{\alpha_{2}-\alpha_{4}}{H} \quad v=\left(\frac{\alpha_{2}-\alpha_{4}}{H}\right) y+\alpha_{4}$
Add solution of $\mathrm{v}_{\mathrm{xx}}: v(x, y)=\left(\frac{\alpha_{1}-\alpha_{3}}{L}\right) x+\left(\frac{\alpha_{2}-\alpha_{4}}{H}\right) y+\alpha_{3}+\alpha_{4}$

Solving $w(x, y)$

- $\Delta \mathrm{w}=\mathrm{w}_{\mathrm{xx}}+\mathrm{w}_{\mathrm{yy}}=0, \mathrm{w}(\mathrm{x}, \mathrm{y})=0$ on boundary

Solving $w(x, y)$

- $\Delta w=w_{x x}+w_{y y}=0, w(x, y)=0$ on boundary

Solving $w(x, y)$

- $\Delta \mathrm{w}=\mathrm{w}_{\mathrm{xx}}+\mathrm{w}_{\mathrm{yy}}=0, \mathrm{w}(\mathrm{x}, \mathrm{y})=0$ on boundary
- Reminder: Timeindependent

Solving $w(x, y)$

- $\Delta w=w_{x x}+w_{y y}=0, w(x, y)=0$ on boundary
- Reminder: Timeindependent
- The plate is 0 everywhere

Solving $w(x, y)$

- $\Delta w=w_{x x}+w_{y y}=0, w(x, y)=0$ on boundary
- Reminder: Timeindependent
- The plate is 0 everywhere
- $w(x, y)=0$

Finishing u_{2}

- $\mathrm{u}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{v}(\mathrm{x}, \mathrm{y})+\mathrm{w}(\mathrm{x}, \mathrm{y})$

Finishing U_{2}

- $\mathrm{u}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{v}(\mathrm{x}, \mathrm{y})+\mathrm{w}(\mathrm{x}, \mathrm{y})$
- Substitution: $\mathrm{u}_{2}(\mathrm{x}, \mathrm{y})=\left(\frac{\alpha_{1}-\alpha_{3}}{L}\right) x+\left(\frac{\alpha_{2}-\alpha_{4}}{H}\right) y+\alpha_{3}+\alpha_{4}$
- We now have the solutions to y and u_{2}

Concluding Poisson's Equation

$\Delta \mathrm{u}=\mathrm{Q}, \mathrm{u}=\alpha$ on boundary
$\mathrm{u}=\mathrm{u}_{1}+\mathrm{u}_{2}=\sum_{n=1}^{\infty} b_{n}(y) \sin \left(\frac{n \pi x}{L}\right) \quad\left(\frac{\alpha_{1}-\alpha_{3}}{L}\right) x+\left(\frac{\alpha_{2}-\alpha_{4}}{H}\right) y+\alpha_{3}+\alpha_{4}$
Where

$$
\begin{aligned}
b_{n}(y)= & \sinh \left(\frac{n \pi[H-y]}{L}\right) \int_{0}^{y} q_{n}(\xi) \sinh \left(\frac{n \pi \xi}{L}\right) d \xi \\
& +\sinh \left(\frac{n \pi y}{L}\right) \int_{y}^{H} q_{n}(\xi) \sinh \left(\frac{n \pi(H-\xi)}{L}\right) d \xi
\end{aligned}
$$

For one-dimensional

Concluding Poisson's Equation

$\Delta \mathrm{u}=\mathrm{Q}, \mathrm{u}=\alpha$ on boundary
$\mathrm{u}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{n m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right) \quad\left(\frac{\alpha_{1}-\alpha_{3}}{L}\right) x+\left(\frac{\alpha_{2}-\alpha_{4}}{H}\right) y+\alpha_{3}+\alpha_{4}$
Where $b_{n m}=\frac{\int_{0}^{H} \int_{0}^{L} Q \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right) d x d y}{-\lambda_{n m} \int_{0}^{H} \int_{0}^{L} \sin ^{2}\left(\frac{n \pi x}{L}\right) \sin ^{2}\left(\frac{m \pi y}{H}\right) d x d y}$
For two-dimensional

Finishing u_{2}

- $\mathrm{u}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{v}(\mathrm{x}, \mathrm{y})+\mathrm{w}(\mathrm{x}, \mathrm{y})$
- Substitution: $\mathrm{u}_{2}(\mathrm{x}, \mathrm{y})=\left(\frac{\alpha_{1}-\alpha_{3}}{L}\right) x+\left(\frac{\alpha_{2}-\alpha_{4}}{H}\right) y+\alpha_{3}+\alpha_{4}$

In Summary

- Purpose of Poisson's Equation
- Solved Poisson's Equation
- Nonhomogeneous Internal and boundaries
- One and Two dimensional ways
- Separation of Variables
- Orthogonality

