Augustana College Augustana Digital Commons

Urban Watershed Project

Upper Mississippi Center for Sustainable Communities (UMC)

Spring 2015

Aquatic Macroinvertebrate Diversity Within an Urbanized Gradient

Brian E. Lovejoy Jr. Augustana College - Rock Island

Jacob Torres Augustana College - Rock Island

Follow this and additional works at: http://digitalcommons.augustana.edu/urbanwatershed Part of the <u>Water Resource Management Commons</u>

Augustana Digital Commons Citation

Lovejoy, Brian E. Jr. and Torres, Jacob. "Aquatic Macroinvertebrate Diversity Within an Urbanized Gradient" (2015). Urban Watershed Project.

http://digitalcommons.augustana.edu/urbanwatershed/2

This Poster is brought to you for free and open access by the Upper Mississippi Center for Sustainable Communities (UMC) at Augustana Digital Commons. It has been accepted for inclusion in Urban Watershed Project by an authorized administrator of Augustana Digital Commons. For more information, please contact digitalcommons@augustana.edu.

AQUATIC MACROINVERTEBRATE DIVERSITY WITHIN AN URBANIZED GRADIENT

Introduction

Urbanization leads to reduced ecosystem functioning and biological diversity of streams^{1,2}. However, catchment level effects may also be critical in understanding variation in this relationship².Rock Island and Moline, IL are experiencing substantial growth in population and impervious surfaces (Fig. 1), resulting in less natural infiltration and higher amounts of flow, debris, and pollutants in stormwater streams. Even low levels of development (upstream percent impervious surface levels of 5-10%)³, can eliminate or reduce many pollution intolerant macroinvertebrates. Aquatic invertebrates families are sensitive to water quality and can present a more integrative picture of overall water quality. **Research Questions:**

1) How do macroinvertabrate communities vary across a gradient of urbanization?

2) How does observed variation relate to water quality?

Methods

•11 watersheds were identified and mapped using GIS (Fig. 2). •30 access points to the watersheds were chosen based on access to the headwater, ravine, and confluence.

•Macroinvertebrates were collected at all sites⁴ (Fig. 2).

•2013: samples were collected approximately once per month May-September.

•2014: a standardized unit effort was established: 10 pool/10 riffle dip net samples and a fixed 30 minute effort.

•The Family Biotic Index (FBI=tolerance value x frequency) was calculated for each site⁴ (Fig. 3).

Number of organisms per Watershed

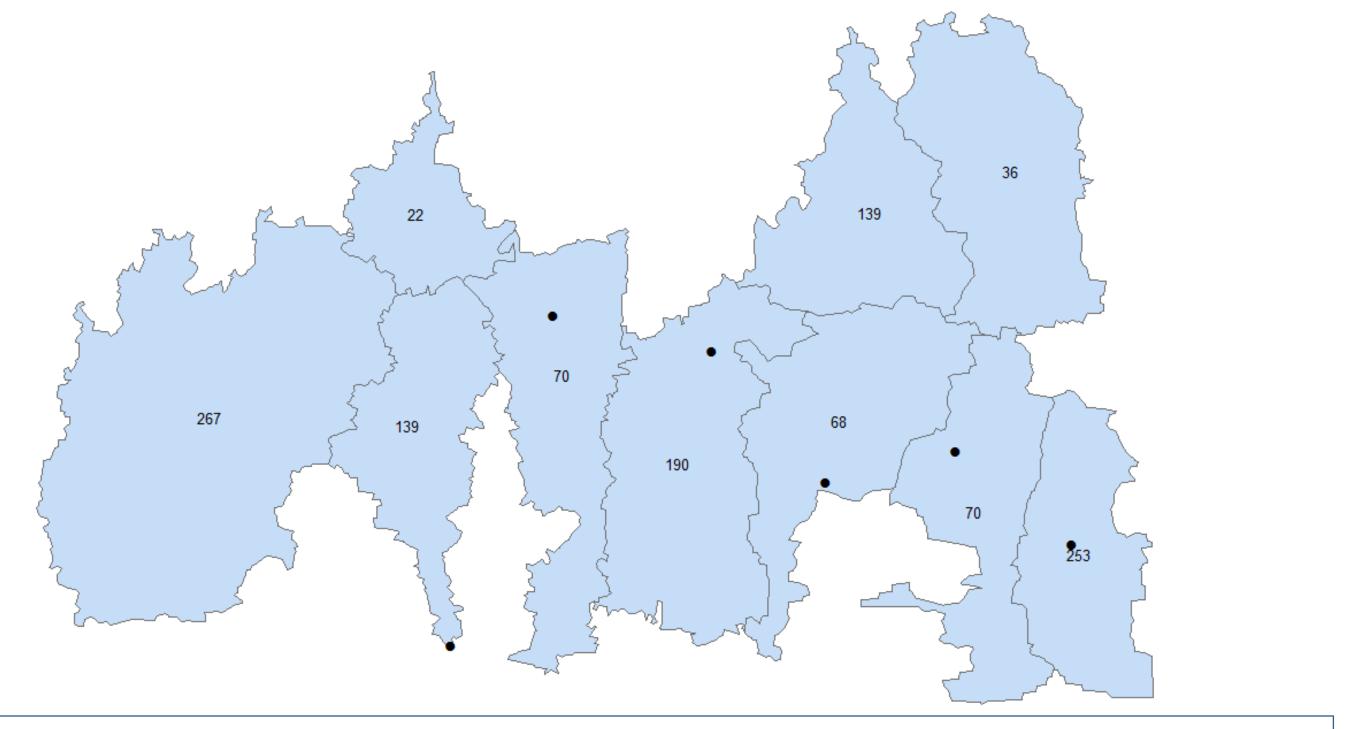


Figure 2: The number of organisms collected per watershed. The markers indicate sampling sites at which no organisms were collected..

Contact

Upper Mississippi Center Augustana College Rock Island, IL MichaelReisner@augustana.edu

Brian Lovejoy¹, Jake Torres¹, Kevin Geedey¹, Tierney Brosius¹, Michael Reisner¹, Tara Cullison¹, Kelsey Self¹, and Kara Noonan ¹Augustana College, Rock Island, IL 61201

•The mean imperviousness (%)⁵ for each area was calculated using GIS polygons previously delineated for the head water, ravine, and confluence areas (Fig. 1).

•NO³ was measured using an Orion ion selective half-cell with reference electrode.

•NH3 (Salicylate method) and reactive phosphorus (ascorbic acid method) were measured on a Hach DR850 colorimeter. •Temperature, pH, specific conductance, turbidity, dissolved oxygen, and dissolved solids were measured using YSI Professional-Plus Multi-parameter Instruments

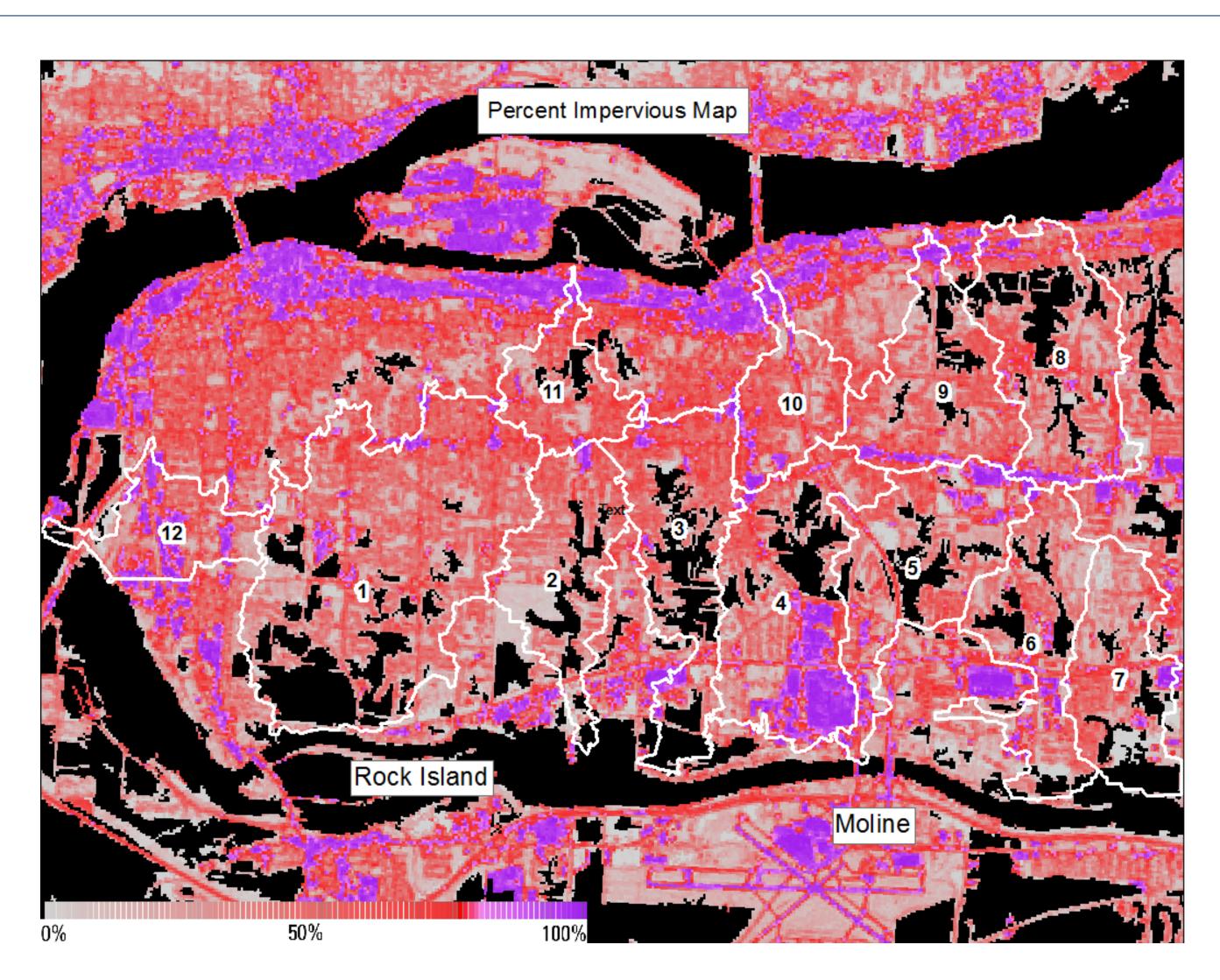
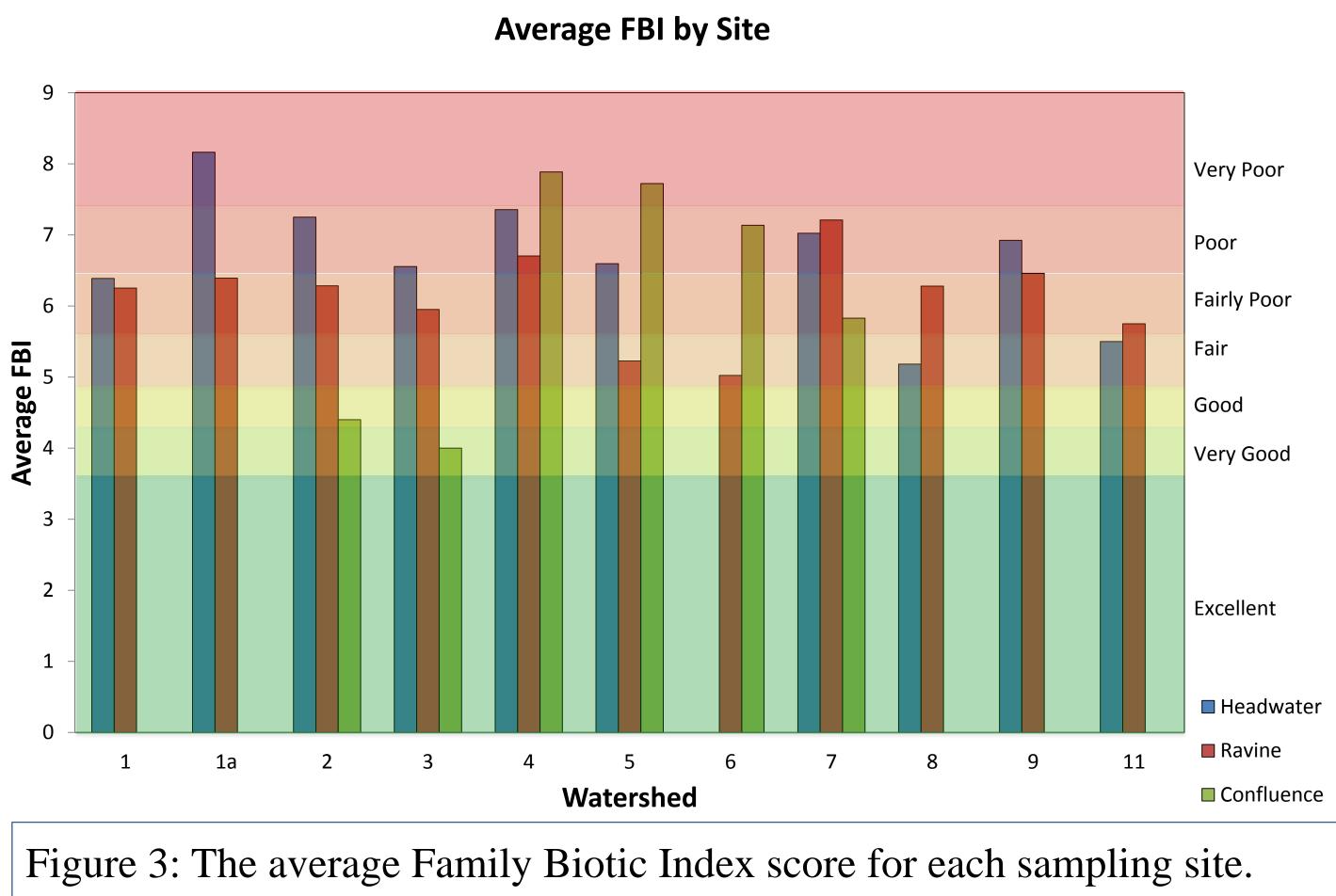


Figure 1: percent impervious in sampled watersheds.

Results


- The sites varied significantly from one another. • The percent impervious of the surfaces around the sampling sites varied
- greatly, ranging from 25% to 60% impervious (Fig. 1 and 2).
- Nitrate:: range: 0.35-25.66 mg/L; overall mean: 6.49 mg/L
- Ammonia:: range: 0.00-0.60 mg/L; overall mean: 0.13 mg/L
- ppm
- In general, headwater sites experienced higher nitrate and ammonia levels than Ravine sites, while TDS levels remained the same in both headwater and ravines for most watersheds.

• Total Dissolved Solids:: range: 3.64-1715.0 ppm; overall mean: 661.66

- (regression, p-value = .035; R² = 0.298).
- (regression, p-value = 0.247, R² = 0.034).
- 3.9%, range 0-86%).

community within an urbanization gradient

- drive observed patterns in FBI.
- well as variation in water level and flow.

References

- 1. Christopher J. Walsh, Allison H. Roy, Jack W. Feminella, Peter D. Cottingham, Peter M. Groffman, and Raymond P. Morgan II Journal of the North American Benthological Society Sep 2005 : Vol. 24, Issue 3, pg(s) 706-723 doi: 10.1899/04 028.1
- 2. Seth J. Wenger, Allison H. Roy, C. Rhett Jackson, Emily S. Bernhardt, Timothy L. Carter, Solange Filoso, Catherine A. Gibson, W. Cully Hession, Sujay S. Kaushal, Eugenia Martí, Judy L. Meyer, Margaret A. Palmer, Michael J. Paul, Alison H. Purcell, Alonso Ramírez, Amy D. Rosemond, Kate A. Schofield, Elizabeth B. Sudduth, and Christopher J. Walsh. Journal of the North American Benthological Society, 28(4):1080-1098. The Society for Freshwater Science. Available at: http://www.bioone.org/doi/full/10.1899/08-186.1
- http://clear.uconn.edu/projects/TMDL/library/papers/Schueler 2003.pdf 4. Stanford, Jack A. *Methods in Stream Ecology*. By F. Richard. Hauer and Gary Anthony. Lamberti. 2nd ed. Amsterdam: Academic/Elsevier, 2007. N. pag. Print. 5. www.mrlc.gov/nlcd2006.php

• There was significant variation across the 13 sampling sites in FBI (average FBI ranging 4-8.16)(Fig. 3), however, we found almost no reliable predictors of FBI, with the exception of a weak negative relationship between dissolved oxygen levels and FBI in 2014

• The relationship between FBI and upstream imperviousness was weak

• Chironomidae were numerically dominant at most sites (mean 37%, range 0-100%), while Ephmeroptera and Trichoptera were rare (mean

Discussion

Our findings provide insights into the integrity of the macroinvertebrate

• No macroinvertebrates were collected in almost 20% of our sites despite extensive collecting effort (Fig. 2), suggesting severe impairment

• Findings are consistent with those of other studies showing that high levels of urbanization can homogenize communities: Chironomidae dominate within urban settings while Ephemeroptera and Tricoptera, insect Orders that are highly sensitive to changing water conditions and poor water quality, were found in extremely low abundances.

• Measured water quality parameters and percent imperviousness do not

• The lack of observed impact may be due to watershed specific effects such as fine scale land use variation throughout the sampling area, as