Augustana College Augustana Digital Commons

Celebration of Learning

Effects of mutating the Mrub_1345 gene found in Meiothermus Ruber

Brandon M. Wills Augustana College, Rock Island Illinois

Lori R. Scott Augustana College, Rock Island Illinois

Follow this and additional works at: https://digitalcommons.augustana.edu/celebrationoflearning Part of the <u>Bioinformatics Commons</u>, <u>Biology Commons</u>, <u>Genomics Commons</u>, and the <u>Molecular Genetics Commons</u>

Augustana Digital Commons Citation

Wills, Brandon M. and Scott, Lori R.. "Effects of mutating the Mrub_1345 gene found in Meiothermus Ruber" (2016). *Celebration of Learning.* https://digitalcommons.augustana.edu/celebrationoflearning/2016/posters/4

This Poster Presentation is brought to you for free and open access by Augustana Digital Commons. It has been accepted for inclusion in Celebration of Learning by an authorized administrator of Augustana Digital Commons. For more information, please contact digitalcommons@augustana.edu.

Effects of Site-Directed Mutagenesis on the *Meiothermus ruber proC* Gene

Introduction

Proline is one of the important amino acids that plays a critical role in maintaining proper functioning in many organisms. According to Fichman et al., 2014, proline production gives certain types of cells increased tolerance to external stressors such as osmolarity and temperature. Since the Meiothermus ruber bacteria live in high temperature environments, we thought this might prompt it to produce increased levels of proline. A variety of bioinformatics tools were used to analyze the Mrub1345 gene which suggested that it may be orthologous to a gene in *E. coli* called *proC*. Subsequently, we used complementation and site-directed mutagenesis to confirm Mrub1345 function. As shown in the figure below, the *E. coli* version of this enzyme is part of the proline biosynthesis pathway. This enzyme, called pyrroline-5-carboxylate reductase, is responsible for catalyzing the last reaction of this pathway, producing L-proline from (S)-1-pyrroline-5carboxylate.

Figure 1. Metacyc pathway showing the proline biosynthesis pathway found in *E. coli*. Image was taken from metacyc.org

The goal of this study is to use site-directed mutagenesis to swap out amino acids in the Mrub1345 gene and show that this has a significant effect on proline production. In this study, we hypothesize that the swapping of a highly conserved glycine residue within the Mrub1345 gene will cause the proline biosynthesis pathway to become non-functional and the cell will fail to grow in conditions in which proline is absent.

Figure 2. Stratgene Lightning Quickchange sitedirected mutagenesis

Brandon M. Wills and Dr. Lori R. Scott

Materials and methods

Obtained E. coli proC-pKt1 and Mrub1345-pKt1 clones

Confirmed insert identity via sequencing

Transformed into null strains

Complementation Assay

Sequenced strain used for complementation

Site-directed mutagenesis G11D in wild type strain

Retransformation into null strains

Repeat complementation assay

Sequenced to confirm mutation

Repeat Site-directed mutagenesis

1000bp 500bp

RESULTS Table 1: E. coli proC and Mrub 1345 are orthologs E. coli b_0386 gene (proC) **Bioinformatics** M. ruber Mrub 1345 gene tool used BLAST E. coli Score: 129 bits against M. ruber E-value: 1e-39 COG Number: COG0345 Pyrroline-5-carboxylate reductase CDD Data (COG category) E-value: 2.27e-117 E-value: 9.14e-82 Cellular Cytoplasm of the cell Localization TIGR00112

Pyrroline-5-carboxylate reductase TIGRfamprotein family E-Value: 2e-72 E-value: 1.9e-101 Pf03807 (NADP oxidoreductase coenzyme F420-dependent & Pf14748 (Pyrroline-5-carboxylate reductase dimer) Pfam – protein family E-values: E-values: 1.5e-24 4.9e-11 2e-38 6.1e-35 3GT0 pyrroline-5-carboxylate reductase crystallized in bacillus Protein Database E-value: 3.09938E-72 E-value: 3.10687E-72

Table 1 summarizes the results from a variety of bioinformatics tools that were used to compare the *E. coli* proC gene to Mrub1345.

Results – Functional

Figure 3. Successful amplification of proC and Mrub1345 genes isolated from E. coli and Meiothermus ruber, respectively. Lane 1: 10µL 1kb ladder; lane 2: 15µL E. coli proC M1; lane 4: 15µL E. coli proC M2; lane 6: 15µL M. *ruber* M1; lane 8: 15µL *M. ruber* M2.

Figure 4. Mutations induced in the Mrub1345 gene seemed to have no effect on proline biosynthesis. Plate A was prepared using minimal media; plate B was prepared using minimal media + arabinose; plate C was prepared using minimal media + proline. Sector 1: Escherichia coli K12 strain; Sector 2: $proC^{-}$ null strain; Sector 3: pKt1 + null; Sector 4: *E. coli* 2014-2015-pKt1; Sector 5: Mrub1345-pKt1 mutation 1; Sector 6: Mrub1345-pKt1 mutation 2; Sector 7: Mrub1345-pKt1 mutation 3. Mutations for all three experimental sectors were the point mutation G11D. Plates were incubated for a 24hr time period to allow for sufficient growth. Colonies were seen in sectors 1 and 4 on plate A; Plate B saw growth on sectors 1,4,5,6 and 7; Plate C saw growth on all 7 sectors that bacteria were spread on.

Although we did not obtain the results we anticipated, this experiment demonstrated that mutating the G11 amino acid seems to have no effect on pyrroline-5-carboxylate reductase function. This came to us as a surprise since the bioinformatics analysis via BLAST showed that this residue was highly conserved in many different species of bacteria. One reason that this mutation may not have had an effect on proline biosynthesis is because there is another glycine residue at the 9th position that might be able to somehow maintain proper enzyme conformation even with the mutation. However, according to Betts et. al (2003), any mutational change that is made on a glycine residue should significantly alter protein structure. It's interesting to note that this was not the case when we swapped out the G11 of the proC gene with an aspartic acid residue. We are currently testing out another mutation induced via site-directed mutagenesis that swaps a threonine residue with an alanine residue. A mechanism found in an article written by Nocek et. al (2005) shows that a Thr226 is one of the active site residues that aids in catalysis of the substrate. By swapping this important residue, we are hoping to prove that the proC gene of Meiothermus ruber does in fact play an important role in proline biosynthesis. A BLAST analysis revealed that the mutation was present in the proC gene. Unfortunately, we did not have enough time to explore this mutation.

Conclusions and Reflections

in *N. menegitides* and *S. pyogenes* showing the Thr226 residue.

Literature cited

Nocek B, Chang C, Li H, Lezondra L, Holzle D, Collart F, Joachimiak A. 2005. Crystal structures of delta1-pyrroline-5-carboxylate reductase from human pathogens Neisseria meningitides and Streptococcus pyogenes. J Mol Biol 354(1):91-106

Fichman Y, Svetlana GY, Kovacs H, Szabados L, Zilberstein A, Csonka LN.2014. Evolution of Proline Biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol Rev Camb Philos Soc 90(4): 1065-1099.

Betts MJ, Russell RB. 2003. Amino acid properties and consequences of substitution. In: Barnes M, Gray I, editors. Bioinformatics for geneticists: A Bioinformatics Primer for the Analysis of Genetic Data. 2nd ed. Hoboken: John Wiley & Sons; p 309-310