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Poisson’s Equation  
By Ehren Braun 
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Poisson’s Equation  

● Generalization of Laplace’s Equation: 𝚫𝚫u = 0 
● Poisson’s Equation: 𝚫𝚫u = Q 

○ Q represents sources in region 
● Sources: 

○ Voltage 
○ Heat 
○ Gravity 

● Time-independent(Steady State) 
● Geometry determines 𝚫𝚫 
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Poisson’s Equation Example  

● Rectangular Plate 
○ Edges(boundary) given by u = 𝝰𝝰 

■ 𝝰𝝰 can vary 
○ Rest  given by 𝚫𝚫u = Q 

● Nonhomogenous from Q and 𝝰𝝰 
● Easier with homogenous components 
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Solving 𝚫𝚫u = Q, u = 𝝰𝝰 on Boundary 

● To Simplify: Break into two parts 
○ Let u = u1+ u2 
○ 𝚫𝚫u1 = Q, u1 = 0 on boundary 
○ 𝚫𝚫u2 = 0, u2 = 𝝰𝝰 on boundary 

● This satisfies 𝚫𝚫u = Q, u = 𝝰𝝰 on boundary 
● Two “easier” problems to solve 
● Similar for other regions 
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Solving 𝚫𝚫u1 = Q, u1 = 0 on Boundary 

● With homogeneous boundaries 
● Implies eigenfunction expansion method 
● Two different ways of Expansion 

○ Eigenfunctions related to 𝚫𝚫u1 = 0 
○ Eigenfunctions related to 𝚫𝚫𝝓𝝓 + λ𝝓𝝓 = 0 

● Methods are different, but related 
○ One-dimensional vs Two-dimensional 
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One -Dim e n sion a l Eig e n fu n c t ion s  fo r u1 

● Relating to Laplace’s Equation: 𝚫𝚫u1 = 0 
● Laplacian: u1xx+ u1yy = 0 
● Separat ion of Variables: u1 = XY 
● X″Y + XY″ = 0 

 

● aA 
○ Note: Could subtract  Xs instead 
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 For One-Dimensional: 

Now apply the laplacian 
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Now we just want only Ys 

Note: Q = Q(x, y) 
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● X″Y+XY″=-λXY 
● A 
● Each term should be constant  (λ not  dependent) 
● Let λ=λx+λy 
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● We now have our solutions for u1 
● Both One and Two-Dimensional 
● u = u1+u2 
● u2 left  
● Thankfully, similar 
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Solving v(x,y)  

Similarly for vyy: 

 



Solving v(x,y)  

Similarly for vyy: 

v(x,y)yy= 0 v(x,y)y= h(x) v(x,y) = h(x)y + q(x) 

 



Solving v(x,y)  

Similarly for vyy: 

v(x,y)yy= 0 v(x,y)y= h(x) v(x,y) = h(x)y + q(x) 

v(x,0) = q(x) = 𝛂𝛂4 



Solving v(x,y)  

Similarly for vyy: 

v(x,y)yy= 0 v(x,y)y= h(x) v(x,y) = h(x)y + q(x) 

v(x,0) = q(x) = 𝛂𝛂4 v(H,y) = h(x)H+ 𝛂𝛂4 = 𝛂𝛂2 

 

 



Solving v(x,y)  

Similarly for vyy: 

v(x,y)yy= 0 v(x,y)y= h(x) v(x,y) = h(x)y + q(x) 

v(x,0) = q(x) = 𝛂𝛂4 v(H,y) = h(x)H+ 𝛂𝛂4 = 𝛂𝛂2 

 

 



Solving v(x,y)  

Similarly for vyy: 

v(x,y)yy= 0 v(x,y)y= h(x) v(x,y) = h(x)y + q(x) 

v(x,0) = q(x) = 𝛂𝛂4 v(H,y) = h(x)H+ 𝛂𝛂4 = 𝛂𝛂2 

 

Add solut ion of vxx: 



Solving w(x,y)  

● 𝚫𝚫w = wxx+ wyy= 0, w(x,y)=0 on boundary 

 

 



Solving w(x,y)  

● 𝚫𝚫w = wxx+ wyy= 0, w(x,y)=0 on boundary 

 

 



Solving w(x,y)  

● 𝚫𝚫w = wxx+ wyy= 0, w(x,y)=0 on boundary 

● Reminder: Time-independent 

 

 



Solving w(x,y)  

● 𝚫𝚫w = wxx+ wyy= 0, w(x,y)=0 on boundary 

● Reminder: Time-independent 

● The plate is 0 everywhere 

 

 



Solving w(x,y)  

● 𝚫𝚫w = wxx+ wyy= 0, w(x,y)=0 on boundary 

● Reminder: Time-independent 

● The plate is 0 everywhere 

● w(x,y) = 0 

 



Finishing u2   

● u2(x,y) = v(x,y) + w(x,y) 

 



Finishing u2   

● u2(x,y) = v(x,y) + w(x,y) 

● Substitution: u2(x,y) = 

● We now have the solutions to u1 and u2 



Concluding Poisson’s Equation  

𝚫𝚫u = Q, u = 𝝰𝝰 on boundary 

u = u1+ u2=            +  

Where 

 

 

For one-dimensional  



Concluding Poisson’s Equation  

𝚫𝚫u = Q, u = 𝝰𝝰 on boundary 

u =               +  

 

Where 

 

For two-dimensional  



Finishing u2   

● u2(x,y) = v(x,y) + w(x,y) 

● Substitution: u2(x,y) = 

 



In Summary  

● Purpose of Poisson’s Equation 
● Solved Poisson’s Equation 
● Nonhomogeneous Internal and boundaries 
● One and Two dimensional ways 
● Separation of Variables 
● Orthogonality  
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