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Abstract 
  

Recent developments in unmanned aerial vehicles (UAVs) and photogrammetry 

software enable the rapid collection of aerial photography and video over study areas of 

varying sizes, thereby providing ease of use and accessibility to coastal research groups.  

However, there remains uncertainty over UAV survey techniques, with disagreement on 

specific flight patterns, flight altitudes, photograph amounts, ground control point (GCP) 

amounts, GCP spacing schemes, drone models, and which SfM software to use, amongst 

other study-specific parameters.   

To address the methodological differences amongst research groups, this study uses 

varying collection parameters to investigate the error of drone-derived spatial data.  A 

controlled field test (of 1.2 hectares) was performed to determine SfM’s sensitivity to the 

following flight parameters:  flight altitude (60-m, 80-m, 120-m), photo overlap (70%, 75%, 

80%), drone model (DJI Phantom quadcopter, Sensefly eBee RTK fixed-wing), SfM 

software (PhotoScan, Pix4D), number of GCPs (4-34), and spacing scheme of GCPs (even, 

random).  Through comparisons of the root mean squared error (RMSE) relative to the GCPs, 

flight altitude affected error significantly (>1-cm RMSE difference between 60-m and 120-

m) while photo overlap was the least significant parameter (only 4-mm RMSE difference 

between 70% and 80% overlap).  Different drone models, and thereby different cameras, 

along with varying photogrammetry software, affected RMSE significantly (>3-cm RMSE 

differences).  Surprisingly, GCP spacing schemes were insignificant to error sensitivity (<1 

mm RMSE differences).  Final analysis determined six GCPs per hectare of land surveyed to 

be the most efficient, while flight altitudes of 80 meters with 70% overlap were the most 
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efficient for flight time (~4 min), ground resolution (3.42-cm/pixel), and RMSE (4-cm).  This 

study can be immediately referenced in future studies for its insight on conducting efficient 

and low-error UAV surveys. 

 

1. Introduction 

 

1.1 UAV/SfM Background 

 

Throughout the past several years, an exciting and technologically savvy paradigm 

shift in the geosciences has been occurring.  This shift refers to the drastic increase in the use 

of unmanned aerial vehicles (UAVs) along with structure from motion (SfM) to study 

various geoscientific problems.  UAVs and SfM have become more readily available to 

scientists less experienced with aviation and computer vision techniques, with advancements 

in automatic flight-planning as well as data-processing software.  These technological 

advancements have created great potential for the use of UAVs and SfM in the geosciences. 

Like many scientific instruments, UAVs were developed by the military for use in 

unmanned reconnaissance in combat areas (Nex and Remondino 2013).  UAVs have now 

transformed into a tool for geoscientists, allowing for rapid photography and video capture in 

various environments.  When these photographs are processed through SfM software, they 

can be used to create a variety of digital outputs that provide topographic and ecological 

information.  These products can then be analyzed to map and denote precise changes in 

surface areas, volumes, slopes, and vegetation amounts, among many other geoscientific 

applications. 
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While photogrammetric methods have existed in the geosciences for decades, the 

digital construction of 3D point clouds, 3D meshes, digital elevation models, and 

orthomosaics from UAV-captured photosets is a recent phenomenon.  A search of “drone OR 

UAV” in ProQuest’s geoscience database GeoRef resulted in 145 publications, with 130 of 

them coming after January of 2011.  As for SfM, a search in the same database gave similar 

results, with 151 of 191 publications being written from 2011 and on.   In academic 

geosciences, drones are new and highly-desired tools, which can be easily integrated with 

structure from motion algorithms to produce a variety of useful, digitized, three-dimensional 

spatial data. 

Some publications using drones and/or SfM include studies on beach morphology and 

coastal storm-response (Dohner et al. 2016, Casella et al. 2016, Scarelli et al. 2017, Turner et 

al. 2016), a study on the topography of open-pit mines (Esposito et al. 2017), paleontological 

studies on modelling dinosaur footprints and bones (Citton et al. 2015; Hyatt 2017), 3D 

reconstruction of seafloors for mapping shipwrecks (Issaris 2015), extraction of bathymetric 

data on shallow streams and the nearshore, (Dietrich 2016, Holman et al. 2013, Holman et al. 

2017), as well as for the monitoring of the rapidly changing topography of volcanoes (Gomez 

2012, Derrien et al. 2015).  Each study referenced above reiterated the cost-effectiveness as 

well as the quickness in data processing involved with SfM when compared to terrestrial or 

aerial LiDAR surveys. 

The data produced through UAV surveys and SfM is similar to the results of laser 

scanning methods, like terrestrial and aerial LiDAR (Long et al. 2016, Westoby et al. 2012).  

Instead of using the reflectance properties of a laser to scan an area, SfM uses information 

extracted from overlapping 2D images to construct 3D structure.  Most SfM software use a 
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feature extraction algorithm, where overlapping photos are scanned for common “features”, 

which often include elements in the photos with sharp edges, distinct colors, or drastic slope 

changes.  These features are easily recognized and therefore their higher prevalence in a 

photoset will result in more accurate three-dimensional reconstructions (Carrivick et al. 

2012).  Photosets lacking textured features and experiencing illumination changes, as well as 

being taken under varied camera geometries will result in inadequate 3D reconstructions 

(Harwin and Lucieer 2012).  While converging, off-nadir camera angles result in the most 

accurate 3D models, parallel and nadir angles can produce models that are almost as accurate 

(James and Robson 2014).  For a UAV survey, the most practical camera geometry is one 

using parallel and nadir angles.  For the 3D outputs to be correctly georeferenced and for the 

data to be placed into a non-arbitrary coordinate system, either the 3D position of the 

cameras need to be known or the 3D position of ground control points (GCPs), targets placed 

in the study area that can be seen in multiple photos in the overall photoset, must be 

established.   

The typical reconstruction algorithm is as follows (see Figure 1):  input of photoset; 

initial feature detection; matching of features in overlapping photos; filtering out poor or 

distorted matches; construction of 3D geometry, camera positions, and internal camera 

parameters; input of GCPs; scaling and georeferencing of the 3D point cloud; and then the 

final output is a georeferenced point cloud (Carrivick et al. 2012). 

The SfM method is more cost-effective and more feasible in rugged environments 

when compared to laser scanning.  Aerial LiDAR surveys require substantial funds as well as 

a trained pilot, while terrestrial LiDAR surveys are costly and involve the transfer of heavy 

and fragile pieces of equipment (Carrivick et al. 2012).  Both of these laser scanning 
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Figure 1: Typical SfM algorithm (Carrivick et al. 2012). 

approaches require meticulous planning and several scientists to ensure a successful survey.  

This makes the laser scanning approach incredibly difficult to accomplish rapid data 

acquisition in rough terrain or in rapidly changing environments.  

 

1.2 Past Studies on UAV/SfM Accuracy 

 

 Previous studies were conducted on UAV/SfM model accuracy, with many of them 

being small portions of studies done on various geoscientific problems.  Most geoscientific 

studies that have used the UAV/SfM methodology have included error metrics for their 3D 

models, but different studies have used different UAV types, different processing software, 
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different GCP placing schemes, different GCP amounts, different UAV altitudes, and 

different photograph overlap amounts.  Consequently, a single paper cannot provide 

sufficient information on the optimum UAV survey, due to the variation in the variables 

listed above, as well as the different environments these studies take place in.  In addition, 

the comparison data collection methods (LiDAR, RTK GPS, Total Station, etc.) and the error 

metrics provided (RMSE, absolute error, mean error, etc.) vary from study to study.  For a 

summary of past studies on UAV/SfM model accuracy, see Appendix A. 

As an example of the predicament, a 2013 study on a ~2-km
2
 dunefield, using 28 

GCPs and a UAV altitude of 200-m, managed to produce an elevation root mean square error 

of 0.29-m (Hugenholtz et al. 2013).  A paper from 2016 studying beach morphology, using 

no GCPs and a UAV altitude of 100-m, produced a mean elevation error of 0.026-m (Turner 

et. al 2016).  This 2016 paper did not use any GCPs because their UAV was equipped with 

an RTK GPS unit, which provided them with high accuracy coordinates of their camera 

positions.  It should also be noted that these two studies used different processing software; 

the former used Trimble Impho, while the latter used Pix4D.  The 2016 study fails to provide 

an accurate error metric; the mean elevation error takes positive and negative values, which 

will result in a mean error closer to zero.  This is misleading, as the models could have 

absolute errors far from zero.   

Both studies only provide elevation error metrics, which eliminates vital information 

on the horizontal accuracy of their models.  Studies that provide error metrics only include 

elevation errors, and the parameters for each study are different, which leads to little 

consensus on the optimum parameters to minimize model error.  Figuring out the optimum 

parameters, thus far, has involved comparing literature results, peer to peer discussion, and 
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experimentation with different altitudes, overlap amounts, GCP spacing schemes, and GCP 

amounts.  There has been a limited amount of papers done specifically to quantify the error 

of UAV/SfM models as well as to investigate the optimum altitude, overlap amount, number 

of GCPs, and the best GCP spacing schemes for an accurate survey. 

In a 2016 study, the effect of GCP amount and placement was investigated (Tonkin 

and Midgley 2016).  This study was able to show a clear decrease in elevation error with 

respect to increasing GCP amounts, but with a less substantial decrease as GCP amounts 

reached an “excessive” level.  They were also able to determine that the best GCP spacing 

scheme was one that provided “uniform” coverage throughout the study area.  Another paper, 

from 2016, was able to show differences in model errors between two processing software 

suites (Agisoft and MicMac) (Jaud et al. 2016).  Agisoft was shown to produce models with 

slightly higher horizontal and elevation RMSEs (0.045-m, 0.039-m) when compared to 

MicMac (0.035-m, 0.032-m).  It should be noted that their comparison data consisted of 

dGPS coordinates.  When their models were compared to TLS data, however, the Agisoft 

models were closer in mean difference to the TLS models (0.05-m) when compared to the 

MicMac models (0.22-m).  This study shows that different processing software can produce 

different amounts of model error, but it also shows that different comparison data collection 

methods will result in different error amounts. 

While all of these studies provide vital information on optimizing the parameters 

involved in a UAV survey, the amount of data provided from these studies is limited, and 

several questions are still left unanswered:  what is the optimum UAV altitude; how much 

overlap is needed in the photography; are the differences in error produced by different 

software statistically significant; how many GCPs are needed per unit of area; and should the 
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GCPs be spaced in equal increments uniformly throughout the study area, or can they be 

placed in random locations?  The purpose of this study is to investigate the effects of these 

parameters on model accuracy, to provide various error metrics on x, y, and z coordinates, to 

make additional contributions to the data on UAV/SfM models, and to provide substantial 

insight into how to optimize survey parameters and minimize the error in 3D reconstructions. 

 

2. Study Area 

  

Data collection was conducted in a grass field outside of the Otis H. Smith 

Laboratory, located at the Hugh R. Sharp campus, which houses the University of Delaware 

College of Earth, Ocean, and Environment, and is less than a kilometer southwest of 

Delaware Bay (see Figure 2).  The field is approximately 100-m by 120-m (0.012-km
2
), with 

little topographic variability, ranging from 2.912-m to 4.20-m in elevation, and with almost 

no trees or man-made structures casting shadows anywhere in its vicinity.  The lack of 

shadows throughout the field made it advantageous for capturing useful photosets to be 

converted into 3D outputs (point clouds, meshes, DEMs, etc.).  The field’s nearly constant 

elevation, its lack of highly detailed vegetation (like trees and bushes), along with the 

absence of shadow-casting structures within the field made it an ideal area to conduct 

multiple drone surveys for a detailed error analysis.  
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Figure 3:  Examples of 

GCPs. 

*One GCP was not used due to 

corrupted data. 

 

 

 

 

 

 

 

 

 

 

 

3. Methodology 

 

3.1 Ground control point placement 

 

Within the 100m by 120m rectangular field established for 

the drone surveys, 35
*
 GCPs were placed to georeference and scale 

the models.  The GCPs were made either from black and white 

tarps placed upon the field or from eco-friendly paint applied 

directly to the field.  Each GCP was approximately one meter in 

length and width.  See Figure 3 for examples of different GCPs. 

First, 30 GCPs were placed evenly throughout the field, making 

University of Delaware 

Lewes Campus 

North 

University of Delaware 

Lewes Campus 

North 

Figure 2:  Study area.  A) University of Delaware at southwest corner of Delaware Bay.   

B) Orthomosaic of study area. 

A) B) 

Cannon Laboratory 

Smith Laboratory 

North 
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Figure 4:  Example flight plan and 

placement of GCPs; green line 

indicates flight path; red circles 

indicate photograph positions; blue 

crosses indicate GCP locations. 

Start 

Finish 

six rows of five GCPs, and then five more were added in a cluster between the second and 

third rows.  The additional five GCPs were placed to experiment with different paint colors, 

in order to determine the most easily visible paint from the aerial photography.  The first 

thirty GCPs were assigned numerical names (1-30), while the last five were assigned color 

names and a Roman numeral name (Blue, Red, Orange, Yellow, I).  Giving these GCPs 

names aided in identifying them in the aerial photography, as their names were visible in the 

photographs.  See Figure 4 for the layout of the GCPs throughout the study area.  

 Once the GCPs were laid out, their World Geodetic System 1984 (WGS 84) 

geographic coordinates (latitude, longitude, elevation) were recorded using a Topcon GR 5 

Real Time Kinematic (RTK) GPS unit with its receiver extended on a 2-m pole.  The Topcon 

GR 5 has a horizontal accuracy of 0.005-m and a vertical accuracy of 0.01-m.  These 

geographic coordinates were then converted into Universal Transverse Mercator (UTM) 

coordinates to facilitate their use in 2D and 3D model projection as well as in error 



 

11 
 

measurement.  The UTM coordinates were then arranged into a spreadsheet by their GCP 

name, easting coordinate (X), northing coordinate (Y), and elevation (Z).   Arranging the 

coordinates in this fashion allows for the rapid implementation of GCPs into SfM software. 

 

3.2 UAV surveys 

  

A total of six UAV surveys were done on the study area, five of which used a DJI 

Phantom 3 Advanced quadcopter, while the sixth used a senseFly eBee RTK fixed-wing 

drone.  The Phantom is equipped with a 12.4-megapixel RGB camera, mounted on a 3-axis 

gimbal on the drone's underside, allowing for tilted, oblique, and nadir aerial photography.  

When the Phantom captures photographs, it maintains a constant position during each 

photograph before moving to the next photograph location.  This eliminates blurred images, 

which can create difficulty in 3D reconstruction.  The eBee is equipped with a 20-megapixel 

RGB camera, mounted within the drone’s body, with the lens facing downward out of its 

underside.  When the eBee captures photographs, it pitches up to gather near-nadir 

photography; this can create somewhat blurred images, as the drone is in motion as it 

captures each image.   

Each flight was programmed using the automatic flight planning app Maps Made 

Easy, which allows its users to specify flight areas, flight speeds, flight altitudes, and amount 

of overlap in the aerial photography.  Each flight plan used the “lawn-mowing” flight pattern, 

where the drone surveyed the field in a series of antiparallel straight lines (see Figure 4).  

Their flight parameters (UAV type, altitude, along-track overlap, across-track overlap, 

number of photographs, flight time) are described in Table 1.  The five quadcopter surveys 
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Table 1:  UAV flight specifications. 

were conducted on June 7
th

, 2017, during the early afternoon, while the eBee survey was 

done on June 8
th

, 2017, during the mid-afternoon.  All six surveys were conducted under 

some cloud cover but with ideal wind conditions, allowing for controlled flights as well as 

clear photography.  To maintain consistent exposure settings on the two drones’ cameras, the 

automatic setting was switched to “cloudy”.  This was done to avoid any mid-survey 

differences in photography color due to the camera automatically adjusting the exposure 

settings under different lighting.  The six surveys served to investigate the differences 

between different altitudes, different overlap amounts, and different drone types in terms of 

model accuracy. 

 

UAV Type Altitude 

(m) 

Along-

Track 

Overlap 

(%) 

Across-

Track 

Overlap 

(%) 

Number 

of Photos 

Flight 

Time 

(min) 

Ground Sampling 

Distance (cm/pixel) 

Quadcopter 60 70 75 42 5.4 2.51 

Quadcopter 80 70 75 23 4.5 3.30 

Quadcopter 80 75 80 27 4.8 3.24 

Quadcopter 80 80 80 38 4.8 3.30 

Quadcopter 120 70 75 11 5 4.70 

Fixed-wing 80 70 75 38 4 2.19 
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3.3 Image processing 

 

 This project aimed to investigate the effects of altitude, photography overlap, number 

of GCPs, spacing of GCPs, drone type, and GCP type on model accuracy.  First, each 

photoset was initially processed in the Pix4D Cloud software without any GCPs to find the 

best 3D reconstruction based only on the photo quality and the internal GPS systems on the 

quadcopter and the fixed-wing drone.  This software allows its users to input photography to 

a cloud service that processes the data online, producing orthomosaics, digital terrain maps, 

and 3D models without requiring any computing costs or management by its users.  It is 

useful for rapid initial data processing.  After the initial Pix4DCloud processing, the 

quadcopter survey done at 80-m altitude with 80% across-track overlap and 80% along-track 

overlap was determined to be the most accurate survey, and thus was used to analyze the 

effects of GCP amount and spacing.  This flight, after initial processing, produced the highest 

number of 2D and 3D keypoints (matches) relative to the other flights, which made it, 

initially, the most accurate reconstruction of the field. 

 To investigate the effects of GCP amounts and spacing, the survey done at 80-m 

altitude with 80% across-track overlap and 80% along-track overlap was processed in Pix4D 

using various amounts of GCPs.  For each GCP amount, the dataset was processed with 

evenly spaced GCPs throughout the field, and then the dataset was processed with randomly 

spaced GCPs throughout the field.  The random GCPs were selected using a Java program 

that accepts a number of GCPs, and then returns which GCPs (1-34) to include in processing 
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(using the Java pseudo-random number generator).  See Figure 5 for an example of an even 

vs. random GCP spacing scheme. 

 Second, the three separate quadcopter surveys done at different altitudes (all at 80% 

across-track overlap and 80% along-track overlap) were processed with the maximum 

number of GCPs (34) to investigate the effect of altitude on model accuracy. 

 Third, the three separate quadcopter surveys done with different overlap amounts (all 

at 80-m altitude) were processed with the maximum number of GCPs (34) to investigate the 

effect of photography overlap on model error. 

 Fourth, the fixed-wing survey was processed with no GCPs to compare this drone’s 

RTK GPS data with the ground collected RTK GPS data, as well as to assess the differences 

in model accuracy between the fixed-wing drone and the quadcopter. 

 Last, the 80-m altitude, 70% across-track, and 75% overlap survey was processed 

with 34 GCPs in Agisoft PhotoScan to show variations in model accuracy between different 

processing software.  Agisoft PhotoScan is processed by the user in a similar manner as in 

Pix4D, allowing its users to import and identify the GCP locations within the models.  

 

3.4 Measuring model error 

Figure 5:  A) Evenly spaced GCPs.  B) Randomly spaced GCPs. 

VS. 

A)  B)  
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 Error in each processed dataset was calculated by comparing each GCP’s RTK 

recorded XYZ coordinates with the XYZ coordinates computed through the Pix4D and 

Agisoft PhotoScan SfM software.  For each GCP integrated into the processed data, the error 

was automatically calculated by the software.  For GCPs not integrated into the processed 

data, the error was calculated by identifying the GCP within the model, selecting the point 

representing that GCP’s location, and then finding the difference between that point’s RTK 

GPS position and its computed position.  The following metrics were calculated to quantify 

the error involved with each RTK point (n = 34) within each 3D reconstruction: 

 X, Y, Z error (𝜀𝑋,𝑌,𝑍):         (1) 

𝜀𝑋 = 𝑋𝑅𝑇𝐾 − 𝑋𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 

𝜀𝑌 = 𝑌𝑅𝑇𝐾 − 𝑌𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 

𝜀𝑍 = 𝑍𝑅𝑇𝐾 − 𝑍𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 

 X, Y, Z absolute error (𝛼𝑋,𝑌,𝑍):       (2) 

𝛼𝑋 = |𝑋𝑅𝑇𝐾 − 𝑋𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑| 

𝛼𝑌 = |𝑌𝑅𝑇𝐾 − 𝑌𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑| 

𝛼𝑍 = |𝑍𝑅𝑇𝐾 − 𝑍𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑| 

The following metrics were calculated to quantify the average errors for each 3D 

construction: 

 X, Y, Z root mean squared error (𝑅𝑀𝑆𝐸𝑋,𝑌,𝑍):     

 (3) 

𝑅𝑀𝑆𝐸𝑋 =  √
∑ (𝑋𝑅𝑇𝐾𝑖

− 𝑋𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑖
)2𝑛

𝑖=1

𝑛
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𝑅𝑀𝑆𝐸𝑌 =  √
∑ (𝑌𝑅𝑇𝐾𝑖

− 𝑌𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑖
)2𝑛

𝑖=1

𝑛
 

𝑅𝑀𝑆𝐸𝑍 =  √
∑ (𝑍𝑅𝑇𝐾𝑖

− 𝑍𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑖
)2𝑛

𝑖=1

𝑛
 

       

 Mean RMSE:          (4) 

𝑀𝑒𝑎𝑛 𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸𝑋 +  𝑅𝑀𝑆𝐸𝑌 +  𝑅𝑀𝑆𝐸𝑍

3
 

 X, Y, Z mean absolute error (MAEX,Y,Z):      (5) 

𝑀𝐴𝐸𝑋 =  
∑ |𝑋𝑅𝑇𝐾𝑖

− 𝑋𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑖
|𝑛

𝑖=1

𝑛
 

𝑀𝐴𝐸𝑌 =  
∑ |𝑌𝑅𝑇𝐾𝑖

− 𝑌𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑖
|𝑛

𝑖=1

𝑛
 

𝑀𝐴𝐸𝑍 =  
∑ |𝑍𝑅𝑇𝐾𝑖

− 𝑍𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑖
|𝑛

𝑖=1

𝑛
 

 Mean MAE (𝑀𝑒𝑎𝑛 𝑀𝐴𝐸):        (6) 

𝑀𝑒𝑎𝑛 𝑀𝐴𝐸 =  
𝑀𝐴𝐸𝑋 + 𝑀𝐴𝐸𝑌 + 𝑀𝐴𝐸𝑍

3
 

 

3.5 Statistical analyses 

 

 Several single factor and two-factor univariate analysis of variance tests (ANOVA) 

were performed on the datasets, using Excel 2016.  The first analyses were done on the 80-m, 

80% across-track and 80% along-track overlap datasets, where GCP amount and spacing was 

varied.  The analyses used were two-factor ANOVAs with replication.  For the first 
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ANOVA, the first factor was GCP spacing (even or random), while the second factor was 

GCP amount.  The dependent variable was the X-absolute error (𝛼𝑋) for each point.  For the 

second and third ANOVAs, the factors were the same as above, with the second dependent 

variable being the Y-absolute error (𝛼𝑌), and the third dependent variable being the Z-

absolute error (𝛼𝑍). 

To investigate the effects of adding more than six GCPs, the same two-factor 

ANOVAs were performed as above, except without the zero GCP data and the four GCP 

data.  This was done to determine at what point adding more GCPs becomes excessive. 

 The next statistical analysis was done on the flights where overlap was kept constant 

(70% along-track, 75% across-track), but the altitude was varied (60-m, 80-m, 120-m).  The 

test was a single-factor ANOVA, where the factor was altitude and the dependent variable 

was absolute error.  In this test, 𝛼𝑋, 𝛼𝑌, 𝛼𝑍, were grouped together, giving a sample size of n 

= 102 for each of the three separate altitude datasets. 
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 The next statistical analysis was done on the flights where altitude was kept constant 

(80-m), but overlap was varied.  The test was a single-factor ANOVA, where the factor was 

overlap and the dependent variable was X, Y, and Z absolute error, in the same way as the 

ANOVA done on the different altitude datasets. 

 The final two statistical tests performed were both single-factor ANOVAs, where one 

test was done to compare the absolute error of the eBee flight with the absolute error of a 

Phantom flight (both flights were at 80-m, 70% along-track overlap, and 75% across-track 

Test Factor(s) with levels Dependent variable (s) 

One-way ANOVA Altitude:  60-m, 80-m, 120-m X, Y, Z absolute error 

One-way ANOVA Overlap % (Along/Across):  70/75, 75/80, 

80/80 

X, Y, Z absolute error 

Two-way ANOVA with 

replication 

(3 tests done for X, Y, and 

Z) 

# of GCPs:  0, 4, 6, 8, 10, 12, 14, 20, 24, 30, 34 

Spacing:  even, random 

X absolute error 

Y absolute error 

Z absolute error 

Two-way ANOVA with 

replication 

(3 tests done for X, Y, and 

Z) 

# of GCPs:  6, 8, 10, 12, 14, 20, 24, 30, 34 

Spacing:  even, random 

X absolute error 

Y absolute error 

Z absolute error 

One-way ANOVA Drone type:  quadcopter, fixed wing X, Y, Z absolute error 

One-way ANOVA Software:  Pix4D Desktop, Agisoft PhotoScan  X, Y, Z absolute error 

Table 2:  Statistical tests performed. 
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overlap).  The other test was done to compare the absolute error computed through different 

processing software (Pix4D and Agisoft). 

See Table 2 for a description of the various ANOVAs performed in this study.   

 

3.6 Raster and Point Cloud Comparisons  

 

 Raster and point cloud comparisons were made between the following datasets: 

 1. Quadcopter vs. fixed-wing 

 2. Pix4D Desktop vs. Agisoft PhotoScan 

 3. 6 GCPs vs 0 GCPs 

 4. 6 GCPs vs. 4 GCPs 

 5. 60-m flight vs. 80-m flight 

 6. 60-m flight vs. 120-m flight 

Elevation rasters for each processed dataset were constructed in ArcMap to compute 

elevation differences between different datasets.  Each raster constructed had a grid-spacing 

of 0.05-m by 0.05-m and used the “Natural Neighbor” interpolation method.  Elevation 

differences were computed using the Minus function, found in the Raster Math toolbox.    

Point cloud comparisons were made in the free and open-source software 

CloudCompare, using the cloud to cloud distance tool.  This tool provides X, Y, and Z 

distances between all of the points of two different point clouds, which allowed us to 

determine horizontal and elevation differences between various pairs of point clouds 

processed for this study, as well as the locations of these differences within the models. 
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4. Results 

 

4.1 Altitude 

 

 The average model error increased with respect to increasing altitude (see Figure 6), 

with the most drastic error increases coming from the z-coordinates.  From the single-factor 

ANOVA results, changing the UAV altitude did result in statistically significant differences 

in absolute error (p-value = 0.011, see Table 3). 
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Figure 6:  Altitude and RMSE. 
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Test Dependent 

variable 

Factor(s) with levels P-value % of 

Variance 

Significance 

One-way ANOVA X, Y, Z absolute 

error 

Altitude:  60-m, 80-m, 120-m 0.011 2.96 Significantly different 

One-way ANOVA X, Y, Z absolute 

error 

Overlap:  70/75, 75/80, 80/80 0.56 0.39 Not significantly 

different 

Two-way ANOVA with replication 

 

X absolute error 

 

# of GCPs:  0, 4, 6, 8, 10, 12, 

14, 20, 24, 30, 34 

3.10 × 10−143 61.51 Significantly different 

Spacing:  even, random 0.97 6.07 × 10−5 Not significantly 

different 

Two-way ANOVA with replication 

 

Y absolute error # of GCPs:  0, 4, 6, 8, 10, 12, 

14, 20, 24, 30, 34 

2.30 × 10−147 62.50 Significantly different 

Spacing:  even, random 0.97 0.00018 Not significantly 

different 

Two-way ANOVA with replication 

 

Z absolute error # of GCPs:  0, 4, 6, 8, 10, 12, 

14, 20, 24, 30, 34 

0.00 99.98 Significantly different 

Spacing:  even, random 0.71 2.29 × 10−5 Not significantly 

different 

Two-way ANOVA with replication X absolute error # of GCPs:  6, 8, 10, 12, 14, 20, 

24, 30, 34 

0.36 1.49 Not significantly 

different 

Spacing:  even, random 0.99 5.90 × 10−5 Not significantly 

different 

Two-way ANOVA with replication Y absolute error # of GCPs:  6, 8, 10, 12, 14, 20, 

24, 30, 34 

0.90 0.58 Not significantly 

different 

Spacing:  even, random 0.64 0.038 Not significantly 

different 

Two-way ANOVA with replication Z absolute error # of GCPs:  6, 8, 10, 12, 14, 20, 

24, 30, 34 

0.15 1.97 Not significantly 

different 

Spacing:  even, random 0.074 0.52 Not significantly 

different 

One-way ANOVA X, Y, Z absolute 

error 

Drone type:  quadcopter, fixed-

wing 

1.72 × 10−13 
 

29.79 Significantly different 

One-way ANOVA X, Y, Z absolute 

error 

Software:  Pix4D Desktop,  

Agisoft PhotoScan 

0.00070 5.54 Significantly different 
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4.2 Overlap  

 

 The average model error decreased with respect to increasing photography overlap 

amounts (see Figure 7), with the errors decreasing at similar increments for all three 

coordinate directions.  From the single factor ANOVA results, the different photography 

overlap amounts did not produce absolute errors with statistically significant differences (p-

value = 0.56, see Table 3).   
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Figure 7:  Photography overlap percentage and RMSE.  Note the small 

decreases in RMSE with increasing overlap percentages. 
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4.3 GCP Amount and Spacing 

 

 With zero GCPs, the mean RMSE was 3.778-m, which then decreased to 0.129-m 

with four GCPs, and then to 0.047-m with six GCPs (see Figure 8).  When the dataset was 

processed with more than six GCPs, the decrease in error was slight and in some cases, error 

increased with additional GCPs.  There was little difference in error between evenly spaced 

and randomly spaced GCPs; both spacing schemes experienced similar RMSE changes with 

increasing GCP amounts. (see Figure 9).  At lower GCP amounts, most of the error is coming 

from the z-coordinates (see Figures 10 and 11), while at the highest GCP amounts, the Z-

coordinates are producing the least amount of error, with more error coming from the X- and 

Y-coordinates.  From the two-factor ANOVA results, for the X-coordinates, the difference in 

absolute error between even-spacing schemes and random-spacing schemes was not 

statistically significant (p-value = 0.97), while the difference in error between different GCP 

amounts was statistically significant  (p-value = 3.10 × 10−143).  For the Y- and Z-

coordinates, the statistical results were the same: a statistically significant difference for 

different GCP amounts but not a statically significant difference for the two GCP spacing 

schemes (see Table 3).   

 When the zero and four GCP datasets were not included in the two-factor ANOVA, 

the difference in absolute error between even and random spacing schemes was again, not 

statistically significant for X, Y, and Z coordinates.  However, the difference in X, Y, and Z 

absolute errors between different GCP amounts was also not statistically significant (see 

Table 3). 
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Figure 8:  Evenly spaced GCP amount and mean RMSE.  Y-axis has 

a base-10 logarithmic scale.  Note great RMSE change from 0 to 4 to 

6 GCPs, but little change after 6 GCPs. 
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Figure 10:  Changes in XYZ model accuracy with different GCP amounts.  The greatest improvements in 

model accuracy were observed in the Z-coordinates with increasing GCP amounts.  At four GCPs, there is low 

variability between the RTK and computed X & Y positions, but there is still high variability in the Z-

coordinates.  
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4.4 Drone Type 

 

 The ebee RTK fixed-wing drone produced a model with a mean RMSE of 0.090-m, 

while the Phantom 3 Quadcopter produced a model with a mean RMSE of 0.040-m.  Both of 

these flights were done at 80-m altitude, with 70% along-track and 75% across-track overlap.  

For the fixed-wing flight, most of the error came from the Y and Z coordinates, which 

produced RMSEs of 0.100-m and 0.090-m, respectively, with the X-coordinates producing a 

RMSE of only 0.042-m (see Figure 14).  For the quadcopter, the X, Y, and Z RMSEs were 

0.038-m, 0.045-m, and 0.038-m, respectively.  From the single-factor ANOVA, a statistically 

significant difference was found between the XYZ absolute error of the fixed-wing flight and 

the quadcopter flight.   
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Figure 11:  Number of GCPs and X, Y, Z RMSE.  The z-coordinates’ error 

decreased the most with increasing GCP amounts.  Y-axis has a base-10 

logarithmic scale. 
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4.5 Processing Software 

 

 For the 80-m, 70% along-track and 75% across-track overlap flight, Pix4D Desktop 

constructed a model with a mean RMSE of 0.040-m, while Agisoft PhotoScan constructed a 

model with a mean RMSE of 0.0296-m.  The Agisoft models produced X, Y, and Z RMSEs 

of 0.026-m, 0.033-m, and 0.030-m, respectively, while the Pix4D desktop models produced 

X, Y, and Z RMSEs of 0.038-m, 0.045-m, and 0.038-m, respectively (see Figure 15).  From 

the single-factor ANOVA, a statistically significant difference was found between the XYZ 

absolute error of the Pix4D Desktop model and the Agisoft PhotoScan model. 
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Figure 14:  Drone model and RMSE.  Fixed-wing drone has large elevation 

error (>10-cm). 
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4.6 Raster and Point Cloud Comparisons 

 

 After conducting the raster and point cloud comparisons, distinct model differences 

were found between the 0 GCP and 6 GCP comparison; between the 4 GCP and 6 GCP 

comparison; and between the quadcopter and fixed-wing comparison (see Figures 16 and 

17).  The 0 GCP and 6 GCP comparison revealed similarity between horizontal coordinates, 

but a strong difference between elevation coordinates (16A, 16B, 17A, 17B, 17C).  This 

difference in elevation shows strong fishbowl distortion in the 0 GCP model (elevated center 

and declined edges).  The 4 GCP and 6 GCP comparison showed more similarity in X, Y, 

and Z coordinates, but there still remained some fishbowl distortion in the 4 GCP dataset, 

0

0.01

0.02

0.03

0.04

0.05

X  Y  Z  Mean XYZ

M
ea

n
 R

M
SE

 (
m

) 

Pix4D

Agisoft

Figure 15:  SfM software and RMSE.  Agisoft models produce lower error in X, Y, 

and Z directions. 
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giving this dataset a slightly convex shape (17D, 17E).  For the quadcopter and fixed-wing 

comparison, absolute differences were mostly between 0.05-m and 1-m (17F, 17G, 17H).  

The point cloud comparisons, overall, showed more similarity between compared datasets 

relative to the raster comparisons.  

 Table 4 gives a comprehensive description of this study’s mean RMSE results for 

each processed dataset.  

Figure 16:  Raster comparisons between 0 and 6 GCP datasets.  A) 
Absolute difference scale.  B) Stretched relative difference scale.  
The 0 GCP model had strong differences in elevation when 
compared to the 6 GCP model.  

A) B) 
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Figure 17:  CloudCompare and ArcMap Results.  A) Point cloud X-differences between 0 and 6 GCPs.  
B)  Point cloud Y-differences between 0 and 6 GCP point clouds.  C)  Point cloud Z-differences 
between 0 and 6 GCP point clouds.  D) Raster differences between 4 and 4 GCPs.  E) Point cloud 
absolute differences between 4 and 6 GCPs.  F) Raster differences between quadcopter and fixed-
wing.  G) Point cloud absolute differences between quadcopter and fixed-wing.  H) Histogram of 
point cloud absolute differences between quadcopter and fixed-wing.  All models have the same 
scale. 
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Processing 

Software 

Drone Type Altitude 

(m) 

Overlap %  

(Along/Across) 

# of 

GCPs 

Mean RMSE (m) 

Pix4D Desktop Quadcopter 80-m 80/80 0 3.778 

Pix4D Desktop Quadcopter 80-m 80/80 4 Even Spacing:  0.129 

Random Spacing:  0.144 

Pix4D Desktop Quadcopter 80-m 80/80 6 Even Spacing:  0.047 

Random Spacing:  0.049 

Pix4D Desktop Quadcopter 80-m 80/80 8 Even Spacing:  0.053 

Random Spacing:  0.045 

Pix4D Desktop Quadcopter 80-m 80/80 10 Even Spacing:  0.050 

Random Spacing:  0.049 

Pix4D Desktop Quadcopter 80-m 80/80 12 Even Spacing:  0.047 

Random Spacing:  0.044 

Pix4D Desktop Quadcopter 80-m 80/80 14 Even Spacing:  0.047 

Random Spacing:  0.047 

Pix4D Desktop Quadcopter 80-m 80/80 20 Even Spacing:  0.048 

Random Spacing:  0.043 

Pix4D Desktop Quadcopter 80-m 80/80 24 Even Spacing:  0.047 

Random Spacing:  0.043 

Pix4D Desktop Quadcopter 80-m 80/80 30 Even Spacing:  0.039 

Random Spacing:  0.039 

Pix4D Desktop Quadcopter 80-m 80/80 34 0.036 

Pix4D Desktop Quadcopter 60-m 70/75 34 0.033 

Pix4D Desktop Quadcopter 120-m 70/75 34 0.043 

Pix4D Desktop Quadcopter 80-m 75/80 34 0.039 

Pix4D Desktop Fixed-wing 80-m 70/75 0 0.090 

Agisoft PhotoScan Quadcopter 80-m 70/75 34 0.030 

Table 4:  Comprehensive mean RMSE results from this study. 
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5. Discussion 

 

5.1 Optimal Altitude 

 

 Significant error variations occurred with varying altitudes.  The 60-m flight 

produced the lowest error of any dataset processed in this study, with a mean RMSE of 

0.033-m.  However, the 120-m flight only brought up the mean RMSE error to 0.043-m.  To 

minimize error and maximize efficiency, 80-m proves to be the best altitude to run surveys 

at, with a mean RMSE of 0.040-m.  Performing a 60-m flight exponentially increases flight 

time relative to 80-m, especially when conducted over larger areas, and while it does 

decrease model error significantly, this difference is less than a centimeter.  It would be 

inefficient to spend more time and battery life to bring model error down by only a few 

millimeters, particularly when the error is already near four centimeters.  In studies that aim 

to have the highest precision data, lowering the altitude is the best method of decreasing the 

error in their models.  However, these studies will be limited in the area they can cover, in 

addition to requiring more time for data collection and processing. 

 

5.2 Optimal Photography Overlap Percentages 

 

 Using three separate 80-m altitude flights with varied overlap amounts, no significant 

difference was found in model error with respect to changing the amount of photography 

overlap.  At 70% along-track overlap and 75% across-track overlap, the mean RMSE was 

0.040-m, and only decreased to 0.036-m at 80% along-track and 80% across-track overlap.  
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Since increasing the amount of photography overlap will increase the flight time and make 

larger area flights a burden on battery life, it is inefficient to conduct UAV surveys at overlap 

amounts greater than 70% along-track and 75% across-track.  This is especially true due to 

the ANOVA results.  However, in a study done on densely vegetated areas, where precision 

in plant identification is needed, a higher overlap amount could be necessary (Zarco et al. 

2014).  As for studies tracking the movement, deposition, and erosion of sediment, 70% 

along-track and 75% across-track are sufficient overlap amounts. 

 

5.3 Optimal GCP Amount and Spacing Scheme 

 

 For our 1.2-hectare study area, we determined that the optimum GCP ratio to survey 

area is six, or 0.20 hectares per GCP.  Zero GCPs produced models with large elevation 

errors (>9-m), as well as horizontal errors greater than 1-m, giving the zero GCP model a 

distinct fishbowl distortion.   Four GCPs decreased this error significantly, and six GCPs 

decreased the error significantly once again.  However, there still remained fishbowl 

distortion in the 4 GCP model.  Once more than six GCPs were added in data-processing, the 

error decrease became insignificant compared to the effort needed to place and measure, 

making the addition of more GCPs excessive and inefficient.  As for the two spacing 

schemes tested, the difference in error produced by each spacing scheme was not significant, 

meaning that even or random spacing schemes can be used for the GCP placement.  As long 

as there is uniform coverage throughout the study area, the GCPs do not need to be placed in 

precise, equally spaced increments throughout the site. 
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5.5 Type of GCP 

 

 Several types of GCPs were tested in this study by varying the size, color, and 

material.  From a qualitative approach, spray paint was the easiest method to use, in contrast 

to laying down black and white tarps, and that each spray paint color used (yellow, blue, red, 

orange, white) all showed up to the user’s eye in the photography.  Each SfM software was 

able to identify each of the different GCP types as well.  It is suggested that eco-friendly 

paint is used for GCP placement, to eliminate any detrimental environmental effects of a 

UAV survey.  

 

5.6 Drone Type 

 

 The fixed-wing drone was shown to produce a model with a significantly higher error 

when compared to the quadcopter.  However, the fixed-wing data was processed without the 

implementation of GCPs, relying on the drone’s built-in RTK GPS system for scaling and 

georeferencing, while the quadcopter data was processed with 34 GCPs.  This study suggests 

that when conducting a survey with an RTK-equipped fixed-wing drone, it is still necessary 

to include GCPs to obtain model errors below 0.05-m. 

 

5.7 Processing Software 

 

 Since Agisoft and Pix4D produced significantly different errors, it is advised that 

future studies use multiple SfM software, to compare results and to ensure that results lead to 



 

35 
 

similar conclusions.  In this particular study, the Agisoft models were shown to have less 

error than the Pix4D models, by approximately 1-cm in terms of mean RMSE.  It would be 

highly beneficial to use data from future studies to compare Agisoft and Pix4D in terms of 

model error, in an effort to more conclusively decide which software produces lower RMSE 

over a variety of terrain.  

 

5.8 Best Error Metric 

 

 While past studies have relied on the elevation RMSE extensively to quantify the 

error in 3D models, this study recommends the use of the mean RMSE for communicating a 

more-accurate error metric, as it encompasses all three coordinate directions into model error.  

The RMSE is more sensitive to outliers when compared to the MAE, causing it to penalize 

larger errors, thereby producing a larger error metric.  In addition, when presenting the mean 

RMSE for a model, it is recommended that each coordinate’s RMSE is presented as well to 

note any differences in error between the three separate coordinate directions.   

 

6. Conclusions 

 

This study provides insight for future implementation of the UAV/SfM methodology by 

providing RMSEs of models produced from various flight acquisition and post-processing 

parameters.  The flight parameter tables can be referenced in future studies and provide 

guidance for optimizing UAV surveys.  From the results of this study, it is suggested that the 
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following flight acquisition and post-processing parameters are used for efficient surveys and 

low-error models:   

 80-m flight altitude 

 70% along-track and 75% across-track photography overlap 

 Six GCPs per hectare 

 Addition of several GCPs in processing of eBee RTK fixed-wing drone data 

 Even or random GCP spacing scheme, but with uniform coverage throughout study 

area 

 Process data in more than one SfM software to compare results 

 Present error with RMSE, for X, Y, and Z coordinates. 

With more advancements in drone models, flight-planning software, data-processing 

software, and the automation of large portions of data analysis, the acquisition of high-

accuracy and high precision data will become readily available to coastal scientists and other 

disciplines as well.  These advancements will fuel future investigations, acting as powerful 

tools for answering difficult scientific questions. 
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Appendix A: Past Studies on UAV/SfM Model Accuracy 
 

 

 
 

Reference/Topic Topic UAV/Altitude # of 

GCPs 

Hectares Per 

GCP 

SfM Software Comparison 

Data 

Error (m) 

Hugenholtz et al. 2013 

 

Aeolian 

geomorphology 

Hawkeye RQ-84Z 

Areohawk 

fixed-wing 

 

200-m 

28 6.86 Trimble Inpho RTK GPS RMSE (z) 

= 0.29 

Tamminga et al. 2015 

 

Fluvial 

geomorphology 

Aeryon Scout 

quadcopter 

 

100-m 

45 0.18 Pix4D RTK GPS RMSE (z) 

= 0.095 

Tonkin and Midgley 

2016 

 

Glacial 

environmental 

photogrammetry 

DJI S800 

hexacopter 

 

100-m 

3, 4, 5, 

7, 8, 9, 

10, 15, 20, 

25, 30, 40, 

50, 60, 80, 

101 

4.83, 3.63, 2.90, 

2.07, 1.81, 1.61, 
1.45, 0.97, 0.73, 

0.28, 0.48, 0.36, 

0.29, 0.24, 0.18 
0.14 

Agisoft 

PhotoScan 

dGPS RMSE (z) 

= 0.156, 0.064, 0.060, 

0.062, 0.073, 0.063, 

0.075, 0.076, 0.073, 

0.073, 0.067, 0.066, 

0.060, 0.064, 0.061, 

0.059 

Jaud et al. 2016 

 

UAV/SfM 

methodology 

 

DroneSys DS6 

hexacopter 

 

100-m 

 

12 

 

0.58 

 
Agisoft 

PhotoScan 

RTK DGPS 

 

RMSE (xy) 

= 0.045 

RMSE (z) 

= 0.039 

MicMac RMSE (xy) 

= 0.035 

RMSE (z) 

= 0.032 

Agisoft 

PhotoScan 

TLS 

 

Mean difference 

= 0.05 

MicMac Mean difference 

= 0.22 

Long et al. 2016 

 

Coastal 

geomorphology 

SenseFly eBee 

fixed-wing 

 

150-m 

24 16.67 Agisoft 

PhotoScan 

GNSS RMSE (z) 

= 0.17 

Casella et al. 2016 

 

Coastal 

geomorphology 

RPAS Mikrokopter 

Okto XL 

 

80-m 

9 0.11 Agisoft 

PhotoScan 

DGPS RMSE (z) 

= 0.16 

Dohner et al. 2016 

 

Coastal 

geomorphology 

DJI Phantom 3 

Advanced 

 

80-m 

0 N/A Agisoft 

PhotoScan 

RTK GPS Mean (xy and z) 

= 0.02 to 0.05 

Turner et al. 2016 

 

Coastal 

geomorphology 

SenseFly 

eBee-RTK 

 

100-m 

0 (UAV 

equipped 

with RTK 

GPS) 

N/A Pix4D RTK GPS Mean (z) 

= 0.026 

Scarelli et al. 2017 

 

Coastal 

geomorphology 

SAL Engineering 

VTOL hexacopter 

 

60-m 

65, 108 1.54, 0.93 Agisoft 

PhotoScan 

RTK GPS RMSE (z) 

= 0.0605, 0.0522 
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