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In the first part of this overview, we described the life cycle of 
the influenza virus and the pharmacological action of the cur-
rently available drugs. This second part provides an overview of 
the molecular mechanisms and targets of still-experimental drugs 
for the treatment and management of influenza. 
Briefly, we can distinguish between compounds with anti-influ-
enza activity that target influenza virus proteins or genes, and 
molecules that target host components that are essential for viral 
replication and propagation. These latter compounds have been 
developed quite recently. Among the first group, we will focus 
especially on hemagglutinin, M2 channel and neuraminidase 
inhibitors. The second group of compounds may pave the way for 
personalized treatment and influenza management. Combination 
therapies are also discussed.
In recent decades, few antiviral molecules against influenza virus 
infections have been available; this has conditioned their use dur-

ing human and animal outbreaks. Indeed, during seasonal and pan-
demic outbreaks, antiviral drugs have usually been administered in 
mono-therapy and, sometimes, in an uncontrolled manner to farm 
animals. This has led to the emergence of viral strains displaying 
resistance, especially to compounds of the amantadane family. For 
this reason, it is particularly important to develop new antiviral 
drugs against influenza viruses. Indeed, although vaccination is the 
most powerful means of mitigating the effects of influenza epidem-
ics, antiviral drugs can be very useful, particularly in delaying the 
spread of new pandemic viruses, thereby enabling manufacturers 
to prepare large quantities of pandemic vaccine. In addition, anti-
viral drugs are particularly valuable in complicated cases of influ-
enza, especially in hospitalized patients.
To write this overview, we mined various databases, including 
Embase, PubChem, DrugBank and Chemical Abstracts Service, 
and patent repositories.
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Summary

In the first part of this overview [1], we described the 
life cycle of the influenza virus and the pharmacological 
action of the currently available drugs. In this second 
part, we will overview the molecular mechanisms and 
the targets of still-experimental drugs for the treatment 
and management of influenza. Figure 1 shows the attack 
points of several potential antiviral drugs.
Antiviral drug research is a particularly active field and 
new approaches have been developed. Briefly, we can 
distinguish between compounds with anti-influenza 
activity that directly target influenza virus proteins or 
genes, and molecules that target host components that 
are essential to viral replication and propagation. Among 
the former group, we will focus especially on hemag-
glutinin (HA), Matrix protein 2 (M2) and neuramini-
dase (NA) inhibitors (HAIs, NAIs). The latter molecules 
have been implemented quite recently and may pave the 
way for personalized treatment and management of in-
fluenza. Moreover, it is expected that the inhibition of 
host factors (such as single molecules) and/or complex 
mechanisms (such as intracellular signaling cascades 

and pathways) may act against different influenza virus 
strains and may be less prone to the emergence of drug 
resistance than the inhibition of viral components [2, 3]. 
Therapies that combine two or more compounds belong-
ing to the same group or different groups are also dis-
cussed.
To write this overview, we mined various chemical da-
tabases, including Embase [4], PubChem [5, 6], Drug-
Bank  [7] and Chemical Abstracts Service (CAS)  [8], 
as well as patent repositories and clinical trials regis-
tries [9]. We also scanned extant reviews and consulted 
the gray literature (books, proceedings, conference ab-
stracts, posters and congress communications) in order 
to increase coverage of the anti-influenza drugs included 
in the present article. With regard to the search strategy, 
we used a mining approach similar to that described in 
Eyer and Hruska [10]. No time or language filters were 
applied.
To the best of our knowledge, this article constitutes the 
most comprehensive and up-to-date overview of anti-
influenza compounds in the literature. It can be used 
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also as a working bibliography and a mapping review 
for scholars doing research in the field.
Along with this paper, a database is currently being de-
signed and developed and will be accessible at the CIRI-
IT institutional website [11]. 

Entry and Attachment Inhibitors 

Effective antiviral compounds that interfere with the at-
tachment and entry of the influenza virus into the host 
cell include triterpenoids [12] such as glycyrrhizic acid 
(GA)  [13], glycyrrhizin (GR)  [14], glycyrrhetinic ac-
id  [15] and further derivatives extracted from licorice 
and present in some Chinese medicaments. GR is the 
most active of these molecules and can repress the rep-
lication of H3N2 and H5N1, as well as of several virus-
es [16]. It can be delivered as an approved parenteral GR 
preparation (Stronger Neo-Minophafen C, SNMC), and 
glutamyl-tryptophan can be added in order to increase its 
activity [17, 18]. GR is able to inhibit entry of the virus 

into the host cell, and reduces the level of pro-inflamma-
tory molecules such as chemokine (C-X-C motif) ligand 
type 10 (CXCL10), interleukin 6 (IL6), CC chemokine 
ligand type 2 (CCL2), and CC chemokine ligand type 5 
(CCL5) [19, 20]. It also exerts an anti-apoptotic action. 
In addition, GR hinders monocyte recruitment and has 
anti-oxidant activities, inhibiting the formation of influ-
enza virus-induced reactive oxygen species (ROS) [21]. 
It extensively modulates gene expression, activating in-
terferon-gamma (IFN-gamma) and reducing the expres-
sion of Nuclear factor kappa B (NFκB), c-Jun N-termi-
nal kinase (JNK), and p38. Furthermore, GR reduces 
high-mobility-group box type 1 (HMGB1) [22]. Prom-
ising glycyrrhizin derivatives include spacer-linked 
1-thioglucuronide analogues [23]. GA inhibits influenza 
virus growth and replication in embryonated eggs [24]. 
Moreover, it can be used as an adjuvant in the prepara-
tion of anti-influenza vaccines [25].
Other triterpenoids  [26], such as the saponins and 
uralsaponins M-Y from the roots of Glycyrrhiza ura-

Fig. 1. The attack points of several antiviral drugs are shown, with a particular focus on future potential compounds and strategies against 
influenza virus. Abbreviations: hA: hemagglutinin; m: matrix protein; m1: matrix type 1 protein; m2: matrix type 2 protein; mTOC: microtu-
bule-organizing center; NA: neuraminidase; NAIs: neuraminidase inhibitors; Nep: nuclear export protein; res: recycling endosomes; rNA: 
ribonucleic acid; rNp: ribonucleoprotein; sirNA: short interfering rNA; TBhQ: Tert-butyl-hydroquinone. 
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lensis  [27], exhibit anti-influenza and anti-HIV activi-
ties. Moreover, saponins can be used as vaccine adju-
vants [28-31] and modulate the expression of cytokines 
and chemokines  [32, 33]. Further triterpenoid deriva-
tives share broad antiviral actions [34-38].
Dextran sulphate (DS) is a negatively charged sulphat-
ed polysaccharide. Besides inhibiting virus entry and 
attachment, it represses HA-dependent fusion activ-
ity  [39-41] and NA-dependent activity  [42]. However, 
mutations conferring resistance to DS are described in 
the literature [43]. Oxidized dextran can be administered 
as a prevention [44-46].
Other sulphated molecules include the sulphated syalil 
lipid NMS03, which is effective against IAV, Human 
Metapneumovirus (HMPV) and picoRNAvirus. It is as-
sumed that it interferes with fusion, but the precise na-
ture of its mechanism is still unknown [47].
Another potential fusion inhibitor is BTA9881, which 
has shown promising activity against RSV [48, 49].
Lysosomotropic agents, such as concanamycin A [50-53], 
the macrolide antibiotic bafilomycin A1 [54, 55], saliphe-
nylhalamide [56], N,N’-Dicyclohexylcarbodiimide [52], 
and chloroquine  [57-64], inhibit vacuolar ATPase (V-
ATPase) and reduce endosome acidification and lyso-
some number. They act on the CME pathway, but are 
unable to block clathrin caveolae-independent endocy-
tosis. It should be stressed that the anti-influenzal ac-
tivity of these compounds strongly depends on the pH 
of the cellular environment and that some scholars have 
reported conflicting findings about their in vivo effec-
tiveness [65]. 
Extract from milk thistle seeds, known as silymarin, a 
complex mixture of flavonolignans, and its main com-
ponent silibinin are active against influenza [66]. Also 
silybin and its derivative can block virus entry and 
regulate autophagy, repressing the formation of oxida-
tive stress species and triggering activation of the ex-
tracellular signal-regulated kinase (ERK)/p38 mitogen-
activated protein kinase (MAPK) and IκB kinase (IKK) 
cascades [67]. Other silybin derivatives include silybin 
fatty acid conjugates, which have strong anti-oxidant 
properties [68].
Compounds from Melaleuca alternifolia (tea tree) oil 
(TTO) concentrate (MAC)  [69, 70] have a broad anti-
microbial activity. In silico simulations have shown that 
these compounds can interfere with virus entry and fu-
sion of the influenza virus [71, 72].
Other potential compounds include Amaryllidaceae 
alkaloids from Lycoris radiate, such as lycorine, hip-
peastrine, hemanthamine and 11-hydroxy vittatine, 
which can also inhibit the nuclear-to-cytoplasmic export 
of the ribonucleoprotein (RNP) complex [73].
Curcumin is able to inhibit virus entry and HA [74]. It 
also has antioxidant, anti-inflammatory, anticancer, an-
tiviral, antibacterial and antidiabetic properties, among 
others  [75]. Curcumin acts against a large array of 
targets  [76]. Curcumin is also active against other vi-
ruses  [75, 77]. Rajput and collaborators showed that 
animals on a diet enriched in curcumin displayed an im-

proved immune response  [78]. Surprisingly, curcumin 
derivatives do not exhibit anti-influenza activity [79].
LADANIA067, extracted from the leaves of the wild 
blackcurrant (Ribes nigrum folium) [80, 81], has shown 
antiviral activities both in vivo and in vitro, without hav-
ing any effect on influenza virus metabolism or growth/
proliferation.
Fattiviracin A1 is a recently discovered antiviral  [82]. 
Besides inhibiting both IAV and IBV, it is active against 
HIV, HSV and VZV [83].
Lignans exert a good anti-influenza activity [84, 85] Ger-
macrone is a molecule purified from Rhizoma curcuma. 
It can be effectively combined with oseltamivir [86]. 
Akt inhibitors are also effective entry inhibitors. These 
include peptide “Akt in”, which may be TCL1- or 
TCL1b-based, MK2206 [87, 88] and Ma-xing-shi-gan-
tang (MXSGT), a traditional Chinese herbal decoc-
tion  [89]. Everolimus, an inhibitor of the PI3K-Akt-
mTOR pathway, is also a valuable tool against influ-
enza [90].
Among anti-attachment drugs, Fludase (DAS181) 
has potential anti-influenza virus properties [91-103]. 
This medication, which has proved capable of inhibit-
ing human and avian influenza viruses in pre-clinical 
studies, acts by mimicking NA and destroying the 
molecules of sialic acid receptors on the host cell sur-
face. It is also effective against NA-resistant influenza 
strains [92, 93, 103]. 

HA Inhibitors

An effective class of HAIs is that of the amide deriva-
tives [104-107].
Gossypol is a natural phenolic aldehyde extracted from 
the cotton plant and blocks the dehydrogenase family 
enzymes  [108, 109]. Its antiviral properties emerged 
during a 1970 study, in which an experimental model 
of influenza pneumonia was used  [108]. In particu-
lar, chiral (+)-gossypol is more active than (–)-gossy-
pol [110, 111]. 
Another antiviral against HA is Entry Block-peptide 
(EB-peptide), a peptide derived from fibroblast growth 
factor 4 (FGF4) [112]. EB-peptide can inhibit virus entry 
and attachment, being effective even when administered 
post-infection. Besides repressing influenza viruses, EB-
peptide is also active against other viruses [113]. It can 
also be used as an adjuvant in the formalin-inactivated 
influenza whole-virus vaccine, triggering phagocytosis 
of influenza virions. Other peptides similar to EB-pep-
tide are the FluPep (FP) peptides, such as FP1 (Tkip) 
and FP2-FP9 [114]. Tkip was designed as a mimetic of 
the suppressor of the cytokine signaling (SOCS) protein, 
which is involved in mediating the immune response to 
influenza. Furthermore, peptide NDFRSKT has strong 
antiviral properties, but with unknown therapeutic char-
acteristics [115, 116]. 
Other molecules which bind to HA are collectins 
(CLs)  [117]. Human CLs and bovine conglutinin, CL-
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43 and CL-46 confer protection against influenza infec-
tion [118-122]. 
A related group of molecules is the ficolins (such as 
H-ficolin and L-ficolin), present at high concentra-
tions in serum and in bronchoalveolar secretions [123]. 
They bind not only to HA but also to NA in vitro mod-
els  [124]. These proteins can be engineered in such a 
way as to become more active against influenza virus; 
for example, Chang and collaborators designed recom-
binant chimeric lectins consisting of mannose-binding 
lectin (MBL) and L-ficolin [125]. However, because of 
their role in the inflammatory response, their potential 
use in humans requires more complete analysis. Re-
cently, agglutinins such as NICTABA, UDA [126] and 
protectins like protectin D1 [127-130] have been found 
to have anti-influenza propriety [131].
An interesting compound, which binds to specific 
high-mannose oligosaccharides of HA is Cyanovirin-N 
(CVN) [132]. In 2003, O’Keefe et al. demonstrated its 
potent in vitro antiviral activity against a wide range of 
IAVs and IBVs, including NA-resistant strains, though 
resistance induced by mutations that affect the glycosila-
tion site of HA seems to arise quite naturally [133]. 
Clarithromycin (CAM), able to inhibit influenza virus 
replication in vitro and in cell cultures, appears to have 
3 mechanisms of action against type A seasonal Influ-
enza virus. It was recently showed that CAM reduces 
the expression of human influenza virus receptors on the 
mucosal surface of the airways, reduces the production 
of nuclear factor-kB (NF-kB), and increases pH inside 
the endosomes [134, 135].
Norakin (Triperiden) is an anticholinergic drug that 
interacts with HA [136, 137]. This interaction may be 
indirect, being mediated by an increase in the inter-
nal pH in the pre-lysosomal compartment  [138-140]. 
However, strains resistant to Norakin have been de-
scribed [141-144]. Also Norakin derivatives seem to be 
effective antiviral compounds [145].
Another interesting compound is nitazoxanide [146-151], 
useful for the treatment of protozoal and bacterial infec-
tions and is active against hepatitis and influenza viruses 
or rotaviruses. Further thiazolides act at the post-trans-
lational level by selectively blocking the maturation of 
viral HA at a stage preceding that of resistance to en-
doglycosidase H digestion, thus interfering with HA in-
tracellular trafficking and insertion into the host plasma 
membrane, which is a key step in the correct assembly 
and exit of the virus from the host cell. 
Bacillus intermedius ribonuclease (BINASE) shows a 
good anti-influenza activity. BINASE and HA interact 
with sialic acid on the cell surface and penetrate into 
the host cell. Subsequently, viral RNA is released and 
cleaved by BINASE [152, 153]. 
High mannose-binding lectins (HMBL) are powerful in-
fluenza and HIV inhibitors [154].
Rutin, quercetin, and related compounds, extracted from 
elderberry fruit (Sambucus nigra L.) [155-161] are other 
HA inhibitors. Xylopine and rosmaricin have an amine 
group that interacts with HA [162, 163].

Theaflavins (TFs) from black tea have a strong anti-in-
fluenza activity, inhibiting HA and reducing the level of 
IL6, thus exerting an anti-inflammatory and anti-apop-
totic action [164-166].

M2 Inhibitors

M2 inhibitors can be basically divided into 2 groups. 
The first includes compounds derived from the leads of 
amantadine and rimantadine and its hydroxylated deriv-
atives [167-172]. The second includes non-adamantane 
derivatives, which are promising drugs against influenza 
viruses [173]. Some of these compounds have been spe-
cifically designed for some important mutants of the M2 
ion channel of IAV [174-177].
Regarding molecules putatively capable of blocking the 
ion pump, Gasparini and coworkers recently conducted 
a field investigation into the effect of omeprazole family 
compounds (OFC) [178] on Influenza-like Illness (ILIs). 
The results showed that subjects treated with omeprazole 
family compounds displayed a lower risk of catching ILI 
(ORadj = 0.29, 95% CI: 0.15-0.52) than non-treated sub-
jects. Molecular docking and molecular dynamics (MD) 
simulations, which are a common method of searching 
for new potential drugs, seem to confirm these find-
ings [179]. The M2 Protein – Protein Data Bank (PDB) 
code 3C9J [180] – was simulated as being embedded in 
a dipalmitoylphosphatidylcholine (DPPC) membrane in 
complex, with its ligands amantadine and rimantadine 
being used as positive controls and omeprazole as a pu-
tative ligand. The thermodynamic integration method 
was used in order to estimate binding free energies of 
the ligands. Free-energy calculations imply omeprazole 
as a potent anti-viral drug. Also another study has sug-
gested the antiviral properties of omeprazole against Eb-
olavirus [181].
Polyamines such as spermine [182, 183], spermidine and 
putrescine have recently been identified as intrinsic rec-
tifiers of potassium channels. Indeed, the M2 protein has 
a binding site for polyamines, which is different from 
the amantadine binding site  [184]. Polyamines have 
quite recently been exploited in designing anti-influenza 
vaccines [185, 186].
Spiropiperidine M2 inhibitor and its derivatives appear 
promising in acting against amantadine-resistant virus-
es; in particular, spiropiperidine-9 seems to be the most 
active [187]. 
Among natural products, pinanamine derivatives [188] 
and 24-E-ferulate [188] have a good influenza activity.

Endosomal and lysosomal inhibitors

Substituted salicylanilides appear promising antivi-
ral agents  [190-193]. In particular, Niclosamide  [192], 
which is approved for human use against helminthic in-
fections, besides being active against influenza viruses, 
has also shown anti-neoplastic and broad antiviral ef-
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fects, being active against SARS-related coronavirus 
and Human Rhinovirus (HRV). 
Lysosomotropic agents [50-64] have also been already 
discussed. Further compounds include molecules ob-
tained from TTO [69-72], which have already been men-
tioned. 

Protease inhibitors 

The cleavage of HA can be blocked not only by anti-
M2 protein compounds, but also by inhibition of the 
necessary proteases  [194]. Given the great importance 
of the proteases in the viral replication cycle, many au-
thors [195, 196] have directed their research towards an-
ti-protease medications that could block, or at least miti-
gate, the consequences of HA cleavage. HA can also be 
blocked by natural products such as Hepatocyte growth 
factor activator inhibitor 2 (HAI-2)  [197]. Several an-
ti-protease drugs have been studied in in vitro models, 
animals and humans, such as Camostat mesilate [198], 
epsilon-aminocapronic acid  [199], leupeptin  [200] and 
Aprotinin  [201], which has been approved for topical 
use in a small-particle aerosol formulation in Russia. A 
theoretical advantage of antiviral activity against enzy-
matic activities of the host is that these molecules would 
not lead to the selection of resistant viral variants.
Other molecules can interfere with the mechanism of 
fusion of the endosomal and viral membranes [202]. In-
deed, numerous small molecules that block virus infec-
tivity by inhibiting the conformational changes required 
for HA-mediated membrane fusion have been identified. 
Russell et al. [194] have demonstrated that TBHQ (Tert-
butyl-hydroquinone) stabilizes the neutral pH structure 
and, in this way, presumably, inhibits the conformation-
al rearrangements required for membrane fusion. Fur-
thermore, Leikina et al.  [203] have demonstrated that 
human β-defensin 3, a lectin, can inhibit HA-mediated 
influenza viral fusion.
Regarding the compounds targeted against the transcrip-
tion and replication of vRNA, one of the first drugs 
developed is Ribavirin (RIB). RIB, also known by the 
trade name “Virazole”, is a nucleoside analog [204]. Its 
mechanism of action is not completely known. Howev-
er, Inosine 5’-monoposphate dehydrogenase (IMPDH) 
appears to be the principal target of the molecule. This 
inhibition diminishes the intracellular concentration of 
GTP (Guanosine-5’-triphosphate), and this is thought to 
stop viral protein synthesis and limit vRNA replication. 
Crotty et al. also demonstrated that RIB is a lethal vR-
NA mutagen [205]. However, the need for high doses of 
the drug in order to have obtain good clinical results has 
limited the use of RIB as an anti-influenza drug, and a 
recent revision of the literature by Chan-Tack et al. sug-
gests that there are no conclusive results on the benefi-
cial use of Virazole for the treatment of influenza [206]. 
RIB can also be delivered as a liposome encapsulated 
with muramyl tripeptide (MTP-PE) [207].
α(1)-antitrypsin (AAT) [208] is a serine protease inhibi-
tor of elastase and proteinase-3 (PR-3). This protein is 

produced by the liver and its expression increases par-
ticularly during the acute-phase response. It also has 
immunomodulatory, anti-inflammatory and tissue-pro-
tective properties, reducing influenza-related complica-
tions and morbidities. As an immunomodulator, AAT 
mediates the maturation and differentiation of dendritic 
cells (DCs) and T regulatory cells (Tregs), activating the 
IL1 receptor antagonist (IL1RA) and inducing IL10 re-
lease. Moreover, it exerts an anti-apoptotic effect, inhib-
iting caspases-1 and -3. The role of AAT in inhibiting 
influenza viruses is consistent with the clinical obser-
vations that subjects with AAT deficiency are exposed 
to the risk of severe influenza-related complications and 
should therefore be vaccinated [209, 210]. 
Stachyflin, acetylstachyflin and its phosphate esther or 
oxo derivatives [211, 212] exert their inhibitory activity 
on a variety of HA subtypes of IAV (H1, H2, H5 and 
H6, among others) but have no activity on H3 subtype 
IAV or on IBV [213-217]. The metabolites of stachyflin 
and its derivatives include compounds such as cis-fused 
decalin  [214]. Stachyflin compounds can be delivered 
intranasally or orally, using PEG 400 as vehicle [211]. 
However, some amino acid substitutions confer resist-
ance to stachyflin [212].
BMY-27709, a salicylamide derivative, and its ana-
logues are other useful compounds [218, 219]. 
Thiobenzamide derivatives have a good activity profile. 
In particular, the axial disposition of the thioamide moiety 
has proved to be crucial to inhibitory activity [220].
Ulinastatin [221] is a protease inhibitor, which also pro-
tects lysosome integrity. Its use has been suggested for the 
treatment of avian influenza [221] and severe influenza-
related complications, such as encephalopathy [222] and 
acute respiratory distress syndrome (ARDS)  [223, 224]. 
Indeed, a recently published meta-analysis has shown 
that this drug is effective in managing acute lung injury 
(ALI) and ARDS [225].
The ubiquitin-specific peptidase type 18 (USP18) 
protease inhibitor ISG15 is another promising mole-
cule [226]. ISG15 is part of the interferon-regulated cel-
lular cascade. USP18 was found to be one of seven genes 
which predict a response to influenza virus [227]. This 
finding was reproduced by Liu and collaborators [228].

Polymerase inhibitors

Other antiviral strategies have been directed against the 
viral RNA polymerase  [229, 230]. The trimeric poly-
merase complex has multiple enzymatic activities and 
can thus be targeted at different sites of action. For in-
stance, nucleoside/nucleotide compounds have been de-
veloped against other viruses, namely HIV, HBV, etc.
A historical compound is moroxydine  [231-233]. It is 
also active against HSV and VZV.
The most thoroughly studied of these molecules is Favi-
piravir (T-705). In vitro studies have demonstrated the 
high antiviral potency of the drug and mouse studies 
have demonstrated its protective efficacy against a wide 
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range of influenza viruses A and B. This molecule also 
seems to be effective against other viruses [234-238].
More recently, other compounds directed towards anti-
nucleasic activities have been studied, such as the series 
of hydroxypyridinone, which appears to have antiviral 
activity in cells [230]. 
On studying 33 different kinds of phytochemicals, other 
scholars have identified a family of drugs called march-
antines, which appear to interact with the PA subunit of 
the endonuclease [239].
An attractive strategy for developing anti-polymerase 
compounds appears to be that of interfering with the sub-
unit binding interfaces of PB1 and PA, which are very 
well conserved in different Influenza virus strains [240]. 
Thus, these compounds would reduce the transcriptional 
activity of the viral RNA polymerase. One such promis-
ing compound is AL18, which is also active against hu-
man cytomegalovirus [241]. 
Furthermore, the recent definition of the PB1/PB2 bind-
ing interface by means of crystallography  [242] has 
prompted researchers to study synthetic peptides, such 
as peptide 1-37 and peptide 731-757, which seem to in-
hibit the interaction between PB1 and PB2 [243-247].
Azaindole VX-787, an inhibitor of PB2 [248-251], is 
able to interfere with the cap-snatching activity of the 
polymerase complex of the influenza virus. The small 
GTPase Rac1 inhibitor NSC23766 exhibits a similar ac-
tivity profile [252]. 

Nuclear pathway inhibitors

Leptomycin B (LMB) inhibits nuclear export signal 
(NES)-mediated vRNP export, as well as NES-receptor 
CRM1/exportin-1 (XPO-1); however, it is somewhat 
toxic [253]. 
Verdinexor (KPT-335) [254] is a new-generation XPO-
1 antagonist that is well tolerated in animal models and 
seems to be effective against both IAV and IBV. It is a 
selective inhibitor of nuclear export (SINE). 

NP inhibitors

Given the fundamental importance of the NP in modu-
lating the replication cycle of the virus, many authors 
have investigated strategies for preventing its produc-
tion. Moreover, molecules that prevent the functional 
polymerization of the NP monomers have also been 
studied, such as, for example, Nucleozin (NCZ) [255]. 
It also blocks viral RNA and protein synthesis and tar-
gets vRNP nuclear export and its cytoplasmatic traffick-
ing. As a final result, fewer and smaller influenza viral 
particles are released. NCZ derivatives include a quite 
effective compound, namely 3061 (FA-2), which has 
been shown to inhibit the replication of the influenza A/
WSN/33 (H1N1) virus, though NP-mutant strains have 
displayed resistance to this drug [256].

Jiang and collaborators screened a peptide library and 
discovered that the NP-binding proline-rich peptide was 
particularly effective against influenza viruses [257].
Another interesting molecule is the interferon-inducible 
Mx1 protein [258, 259].
Cycloheximide (CHX), which is also active against en-
terovirus-71 (EV-71), coxsackievirus B, and actinomy-
cin D, are quite effective chemicals [260-262].
Intriguingly, clinically licensed anti-cyclooxygenase-2 
(COX-2) Naproxen also appears to inhibit the functional 
polymerization of NP monomers. Its derivatives, such as 
naproxen A and C0, also appear quite promising [263].
Another drug directed against the NP is Ingavirin, which 
has been licensed in Russia. Indeed, Ingavirin interacts 
with the transport of newly synthesized NPs from the 
cytoplasm to the nucleus  [264-272]. It is also active 
against parainfluenza virus, adenoviruses and human 
metapneumovirus [273]. 

NA inhibitors

NAIs include peramivir and lanimamivir deriva-
tives [274-289].
Baicalin induces autophagy and acts against both 
NA [290] and NS1 [291-293]. 
Isoscutellarein is another compound that inhibits influ-
enza virus sialidase. Its derivative is also active against 
influenza [294, 295].

NS1 inhibitors

Another potential strategy against influenza is to block 
the NS1 protein, a non-structural protein that is very 
important during the viral replication cycle. Indeed, the 
NS1 protein down-regulates the cellular production of 
IFN α/β. Furthermore, it has been demonstrated that 
NS1 also modulates other crucial aspects of influenza vi-
rus replication, namely viral RNA replication, viral pro-
tein synthesis, and general host-cell physiology [1, 296]. 
Finally, NS1 probably has an anti-apoptotic function in 
the early phases of replication. The meaning of apopto-
sis during influenza A virus replication is ambiguous, 
although it is usually considered to be a cellular antiviral 
defense that limits virus replication. Therefore, influen-
za viruses have acquired different ways of procrastinat-
ing this seeming host strategy [1]. Nonetheless, cellular 
pro-apoptotic factors favor the effective replication of 
influenza viruses, and some viral proteins, such as NA 
and PB1-F2, carry out pro-apoptotic tasks [1, 297]. Fur-
thermore, some compounds that act against the NS1 pro-
tein have been studied. In this perspective, peptide-me-
diated inhibition of NS1 – CPSF30 has been proposed 
as a strategy for mitigating viral replication [298, 299]. 
Unfortunately, this virus-specific approach leads to viral 
mutation and the occurrence of drug resistance. 
More recently, Jablonski et al. studied a class of mol-
ecules derived from the NSC125044 compound, which 
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displayed NS1 protein inhibition in viral replication as-
says [300].
Regulated in development and DNA damage respons-
es-1 (REDD1) is a molecule that has recently emerged 
from comprehensive biochemical screening. Moreover, 
REDD1 inhibits the mTOR pathway [301].

Other RNA synthesis inhibitors

Cordycepins extracted from Cordyceps, a genus of as-
comycete fungi, are used for diverse medicinal purposes 
because of their different pharmacological actions with 
hypothetical anti-viral activity [302].

Caspase inhibitors

Apoptosis plays a major role in the influenza virus life 
cycle [303-307]. Indeed, in order to replicate, the virus 
activates the mechanism of apoptosis through the ac-
tivation of caspase  3. Cellular inhibitors of apoptosis 
proteins (cIAPs) are essential regulators of cell death 
and immunity. Nucleotide-binding oligomerization do-
main-like receptor type 1 (NLRX1) [308] binds to viral 
protein PB1-F2, preventing IAV-induced macrophage 
apoptosis and promoting both macrophage survival and 
type I IFN signaling. Interestingly, compounds that in-
hibit this enzymatic activity could be useful as anti-in-
fluenza antivirals. Indeed, Wurzer et al. have shown that 
apoptotic activation by caspase 3 is required for efficient 
virus production [306]. Furman and collaborators have 
demonstrated that the apoptotic index is a predictive bio-
marker of influenza vaccine responsiveness [309]. How-
ever, the question of whether apoptosis is beneficial to 
the viral reproductive cycle or to host cells is still under 
debate. Moreover, Hinshaw et al.  [307] demonstrated 
that, on inhibiting apoptosis during viral infection, influ-
enza virus RNP complexes were retained in the nucleus. 
Therefore, the use of caspase  3 inhibitors could have 
good potential as anti-influenza drugs [310].

Autophagy

Autophagy (or autophagocytosis) is a catabolic mecha-
nism that involves cellular breakdown of dysfunctional 
cell components through the involvement of lysosomes. 
Procyanidin has an anti-IAV activity [311].

Glucosidase, mannosidase and 
glycosilation inhibitors

L-fructose and L-xylulose can inhibit influenza virus 
replication  [312]. Glucosidase I and glucosidase II in-
hibitors include iminosugars, which alter glycan pro-
cessing of influenza HA and NA [313].

Pathway inhibitors

Raf/MEK/ERK pathway inhibitors include compounds, 
which act as an inhibitor of MEK1 and MEK2  [3]. 
NFKB inhibitors include Bortezomib [3], among others. 
These proteasome inhibitors are also effective against 
paramyxoviruses, HRV, poliovirus, coxsackievirus, 
HSV and HIV.

Phospholipase inhibitors

Lipid metabolism plays a fundamental role during in-
fluenza virus replication: membranes and their compo-
nents, such as sphingolipids, are crucial to all steps of 
the viral life cycle, from attachment and membrane fu-
sion, to intracellular transport, replication, protein sort-
ing and budding. Infection by influenza virus stimulates 
phospholipase D (PLD) activity [314].

Release inhibitors

HDAC6 is an anti-IAV host factor that negatively regu-
lates the trafficking of viral components to the host cell 
plasma membrane via its substrate, acetylated microtu-
bules [315].
As an anti-influenza chemical, cyclosporin A does not 
act through its classical targets, namely cyclophilin 
A (CypA), cyclophilin B (CypB) and P-glycoprotein 
(Pgp)  [316], but by inhibiting influenza virus release. 
Ching-fang-pai-tu-san (CFPTS) has a similar ac-
tion [317].

Anti-oxidants, anti-inflammatory 
compounds and immunomodulators

Oxidation plays a major role in influenza virus life cy-
cle and replication [318]. With regard to anti-influenza 
drugs that act subsequently to the various stages of vi-
ral replication, after the formation of vRNPs, it is worth 
considering that Resveratrol may be useful as an anti-
influenza drug. Indeed, this compound could interfere 
with the translocation of RNPs from the nucleus to the 
cytoplasm [319-321]. Dehydroascorbic acid also has an-
tiviral properties [322, 323].
Calcitriol prior to/or post-H1N1 exposure does not affect 
viral clearance but significantly reduces autophagy and 
restores the increased apoptosis seen on H1N1 infection 
to its constitutive level. However, it significantly reduces 
the levels of H1N1-induced TNF-α (tumor necrosis fac-
tor-alpha), RANTES, IL8, IFN-β (interferon-beta) and 
IFN-stimulated gene-15 (ISG15). 1,25[OH]2 D3 treat-
ment prior to/or post-H1N1 infection significantly down-
regulates both IL-8 and IL-6 RNA levels [324, 325].
Publications on antiviral drugs are often devoted to the 
use of statins as anti-flu drugs [326-328]. In particular, 
Fedson has suggested treating patients affected by H5N1 
with statins [326, 327]. Studies in vitro, in animals and 
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in the field seem to support this strategy. Statins are 
held to act through various mechanisms: through im-
munomodulatory and anti-inflammatory activity, by 
interfering with the proteins of the cytoskeleton and 
the interaction between these and the lipid rafts, and 
by reducing the availability of intracellular cholester-
ol. The balanced content of cholesterol in the cell is 
critical to the replication of IAV. Indeed, a reduction 
in cholesterol could impair the infectivity of progeny 
influenza viruses, probably by reducing the cholester-
ol content of the viral envelope [328]. However, some 
studies have found statins to be ineffective against in-
fluenza viruses [329, 330].
Extracts from Epimedium koreanum Nakai have immu-
nomodulatory properties [331], also against HSV, VSV 
and Newcastle Disease Virus (NDV). Carrageenan [332] 
extracted from edible red seaweeds can be administered 
as a nasal spray [333]. In particular, iota-carrageenan ap-
pears to be the most effective against influenza. 
Cycloferon  [334-336], amixin, Larifan, Kagocel and 
Ragosin stimulate B cells and macrophages to produce 
IFN-alpha [337]. They are widely used in Russia.
Apocynin, a NADPH oxidase type 2 (NOX2) inhibi-
tor, stimulates cell superoxide production. However, in 
certain conditions, it can also act as a ROS production 
stimulator in non-phagocyte cells  [338]. By contrast, 
NADPH oxidase type 1 (NOX1) has anti-inflammatory 
activity and inhibits ROS production [339, 340]. 
Rolipram, a selective phosphodiesterase-4 (PDE-4) in-
hibitor with antidepressant properties, and sertraline, a 
selective serotonin reuptake inhibitor (SSRI), exhibit 
strong antiviral activities if combined with oseltami-
vir  [341]. The rationale for using PDE-4 is that it be-
longs to a family of enzymes that metabolize cyclic 
adenosin monophosphate (cAMP) and cyclic guanosine 
monophosphate (cGMP), which are commonly found 
during inflammatory and immune responses. By reduc-
ing bronchospasm and bronchoconstriction, it reduces 
mortality and morbidity in a mouse model. SSRI down-
regulates the expression of interferon-alpha, TNF-alpha, 
IL-6, IL-10 and T helper 1 (Th1) cells, and modulates 
immune responses from the Th1 toward the Th2 phe-
notype.
Sphingosine mimetics are able to finely modulate the re-
lease of cytokines and chemokines. In one study [342], 
neutralizing antibody and cytotoxic T cell responses 
were seen to be reduced, though still protective. As a 
result, the infiltration of PML and macrophages into the 
lung was markedly reduced, and thus also pulmonary 
tissue injury. DC maturation was suppressed, which lim-
ited the proliferation of specific antiviral T cells in the 
lung and draining lymph nodes. Furthermore, they were 
effective in controlling CD8(+) T cell accumulation in 
the lungs even when given 4 days after the onset of in-
fluenza virus infection.
Leucomycin A3 (LMA3), a macrolide antibiotic, inhib-
its neutrophil myeloperoxidase (MPO), which contrib-
utes to the pathogenesis and progression of severe influ-
enza-induced pneumonia, and mediates the production 
of hypochlorous acid, a potent tissue injury factor [343].

BG-777, derived from leukotriene B4, exerts both antivi-
ral and stimulatory activities on the host defence system. 
It is also active against HIV, RSV and Coronaviruses. It 
recruits leukocytes and fosters the release of chemokines 
such as MIP1-beta and defensins [344].
QS-21 is a molecule with immunomodulatory proper-
ties, and is currently being investigated as an adju-
vant for vaccines against influenza [345]. Thymalfasin 
(Zadaxin), which is derived from thymosin alpha-1, is 
another powerful adjuvant [346-348]. Canakinumab (Il-
aris), an IL1-beta blocking antibody, is also a promising 
compound in immunotherapy [349].
Some observations should be made on influenza therapy 
with non-steroidal anti-inflammatory drugs. Seasonal 
flu is normally treated with over-the-counter (OTC) 
drugs, which are designed to relieve symptoms. The 
most common are paracetamol, acetylsalicylic acid 
(which, however, is contraindicated in individuals un-
der 18 years of age) and ibuprofen or other NSAIDs. 
Coughing is usually mitigated by means of drugs that 
use dextromethorphan or acetylcistein as their active in-
gredient [350-357].
The inflammation driven by innate immunity is usu-
ally sufficient to cure the disease. However, especially 
when the virus is particularly virulent or during pandem-
ics, immunity may be dysregulated (cytokine-storm), 
which may give rise to very severe forms of influenza. 
The treatment of both seasonal and pandemic influenza 
therefore utilises appropriate and timely anti-inflamma-
tory therapy. Some of the above-mentioned drugs, such 
as statins and naproxen, have anti-inflammatory proper-
ties; however, they are probably also able to exert a real 
antiviral activity.
In the light of the human cases of infection by the H5N1 
strain and the lethal cases caused by the H1N1pdm vi-
rus, the need for modulators of innate immunity is of 
particular importance. Indeed, patients with severe or 
fatal human infections due to the H1N1pdm virus, for 
instance, have high pro-inflammatory responses early in 
the illness.
For the above-mentioned reasons, the literature often re-
ports in vitro and animals studies which demonstrate the 
therapeutic utility of anti-inflammatory and immune-
modulatory compounds, such as fibrates, against influ-
enza. 

Gene therapies

Gene therapy consists of modulating (up-regulating or 
down-regulating) genes and/or their products involved 
in the response to influenza [358]. 
microRNAs (miRNAs) are small non-coding RNA mol-
ecules (containing about 22 nucleotides) which function 
in RNA silencing or RNA interference (RNAi) and in 
the post-transcriptional regulation of gene expression. 
Host miRNAs are able to down-regulate the expression 
of viral genes. Therefore, miRNA modulation could be 
a promising approach in influenza treatment, despite 
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the difficulties of delivering miRNAs to cells efficient-
ly [359-363].
Small interfering RNAs (siRNAs) are also mediators of 
RNAi. They are short (19-26 nucleotides) and induce 
sequence-specific degradation of homologous mR-
NA [364-366].
Long non-coding RNAs (lncRNAs) modulate various 
biological processes [367]. One lncRNA, in particular, 
plays a major role; it acts as a negative regulator of anti-
viral response (NRAV) and is down-regulated during in-
fluenza infection. NRAV negatively regulates the tran-
scription of multiple critical interferon-stimulated genes 
(ISGs), by remodeling chromatin [368].

Compounds with unknown mechanisms

In the case of some compounds, the precise nature of 
their pharmacological activity against influenza is still 
unknown and requires further research.
Nanoparticles are a promising nanobiotechnological 
tool that can act as carriers of non-conjugated nanopar-
ticles. Silver nanoparticles  [369, 370] modulate SP-A 
and SP-D [371], and can be used to deliver RNAi [372]. 
Poly(gamma-glutamic) acid [373], fullerenes [374], chi-
tosan or N-trimethyl chitosan (TMC)  [375] and poly-
meric nanoparticles have also been investigated as vac-
cine adjuvants [376, 377]. However, single-walled car-
bon nanotubes (SWCNTs) seem to increase influenza 
virus pathogenicity and infectivity [378]. 

Combination therapies

Combination therapies (CTs) can be divided into as-
sociations of two or more drugs directly targeting viral 
components, and associations of a direct-acting viral 
compound and a molecule targeting host components. 
CTs may improve clinical outcomes, reduce the risk of 
respiratory complications, mortality and morbidity, re-
duce the risks of using single drugs (such as resistance, 
dose-related toxicity or other side-effects) and may po-
tentiate and enhance antiviral activity  [379, 380]. CTs 
can, in turn, be further divided into early combination 
chemotherapy (ECC) and sequential multidrug chemo-
therapy (SMC). Furthermore, many studies have evalu-
ated the efficacy of combining anti-inflammatory drugs 
with antiviral drugs in comparison with single-drug 
treatment. However, not all combination therapies, for 
instance the combination of oseltamivir with zanamivir 
or simvastatin with oseltamivir, are superior to mono-
therapy [102, 379, 380].
CTs can also exploit various chimeric monoclonal anti-
bodies [381].

Conclusions

In the last few decades, few antiviral molecules against 
influenza virus infections have been available. This 

has conditioned their use during human and animal 
outbreaks. Indeed, during seasonal and pandemic out-
breaks, antiviral drugs have usually been administered 
in mono-therapy and, sometimes, in an uncontrolled 
manner to farm animals. This has led to the emergence 
of viral strains displaying resistance, especially to com-
pounds of the amantadane family. For this reason, it is 
particularly important to develop new antiviral drugs 
against influenza viruses. Indeed, although vaccination 
is the most powerful means of mitigating the effects of 
influenza epidemics, antiviral drugs can be very useful, 
particularly in delaying the spread of new pandemic vi-
ruses, thereby enabling manufacturers to prepare large 
quantities of pandemic vaccine. In addition, antiviral 
drugs are particularly valuable in complicated cases of 
influenza, especially in hospitalized patients. This lat-
ter are individuals at risk, such as the elderly or patients 
with chronic respiratory diseases. For these subjects, it 
would be particularly important to have more antivirals 
to be administered in appropriate manner.
In the light of the extensive experience gained through 
the use of anti-influenza drugs, and in the light of the 
considerable advances in the search for new effective 
molecules against influenza viruses, many important 
considerations can be made. 
Firstly, the study of new compounds should be conduct-
ed in a more rational way. Indeed, the models and meth-
ods used by various scholars display marked differenc-
es. These studies often involve in vitro cell cultures and 
usually use Madin–Darby canine kidney (MDCK) cells 
and African green monkey kidney Vero cells. However, 
human tracheal epithelial cell cultures are sometimes 
used. While some authors have assessed the inhibition 
of viral growth by applying the haemagglutination test 
to the supernatant of the cell monolayer, others have 
used the inhibition of the virus-induced Cytopathic Ef-
fect (CPE). Furthermore, more sophisticated tests have 
been used – for instance, qPCR with the aim of amplify-
ing sequences of viral genes, such as the M2 gene, NP 
gene, etc., or RT-PCR with the aim of quantifying IAV 
RNA after in vitro antiviral treatment of cell cultures 
exposed to different influenza virus strains. In addition, 
the murine model is the most widely used to study influ-
enza compounds, as influenza causes fatal pneumonia in 
the mouse. Obviously, the human is the best, but results 
in humans are available only if clinical trials have been 
performed or if the drug has been licensed. However, as 
it is very costly to develop a new compound for com-
mercialization, preliminary evaluations in vitro and in 
animal models are very important. In some cases, it is 
also useful to carry out epidemiological studies on drugs 
used for other purposes, in order to investigate their pos-
sible therapeutic efficacy against influenza. 
To optimise the development of influenza antivirals, it 
is very important to define standardized methods for the 
evaluation of the molecules that have been hypothesized 
to have a potential antiviral effect. In in vitro studies, 
for instance, it is important to define the cell line that 
should be used (MDCK, or VERO, or THE cell line), the 
standard virus that should be tested (PR8 and/or High 



R. GASPARINI et Al.

118

pathogenic virus, such as H5N1) and the antiviral assay 
that should be performed (Haemagglutination, CPE in-
hibition, RT-PCR). Likewise, in in vivo tests, the choice 
of which animal to utilize should be established, while 
in human studies it is important to determine the number 
and age of the subjects to be studied. Only if standard-
ized methods are defined, will it be possible to correctly 
evaluate the antiviral potential of the compound under 
examination. In this perspective, it is also important to 
compare the antiviral activity of the hypothetical antivi-
ral with that of reference drugs (amantadine, oseltami-
vir, etc) in order to ascertain the influenza antiviral index 
of the new molecule. In in vitro studies, it is also advis-
able to evaluate the capacity of the antiviral under study 
to induce viral resistance.
In the field of medicinal chemistry, the discovery and 
development of a completely New Molecular Entity 
(NME) or compound is particularly expensive in terms 
of time and costs. Research could therefore be carried 
out along two different lines: designing/optimising new 
derivatives from an existing lead (such as the second-
generation NAI laninamivir and peramivir); and repur-
posing/repositioning existing drugs for new potential 
clinical applications  [382, 383]. The latter approach, 
also termed drug retasking or reprofiling, has already 
yielded promising results. While drug retargeting was 
initially serendipitous, it was later more systematically 
developed and exploited, not least by combining ad-
vanced biochemical, biophysical and bioinformatics/
cheminformatics techniques. Viroinformatics [384] and 
computational systems biology [385] can suggest ration-
al inhibitors of viral transcription, replication, protein 
synthesis, nuclear export and assembly/release. Other 
strategies may emerge from gene data mining. In this 
regard, Bao and collaborators used a prioritizing gene 
approach in order to find the most important genes in-
volved in host resistance to influenza virus [386]. They 
found that the response was controlled by two TNF-me-
diated pathways: apoptosis and TNF receptor-2 signal-
ing pathways. In addition, systems pharmacometrics and 
systems pharmacology  [387] could identify valuable 
CTs by studying drug synergy.
Secondly, the available anti-influenza drugs should be 
used in an appropriate manner, in order to impede or to 
mitigate the phenomenon of viral resistance. In this re-
gard, the first question is: what anti-inflammatory drug 
should be chosen? The answer should take into account 
the age of the patient, the toxicity and tolerability of the 
drug and its efficacy in alleviating the patient’s symp-
toms. Obviously, therapy should be initiated as soon as 
possible, and an NSAID (aspirin only for subjects over 
18 years, ibuprofen, naproxen or paracetamol [acetami-
nophen]) should be chosen. These compounds not only 
relieve the symptoms, but also equilibrate the patient’s 
innate immunity and sometimes have a direct or indirect 
antiviral effect. For instance, it is interesting that reduc-
ing pro-inflammatory cytokines diminishes the activity 
of proteases involved in HA cleavage. In addition, the 
administration of acetylcysteine is useful not only be-

cause of its mucolytic action, but also on account of its 
antioxidant activity.
The choice of the antiviral should take into account the 
broad resistance of influenza viruses to amantadane 
drugs and also the fact that mono-therapy can easily 
lead to the emergence of novel viral resistance. In this 
perspective, topic drugs, such as zanamivir, have proved 
to generate less resistant viral strains than drugs admin-
istered orally. In addition, other antivirals, such as anti-
protease drugs, could be useful in influenza therapy. 
These compounds could have advantages in that, being 
inhibitors of cellular proteins, they should be less prone 
to selecting resistant viral strains. However, it should be 
borne in mind that disturbing the cellular environment in 
order to disrupt viral functions could have adverse side 
effects. Furthermore, it has been proposed that therapeu-
tic protocols involving a combination of two or more 
antivirals should be drawn up in order to reduce the de-
velopment of drug-resistant viral strains and, at the same 
time, administer lower drug doses. Another hypothesis 
could be to administer two or more different antivirals 
alternately.
Finally, the use of antivirals in the veterinary field (for 
example, chicken flocks) should be carefully controlled, 
and in this case the combined or alternated administra-
tion of at least two antiviral drugs should be the rule. It 
is important to realise that this implies a one world, one 
health, one medicine, one science approach [382, 383], 
in which human and veterinary medicine cooperate in 
the interest of global health in an increasingly intercon-
nected world.

References

[1] Gasparini R, Amicizia D, Lai PL, et al. Compounds with anti-
influenza activity: present and future of strategies for the op-
timal treatment and management of influenza. Part I: influ-
enza life-cycle and currently available drugs. J Prev Med Hyg 
2014;55:69-85. 

[2] Müller KH, Kakkola L, Nagaraj AS, et al. Emerging cellular 
targets for influenza antiviral agents. Trends Pharmacol Sci 
2012;33:89-99.

[3] Planz O. Development of cellular signaling pathway in-
hibitors as new antivirals against influenza. Antiviral Res 
2013;98:457-68.

[4] Embase. Accessible at http://www.elsevier.com/online-tools/
embase (last accessed: 16/07/2014).

[5] PubChem. Accessible at http://www.ncbi.nlm.nih.gov/pcsub-
stance/ (last accessed: 16/07/2014).

[6] PubChem. Accessible at http://www.ncbi.nlm.nih.gov/pccom-
pound/ (last accessed: 16/09/2014).

[7] DrugBank. Accessible at http://www.drugbank.ca (last ac-
cessed: 16/07/2014).

[8] Chemical Abstracts Service. Accessible at https://scifinder.cas.
org/ (last accessed: 16/07/2014).

[9] Clinical trials registries. Accessible at https://clinicaltrials.gov/
ct2/home (last accessed: 16/07/2014).

[10] Eyer L, Hruska K. Antiviral agents targeting the influenza vi-
rus: a review and publication analysis. Veterinarni Medicina 
2013;58:113-85. 

[11] CIRI-IT. Accessible at http://www.cirinet.it/jm/ (last accessed: 
16/09/2014).



Compounds with anti-influenza aCtivity: present and future of strategies 
for the optimal treatment and management of influenza

119

[12] Pu JY, He L, Wu SY, et al. Anti-virus research of triterpenoids 
in licorice. Bing Du Xue Bao 2013;29:673-9.

[13] Jia W, Wang C, Wang Y, et al. Qualitative and quantitative 
analysis of the major constituents in chinese medical prepara-
tion Lianhua-Qingwen capsule by UPLC-DAD-QTOF-MS. Sci-
entific World Journal 2015;2015:731-65. 

[14] Utsunomiya T, Kobayashi M, Pollard RB, et al. Glycyrrhizin, 
an active component of licorice roots, reduces morbidity and 
mortality of mice infected with lethal doses of influenza virus. 
Antimicrob Agents Chemother 1997;41:551-6.

[15] Fiore C, Eisenhut M, Krausse R, et al. Antiviral effects of Gly-
cyrrhiza species. Phytother Res 2008;22:141-8. 

[16] Harada S. The broad anti-viral agent glycyrrhizin directly mod-
ulates the fluidity of plasma membrane and HIV-1 envelope. 
Biochem J 2005;392:191-9.

[17] Smirnov VS, Garshinina AV, Guseva VM, et al. The anti-viral 
activity of the complex glycyrrhizic acid-alpha-glutamyl-tryp-
tophan against experimental lethal influenza infection in white 
mice caused by oseltamivir-resistant strain of the virus. Vopr 
Virusol 2013;58:19-26.

[18] Smirnov VS, Zarubaev VV, Anfimov PM, et al. Effect of a com-
bination of glutamyl-tryptophan and glycyrrhizic acid on the 
course of acute infection caused by influenza (H3H2) virus in 
mice. Vopr Virusol 2012;57:23-7.

[19] Wolkerstorfer A, Kurz H, Bachhofner N, et al. Glycyrrhizin 
inhibits influenza A virus uptake into the cell. Antiviral Res 
2009;83:171-8.

[20] Michaelis M, Geiler J, Naczk P, et al. Glycyrrhizin inhibits 
highly pathogenic H5N1 influenza A virus-induced pro-in-
flammatory cytokine and chemokine expression in human mac-
rophages. Med Microbiol Immunol 2010;199:291-7

[21] Michaelis M, Geiler J, Naczk P, et al. Glycyrrhizin exerts an-
tioxidative effects in H5N1 influenza A virus-infected cells and 
inhibits virus replication and pro-inflammatory gene expres-
sion. PLoS One 2011;6:e19705.

[22] Moisy D, Avilov SV, Jacob Y, et al. HMGB1 protein binds to 
influenza virus nucleoprotein and promotes viral replication. J 
Virol 2012;86:9122-33.

[23] Stanetty C, Wolkerstorfer A, Amer H, et al. Synthesis and anti-
viral activities of spacer-linked 1-thioglucuronide analogues of 
glycyrrhizin. Beilstein J Org Chem 2012;8:705-11.

[24] Pompei R, Paghi L, Ingianni A, et al. Glycyrrhizic acid inhibits 
influenza virus growth in embryonated eggs. Microbiologica 
1983;6:247-50.

[25] Scherließ R, Ajmera A, Dennis M, et al. Induction of protective 
immunity against H1N1 influenza A(H1N1)pdm09 with spray-
dried and electron-beam sterilised vaccines in non-human pri-
mates. Vaccine 2014;32:2231-40.

[26] Song G, Yang S, Zhang W, et al. Discovery of the first se-
ries of small molecule H5N1 entry inhibitors. J Med Chem 
2009;52:7368-71.

[27] Song W, Si L, Ji S, et al. Uralsaponins M-Y, antiviral triter-
penoid saponins from the roots of Glycyrrhiza uralensis. J Nat 
Prod 2014;77:1632-43.

[28] Song X, Chen J, Sakwiwatkul K, et al. Enhancement of immune 
responses to influenza vaccine (H3N2) by ginsenoside Re. Int 
Immunopharmacol 2010;10:351-6.

[29] Barr IG, Mitchell GF. ISCOMs (immunostimulating complex-
es): the first decade. Immunol Cell Biol 1996;74:8-25. 

[30] Liu H, Patil HP, de Vries-Idema J, et al. Enhancement of the 
immunogenicity and protective efficacy of a mucosal influenza 
subunit vaccine by the saponin adjuvant GPI-0100. PLoS One 
2012;7:e52135.

[31] Liu H, de Vries-Idema J, Ter Veer W, et al. Influenza virosomes 
supplemented with GPI-0100 adjuvant: a potent vaccine for-
mulation for antigen dose sparing. Med Microbiol Immunol 
2014;203:47-55.

[32] Zhai L, Li Y, Wang W, et al. Enhancement of humoral immune 
responses to inactivated Newcastle disease and avian influenza 
vaccines by oral administration of ginseng stem-and-leaf sapo-
nins in chickens. Poult Sci 2011;90:1955-9.

[33] Sun H, He S, Shi M. Adjuvant-active fraction from Albizia ju-
librissin saponins improves immune responses by inducing cy-
tokine and chemokine at the site of injection. Int Immunophar-
macol 2014;22:346-55. 

[34] Kazakova OB, Giniyatullina GV, Yamansarov EY, et al. Betu-
lin and ursolic acid synthetic derivatives as inhibitors of Papil-
loma virus. Bioorg Med Chem Lett 2010;20:4088-90.

[35] Kazakova OB, Medvedeva NI, Baĭkova IP, et al. Synthesis 
of triterpenoid acylates - an effective reproduction inhibitors 
of influenza A (H1N1) and papilloma viruses. Bioorg Khim 
2010;36:841-8.

[36] Flekhter OB, Medvedeva NI, Kukovinets OS, et al. Synthesis 
and antiviral activity of lupane triterpenoids with modified cy-
cle E. Bioorg Khim 2007;33:629-34.

[37] Baltina LA, Flekhter OB, Nigmatullina LR, et al. Lupane triter-
penes and derivatives with antiviral activity. Bioorg Med Chem 
Lett 2003;13:3549-52.

[38] Grishko VV, Galaiko NV, Tolmacheva IA, et al. Functionali-
zation, cyclization and antiviral activity of A-secotriterpenoids. 
Eur J Med Chem 2014;83:601-8. 

[39] Krumbiegel M, Dimitrov DS, Puri A, et al. Dextran sulfate in-
hibits fusion of influenza virus and cells expressing influenza 
hemagglutinin with red blood cells. Biochim Biophys Acta 
1992;1110:158-64.

[40] Herrmann A, Korte T, Arnold K, et al. The influence of dextran 
sulfate on influenza A virus fusion with erythrocyte membranes. 
Antiviral Res 1992;19:295-311.

[41] Lüscher-Mattli M, Glück R, Kempf C, et al. A comparative 
study of the effect of dextran sulfate on the fusion and the in 
vitro replication of influenza A and B, Semliki Forest, vesic-
ular stomatitis, rabies, Sendai, and mumps virus. Arch Virol 
1993;130:317-26.

[42] Yamada H, Moriishi E, Haredy AM, et al. Influenza virus neu-
raminidase contributes to the dextran sulfate-dependent sup-
pressive replication of some influenza A virus strains. Antiviral 
Res 2012;96:344-52.

[43] Yamada H, Nagao C, Haredy AM, et al. Dextran sulfate-resist-
ant A/Puerto Rico/8/34 influenza virus is associated with the 
emergence of specific mutations in the neuraminidase glycopro-
tein. Antiviral Res 2014;111:69-77.

[44] Shkurupy VA, Potapova OV, Sharkova TV, et al. Experimental 
study of the efficiency of oxidized dextran for prevention of in-
fluenza A/H5N1. Bull Exp Biol Med 2014;158:112-4. 

[45] Shkurupy VA, Potapova OV, Sharkova TV, et al. Effects of 
Preventive Administration of Oxidized Dextran on Liver Injury 
and Reparative Regeneration in Mice Infected with Influenza A/
H5N1 Virus. Bull Exp Biol Med 2015;158:483-8.

[46] Potapova OV, Shkurupiy VA, Sharkova TV, et al. Preventive 
efficacy of oxidized dextran and pathomorphological processes 
in mouse lungs in avian influenza A/H5N1. Bull Exp Biol Med 
2011;150:707-10.

[47] De Clercq E. Highlights in the development of new antiviral 
agents. Mini Rev Med Chem 2002;2:163-75. 

[48] Bond S, Draffan AG, Fenner JE, et al. 1,2,3,9b-Tetrahydro-5H-
imidazo,1-a]isoindol-5-ones as a new class of respiratory syn-
cytial virus (RSV) fusion inhibitors. Part 2: identification of 
BTA9881 as a preclinical candidate. Bioorg Med Chem Lett 
2015;25:976-81.

[49] Weisman LE. Respiratory syncytial virus (RSV) prevention 
and treatment: past, present, and future. Cardiovasc Hematol 
Agents Med Chem 2009;7:223-33.

[50] Guinea R, Carrasco L. Concanamycin A blocks influenza 
virus entry into cells under acidic conditions. FEBS Lett 
1994;349:327-30.



R. GASPARINI et Al.

120

[51] Guinea R, Carrasco L. Concanamycin A: a powerful inhibitor of 
enveloped animal-virus entry into cells. Biochem Biophys Res 
Commun 1994;201:1270-8.

[52] Guinea R, Carrasco L. Requirement for vacuolar proton-AT-
Pase activity during entry of influenza virus into cells. J Virol 
1995;69:2306-12.

[53] Müller KH, Kainov DE, El Bakkouri K, et al. The proton trans-
location domain of cellular vacuolar ATPase provides a target 
for the treatment of influenza A virus infections. Br J Pharmacol 
2011;164:344-57

[54] Yeganeh B, Ghavami S, Kroeker AL, et al. Suppression of influ-
enza A virus replication in human lung epithelial cells by non-
cytotoxic concentrations bafilomycin A1. Am J Physiol Lung 
Cell Mol Physiol 2015;308:L270-86.

[55] Ochiai H, Sakai S, Hirabayashi T, et al. Inhibitory effect of ba-
filomycin A1, a specific inhibitor of vacuolar-type proton pump, 
on the growth of influenza A and B viruses in MDCK cells. An-
tiviral Res 1995;27:425-30.

[56] Bimbo LM, Denisova OV, Mäkilä E, et al. Inhibition of influ-
enza A virus infection in vitro by saliphenylhalamide-loaded 
porous silicon nanoparticles. ACS Nano 2013;7:6884-93.

[57] Paton NI, Lee L, Xu Y, et al. Chloroquine for influenza pre-
vention: a randomised, double-blind, placebo controlled trial. 
Lancet Infect Dis 2011;11:677-83. 

[58] Savarino A. Use of chloroquine in viral diseases. Lancet Infect 
Dis 2011;11:653-4.

[59] Ooi EE, Chew JS, Loh JP, et al. In vitro inhibition of human 
influenza A virus replication by chloroquine. Virol J 2006;3:39.

[60] Di Trani L, Savarino A, Campitelli L, et al. Different pH re-
quirements are associated with divergent inhibitory effects of 
chloroquine on human and avian influenza A viruses. Virol J 
2007;4:39.

[61] Vigerust DJ, McCullers JA. Chloroquine is effective against in-
fluenza A virus in vitro but not in vivo. Influenza Other Respir 
Viruses 2007;1:189-92.

[62] Yan Y, Zou Z, Sun Y, et al. Anti-malaria drug chloroquine is 
highly effective in treating avian influenza A H5N1 virus infec-
tion in an animal model. Cell Res 2013;23:300-2.

[63] Garulli B, Di Mario G, Sciaraffia E, et al. Enhancement of 
T cell-mediated immune responses to whole inactivated in-
fluenza virus by chloroquine treatment in vivo. Vaccine 
2013;31:1717-24.

[64] Wu L, Dai J, Zhao X, et al. Chloroquine enhances replication of 
influenza A virus A/WSN/33 (H1N1) in dose-, time-, and MOI-
dependent manners in human lung epithelial cells A549. J Med 
Virol 2015, in press.

[65] De Clercq E. A Cutting-edge view on the current state of antivi-
ral drug development. Med Res Rev 2013;33:1249–1277.

[66] Blaising J, Lévy PL, Gondeau C, et al. Silibinin inhibits hepati-
tis C virus entry into hepatocytes by hindering clathrin-depend-
ent trafficking. Cell Microbiol 2013;15:1866-82.

[67] Dai JP, Wu LQ, Li R, et al. Identification of 23-(s)-2-amino-
3-phenylpropanoyl-silybin as an antiviral agent for influenza A 
virus infection in vitro and in vivo. Antimicrob Agents Chem-
other 2013;57:4433-43.

[68] Gazák R, Purchartová K, Marhol P, et al. Antioxidant and anti-
viral activities of silybin fatty acid conjugates. Eur J Med Chem 
2010;45:1059-67.

[69] Garozzo A, Timpanaro R, Bisignano B, et al. In vitro antiviral 
activity of Melaleuca alternifolia essential oil. Lett Appl Micro-
biol 2009;49:806-8.

[70] Garozzo A, Timpanaro R, Stivala A, et al. Activity of Melaleuca 
alternifolia (tea tree) oil on Influenza virus A/PR/8: study on the 
mechanism of action. Antiviral Res 2011;89:83-8.

[71] Li X, Duan S, Chu C, et al. Melaleuca alternifolia concentrate 
inhibits in vitro entry of influenza virus into host cells. Mol-
ecules 2013;18:9550-66.

[72] Mantil E, Daly G, Avis TJ. Effect of tea tree (Melaleuca alterni-
folia) oil as a natural antimicrobial agent in lipophilic formula-
tions. Can J Microbiol 2015;61:82-8. 

[73] He J, Qi WB, Wang L, et al. Amaryllidaceae alkaloids inhibit 
nuclear-to-cytoplasmic export of ribonucleoprotein (RNP) 
complex of highly pathogenic avian influenza virus H5N1. In-
fluenza Other Respir Viruses 2013;7:922-31.

[74] Aggarwal BB, Deb L, Prasad S. Curcumin differs from tetrahy-
drocurcumin for molecular targets, signaling pathways and cel-
lular responses. Molecules 2014;20:185-205. 

[75] Chen TY, Chen DY, Wen HW, et al. Inhibition of enveloped 
viruses infectivity by curcumin. PLoS One 2013;8:e62482.

[76] Shuto T. Regulation of expression, function, and inflamma-
tory responses of innate immune receptor Toll-like receptor-2 
(TLR2) during inflammatory responses against infection. Yaku-
gaku Zasshi 2013;133:1401-9.

[77] Kim K, Kim KH, Kim HY, et al. Curcumin inhibits hepatitis 
C virus replication via suppressing the Akt-SREBP-1 pathway. 
FEBS Lett. 2010;584:707-12.

[78] Rajput N, Naeem M, Ali S, et al. The effect of dietary supple-
mentation with the natural carotenoids curcumin and lutein on 
broiler pigmentation and immunity. Poult Sci 2013;92:1177-85.

[79] Ou JL, Mizushina Y, Wang SY, et al. Structure-activity rela-
tionship analysis of curcumin analogues on anti-influenza virus 
activity. FEBS J 2013;280:5829-40.

[80] Haasbach E, Hartmayer C, Hettler A, et al. Antiviral activ-
ity of Ladania067, an extract from wild black currant leaves 
against influenza A virus in vitro and in vivo. Front Microbiol 
2014;5:171.

[81] Ehrhardt C, Dudek SE, Holzberg M, et al. A plant extract of 
Ribes nigrum folium possesses anti-influenza virus activity in 
vitro and in vivo by preventing virus entry to host cells. PLoS 
One 2013;8:e63657.

[82] Yokomizo K, Miyamoto Y, Nagao K, et al. Fattiviracin A1, 
a novel antiviral agent produced by Streptomyces microflavus 
strain No. 2445. II. Biological properties. J Antibiot (Tokyo) 
1998;51:1035-9.

[83] Habib ES, Yokomizo K, Nagao K, et al. Antiviral activity of 
fattiviracin FV-8 against human immunodeficiency virus type 1 
(HIV-1). Biosci Biotechnol Biochem 2001;65:683-5.

[84] Tanaka T, Ikeda T, Kaku M, et al. A new lignan glycoside and 
phenylethanoid glycosides from Strobilanthes cusia BREMEK. 
Chem Pharm Bull (Tokyo) 2004;52:1242-5.

[85] Uyeda M. Metabolites produced by actinomycetes-anti-
viral antibiotics and enzyme inhibitors. Yakugaku Zasshi 
2004;124:469-79.

[86] Liao Q, Qian Z, Liu R, et al. Germacrone inhibits early stages 
of influenza virus infection. Antiviral Res 2013;100:578-88. 

[87] Denisova OV, Söderholm S, Virtanen S, et al. Akt inhibitor 
MK2206 prevents influenza pH1N1 virus infection in vitro. An-
timicrob Agents Chemother 2014;58:3689-96. 

[88] Hirata N, Suizu F, Matsuda-Lennikov M, et al. Inhibition of Akt 
kinase activity suppresses entryand replication of influenza vi-
rus. Biochem Biophys Res Commun 2014;450:891-8.

[89] Hsieh CF, Lo CW, Liu CH, et al. Mechanism by which ma-xing-
shi-gan-tang inhibits the entry of influenza virus. J Ethnophar-
macol 2012;143:57-67. 

[90] Murray JL, McDonald NJ, Sheng J, et al. Inhibition of influenza 
A virus replication by antagonism of a PI3K-AKT-mTOR path-
way member identified by gene-trap insertional mutagenesis. 
Antivir Chem Chemother 2012;22:205-15.

[91] Chan RW, Chan MC, Wong AC, et al. DAS181 inhibits H5N1 
influenza virus infection of human lung tissues. Antimicrob 
Agents Chemother 2009;53:3935-41.

[92] Triana-Baltzer GB, Gubareva LV, Nicholls JM, et al. Novel 
pandemic influenza A(H1N1) viruses are potently inhibited by 
DAS181, a sialidase fusion protein. PLoS One 2009;4:e7788.



Compounds with anti-influenza aCtivity: present and future of strategies 
for the optimal treatment and management of influenza

121

[93] Triana-Baltzer GB, Gubareva LV, Klimov AI, et al. Inhibition 
of neuraminidase inhibitor-resistant influenza virus by DAS181, 
a novel sialidase fusion protein. PLoS One 2009;4:e7838.

[94] Triana-Baltzer GB, Babizki M, Chan MC, et al. DAS181, a sial-
idase fusion protein, protects human airway epithelium against 
influenza virus infection: an in vitro pharmacodynamic analy-
sis. J Antimicrob Chemother 2010;65:275-84.

[95] Moss RB, Hansen C, Sanders RL, et al. A phase II study of 
DAS181, a novel host directed antiviral for the treatment of in-
fluenza infection. J Infect Dis 2012;206:1844-51.

[96] Ison MG. Expanding the armamentarium against respiratory 
viral infections: DAS181. J Infect Dis 2012;206:1806-8.

[97] Zhang H. DAS181 and H5N1 virus infection. J Infect Dis 
2009;199:1250, author reply 1250-1.

[98] Moscona A, Porotto M, Palmer S, et al. A recombinant sialidase 
fusion protein effectively inhibits human parainfluenza viral in-
fection in vitro and in vivo. J Infect Dis 2010;202:234-41.

[99] Jones BG, Hayden RT, Hurwitz JL. Inhibition of primary 
clinical isolates of human parainfluenza virus by DAS181 
in cell culture and in a cotton rat model. Antiviral Res 
2013;100:562-6.

[100] Malakhov MP, Aschenbrenner LM, Smee DF, et al. Sialidase 
fusion protein as a novel broad-spectrum inhibitor of influenza 
virus infection. Antimicrob Agents Chemother 2006;50:1470-9.

[101] Hayden F. Developing new antiviral agents for influenza treat-
ment: what does the future hold? Clin Infect Dis 2009;48 Suppl 
1:S3-13.

[102] Belser JA, Lu X, Szretter KJ, et al. DAS181, a novel sialidase 
fusion protein, protects mice from lethal avian influenza H5N1 
virus infection. J Infect Dis 2007;196:1493-9.

[103] Marjuki H, Mishin VP, Chesnokov AP, et al. An investigational 
antiviral drug, DAS181, effectively inhibits replication of zo-
onotic influenza A virus subtype H7N9 and protects mice from 
lethality. J Infect Dis 2014;210:435-40.

[104] Zhu L, Li Y, Li S, et al. Inhibition of influenza A virus (H1N1) 
fusion by benzenesulfonamide derivatives targeting viral he-
magglutinin. PLoS One 2011;6:e29120. 

[105] Hsieh HP, Hsu JT. Strategies of development of antiviral agents 
directed against influenza virus replication. Curr Pharm Des 
2007;13:3531-42.

[106] Shigeta S. Current status of research and development for 
anti-influenza virus drugs--chemotherapy for influenza. Nihon 
Rinsho 1997;55:2758-64.

[107] Luo G, Torri A, Harte WE, et al. Molecular mechanism under-
lying the action of a novel fusion inhibitor of influenza A virus. 
J Virol 1997;71:4062-70.

[108] Vichkanova SA, Oĭfa AI, Goriunova LV. Antiviral properties 
of gossypol in experimental influenza pneumonia. Antibiotiki 
1970;15:1071-3.

[109] Krylov VF. Treatment of patients with influenza. Ter Arkh 
1975;47:49-55.

[110] Yang J, Zhang F, Li J, et al. Synthesis and antiviral activi-
ties of novel gossypol derivatives. Bioorg Med Chem Lett 
2012;22:1415-20.

[111] Yang J, Chen G, Li LL, et al. Synthesis and anti-H5N1 activ-
ity of chiral gossypol derivatives and its analogs implicated 
by a viral entry blocking mechanism. Bioorg Med Chem Lett 
2013;23:2619-23.

[112] Jones JC, Turpin EA, Bultmann H, et al. Inhibition of influenza 
virus infection by a novel antiviral peptide that targets viral at-
tachment to cells. J Virol 2006;80:11960-7.

[113] Altmann SE, Brandt CR, Jahrling PB, et al. Antiviral activity of 
the EB peptide against zoonotic poxviruses. Virol J 2012;9:6.

[114] Nicol MQ, Ligertwood Y, Bacon MN, et al. A novel family of 
peptides with potent activity against influenza A viruses. J Gen 
Virol 2012;93:980-6. 

[115] Rajik M, Jahanshiri F, Omar AR, et al. Identification and char-
acterisation of a novel anti-viral peptide against avian influ-
enza virus H9N2. Virol J 2009;6:74.

[116] Matsubara T. Potential of peptides as inhibitors and mimo-
topes: selection of carbohydrate-mimetic peptides from phage 
display libraries. J Nucleic Acids. 2012;2012:740982.

[117] Selman L, Hansen S. Structure and function of collectin liver 
1 (CL-L1) and collectin 11 (CL-11, CL-K1). Immunobiology 
2012;217:851-63.

[118] Ling MT, Tu W, Han Y, et al. Mannose-binding lectin contrib-
utes to deleterious inflammatory response in pandemic H1N1 
and avian H9N2 infection. J Infect Dis 2012;205:44-53.

[119] Dec M, Wernicki A. Conglutinin, CL-43 and CL-46-three bo-
vine collectins. Pol J Vet Sci 2006;9:265-75.

[120] Kawai T, Kase T, Suzuki Y, et al. Anti-influenza A virus ac-
tivities of mannan-binding lectins and bovine conglutinin. J Vet 
Med Sci 2007;69:221-4.

[121] Malhotra R, Haurum JS, Thiel S, et al. Binding of human 
collectins (SP-A and MBP) to influenza virus. Biochem J 
1994;304:455-61.

[122] Hartshorn KL, Sastry K, Brown D, et al. Conglutinin acts as an 
opsonin for influenza A viruses. J Immunol 1993;151:6265-73.

[123] Verma A, White M, Vathipadiekal V, et al. Human H-ficolin in-
hibits replication of seasonal and pandemic influenza A viruses. 
J Immunol 2012;189:2478-87.

[124] Pan Q, Chen H, Wang F, et al. L-ficolin binds to the glyco-
proteins hemagglutinin and neuraminidase and inhibits influ-
enza A virus infection both in vitro and in vivo. J Innate Immun 
2012;4:312-24.

[125] Chang WC, Hartshorn KL, White MR, et al. Recombinant chi-
meric lectins consisting of mannose-binding lectin and L-ficolin 
are potent inhibitors of influenza A virus compared with man-
nose-binding lectin. Biochem Pharmacol 2011;81:388-95.

[126] Gordts SC, Renders M, Férir G, et al. NICTABA and UDA, two 
GlcNAc-binding lectins with unique antiviral activity profiles. J 
Antimicrob Chemother 2015, in press.

[127] Pustylnikov S, Sagar D, Jain P, et al. Targeting the C-type lec-
tins-mediated host-pathogen interactions with dextran. J Pharm 
Pharm Sci 2014;17:371-92.

[128] Morita M, Kuba K, Ichikawa A, et al. The lipid mediator pro-
tectin D1 inhibits influenza virus replication and improves se-
vere influenza. Cell 2013;153:112-25.

[129] Zhang C, Xu Y, Jia L, et al. A new therapeutic strategy for lung 
tissue injury induced by influenza with CR2 targeting comple-
ment inhibitor. Virol J 2010;7:30.

[130] Imai Y. Role of omega-3 PUFA-derived mediators, the pro-
tectins, in influenza virus infection. Biochim Biophys Acta 
2015;1851:496-502.

[131] Takahashi M, Mori S, Shigeta S, et al. Role of MBL-associated 
serine protease (MASP) on activation of the lectin complement 
pathway. Adv Exp Med Biol. 2007;598:93-104.

[132] Smee DF, Bailey KW, Wong MH, et al. Treatment of influenza 
A (H1N1) virus infections in mice and ferrets with cyanovirin-
N. Antiviral Res 2008;80:266-71.

[133] O’Keefe BR, Smee DF, Turpin JA, et al. Potent anti-influenza 
activity of cyanovirin-N and interactions with viral hemaggluti-
nin. Antimicrob Agents Chemother 2003;47:2518-25.

[134] Miyamoto D, Hasegawa S, Sriwilaijaroen N, et al. Clarithro-
mycin inhibits progeny virus production from human influenza 
virus-infected host cells. Biol Pharm Bull 2008;31:217-22.

[135] Yamaya M, Shinya K, Hatachi Y, et al. Clarithromycin inhibits 
type a seasonal influenza virus infection in human airway epi-
thelial cells. J Pharmacol Exp Ther 2010;333:81-90.

[136] Ghendon Y, Markushin S, Heider H, et al. Haemagglutinin of 
influenza A virus is a target for the antiviral effect of Norakin. J 
Gen Virol 1986;67:1115-22. 



R. GASPARINI et Al.

122

[137] Ott S, Wunderli-Allenspach H. Effect of the virostatic No-
rakin (triperiden) on influenza virus activities. Antiviral Res 
1994;24:37-42.

[138] Presber HW, Schroeder C, Hegenscheid B, et al. Antiviral activ-
ity of Norakin (triperiden) and related anticholinergic antipar-
kinsonism drugs. Acta Virol 1984;28:501-7.

[139] Heider H, Markushin S, Schroeder C, Ghendon Y. The influ-
ence of Norakin on the reproduction of influenza A and B vi-
ruses. Arch Virol 1985;86:283-90.

[140] Schroeder C, Heider H, Hegenscheid B, et al. The anticholiner-
gic anti-Parkinson drug Norakin selectively inhibits influenza 
virus replication. Antiviral Res 1985;(Suppl 1):95-9.

[141] Prösch S, Heider H, Schroeder C, et al. Mutations in the he-
magglutinin gene associated with influenza virus resistance to 
norakin. Arch Virol 1988;102:125-9.

[142] Prösch S, Heider H, Schroeder C, et al. Mapping mutations in in-
fluenza A virus resistant to norakin. FEBS Lett 1990;267:19-21.

[143] Klimov AI, Markushin SG, Prösch S, et al. Relation be-
tween drug resistance and antigenicity among norakin-re-
sistant mutants of influenza A (fowl plague) virus. Arch Virol 
1992;124:147-55.

[144] Markushin SG, Ginzburg VP, Khaĭder AM, et al. Factors that 
cause a change in the antigenic structure of of the influenza 
virus hemagglutinin. Vopr Virusol 1992;37:196-9.

[145] Oka M, Ishiwata Y, Iwata N, et al. Synthesis and anti-influenza 
virus activity of tricyclic compounds with a unique amine moi-
ety. Chem Pharm Bull (Tokyo) 2001;49:379-83.

[146] Rossignol JF. Nitazoxanide. A first-in-class broad-spectrum an-
tiviral agent. Antiviral Res 2014, in press.

[147] Ashiru O, Howe JD, Butters TD. Nitazoxanide, an antiviral 
thiazolide, depletes ATP-sensitive intracellular Ca(2+) stores. 
Virology 2014;462-463:135-48.

[148] Belardo G, Cenciarelli O, La Frazia S, et al. Synergistic effect of 
nitazoxanide with neuraminidase inhibitors against influenza A 
viruses in vitro. Antimicrob Agents Chemother 2015;59:1061-9.

[149] Täubel J, Lorch U, Rossignol JF, et al. Analyzing the relation-
ship of QT interval and exposure to nitazoxanide, a prospective 
candidate for influenza antiviral therapy – A formal TQT study. 
J Clin Pharmacol 2014;54:987-94.

[150] Haffizulla J, Hartman A, Hoppers M, et al. Effect of nitazoxa-
nide in adults and adolescents with acute uncomplicated influ-
enza: a double-blind, randomised, placebo-controlled, phase 
2b/3 trial. Lancet Infect Dis 2014;14:609-18.

[151] Ashton LV, Callan RL, Rao S, et al. In vitro susceptibility of ca-
nine influenza A (H3N8) virus to nitazoxanide and tizoxanide. 
Vet Med Int 2010;2010.

[152] Ulyanova V, Vershinina V, Ilinskaya O. Barnase and binase: 
twins with distinct fates. FEBS J 2011;278:3633-43.

[153] Shah Mahmud R, Ilinskaya ON. Antiviral Activity of Binase 
against the Pandemic Influenza A (H1N1) Virus. Acta Naturae 
2013;5:44-51.

[154] Sato Y, Hirayama M, Morimoto K, et al. High mannose-binding 
lectin with preference for the cluster of alpha1-2-mannose from 
the green alga Boodlea coacta is a potent entry inhibitor of 
HIV-1 and influenza viruses. J Biol Chem 2011;286:19446-58. 

[155] Savov VM, Galabov AS, Tantcheva LP, et al. Effects of rutin 
and quercetin on monooxygenase activities in experimental in-
fluenza virus infection. Exp Toxicol Pathol 2006;58:59-64.

[156] Davis JM, Murphy EA, McClellan JL, et al. Quercetin reduces 
susceptibility to influenza infection following stressful exercise. 
Am J Physiol Regul Integr Comp Physiol 2008;295:R505-9.

[157] Choi HJ, Song JH, Park KS, et al. Inhibitory effects of quercetin 
3-rhamnoside on influenza A virus replication. Eur J Pharm Sci 
2009;37:329-33. 

[158] Kumar P, Khanna M, Srivastava V, et al. Effect of quercetin 
supplementation on lung antioxidants after experimental influ-
enza virus infection. Exp Lung Res 2005;31:449-59.

[159] Raju TA, Lakshmi AN, Anand T, et al. Protective effects of 
quercetin during influenza virus-induced oxidative stress. Asia 
Pac J Clin Nutr 2000;9:314-7.

[160] Friel H, Lederman H. A nutritional supplement formula for 
influenza A (H5N1) infection in humans. Med Hypotheses 
2006;67:578-87.

[161] Eşanu V, Prahoveanu E, Crişan I, et al. The effect of an aque-
ous propolis extract, of rutin and of a rutin-quercetin mixture 
on experimental influenza virus infection in mice. Virologie 
1981;32:213-5.

[162] Chang SS, Huang HJ, Chen CY. Two birds with one stone? Pos-
sible dual-targeting H1N1 inhibitors from traditional Chinese 
medicine. PLoS Comput Biol 2011;7:e1002315.

[163] Chang TT, Sun MF, Chen HY, et al. Screening from the world’s 
largest TCM database against H1N1 virus. J Biomol Struct Dyn 
2011;28:773-86.

[164] Nakayama M, Suzuki K, Toda M, et al. Inhibition of the in-
fectivity of influenza virus by tea polyphenols. Antiviral Res 
1993;21:289-99.

[165] Yang ZF, Bai LP, Huang WB, et al. Comparison of in vitro 
antiviral activity of tea polyphenols against influenza A and B 
viruses and structure-activity relationship analysis. Fitoterapia 
2014;93:47-53. 

[166] Zu M, Yang F, Zhou W, et al. In vitro anti-influenza virus and 
anti-inflammatory activities of theaflavin derivatives. Antiviral 
Res 2012;94:217-24.

[167] Hayden FG, Aoki FY. Amantadine, rimatadine, and related 
agents. In: Barriere SL, editor. Antimicrobial Therapy and Vac-
cines. Baltimore: Williams & Williams 1999, pp 1344-1365.

[168] Wang C, Takeuchi K, Pinto LH, et al. Ion channel activity of in-
fluenza A virus M2 protein: characterization of the amantadine 
block. J Virol 1993;675585-94.

[169] Ruigrok RW, Hirst EM, Hay AJ. The specific inhibition of in-
fluenza A virus maturation by amantadine: an electron micro-
scopic examination. J Gen Virol 1991;72:191-4.

[170] Sheu TG, Fry AM, Garten RJ, et al. Dual resistance to ada-
mantanes and oseltamivir among seasonal influenza A(H1N1) 
viruses: 2008-2010. J Infect Dis 2011;203:13-7.

[171] Smirnova TD, Danilenko DM, Eropkin MIu, et al. Influence of 
rimantadine, ribavirine and triazavirine on influenza A virus 
replication in human monolayer and lymphoblastoid cell lines. 
Antibiot Khimioter 2011;56:11-6.

[172] Karpenko I, Deev S, Kiselev O, et al. Antiviral properties, me-
tabolism, and pharmacokinetics of a novel azolo-1,2,4-triazine-
derived inhibitor of influenza A and B virus replication. Antimi-
crob Agents Chemother 2010;54:2017-22.

[173] Tanner JA, Zheng BJ, Zhou J, et al. The adamantane-derived 
bananins are potent inhibitors of the helicase activities and rep-
lication of SARS coronavirus. Chem Biol 2005;12:303-11.

[174] Moorthy NS, Poongavanam V, Pratheepa V. Viral M2 ion chan-
nel protein: a promising target for anti-influenza drug discov-
ery. Mini Rev Med Chem 2014;14:819-30.

[175] Rey-Carrizo M, Torres E, Ma C, et al. 3-Azatetracyc-
lo.2.1.1(5,8).0(1,5)]undecane derivatives: from wild-type in-
hibitors of the M2 ion channel of influenza A virus to deriva-
tives with potent activity against the V27A mutant. J Med Chem 
2013;56:9265-74.

[176] Wang J, Wu Y, Ma C, et al. Structure and inhibition of the drug-
resistant S31N mutant of the M2 ion channel of influenza A vi-
rus. Proc Natl Acad Sci U S A 2013;110:1315-20. 

[177] Wang J, Ma C, Wang J, et al. Discovery of novel dual inhibitors 
of the wild-type and the most prevalent drug-resistant mutant, 
S31N, of the M2 proton channel from influenza A virus. J Med 
Chem 2013;56:2804-12.

[178] Gasparini R, Lai PL, Casabona F, et al. Do the omeprazole fam-
ily compounds exert a protective effect against influenza-like 
illness? BMC Infect Dis 2014;14:297.



Compounds with anti-influenza aCtivity: present and future of strategies 
for the optimal treatment and management of influenza

123

[179] Bozdaganyan M, Orekhov P, Bragazzi NL, et al. Docking and 
molecular dynamics (MD) simulations in potential drugs dis-
covery: an application to influenza virus M2 protein. Am J Bio-
chem Biotechnol 2014;10:180-88.

[180] 3C9J. The Crystal structure of Transmembrane domain of M2 
protein and Amantadine complex. Accesible at http://www.
rcsb.org/pdb/explore.do?structureId=3c9j.

[181] Long J, Wright E, Molesti E, et al. Antiviral therapies against 
Ebola and other emerging viral diseases using existing medi-
cines that block virus entry. F1000Research 2015;4:30.

[182] Bachrach U, Don S. Inactivation of influenza and New-
castle disease viruses by oxidized spermine. Isr J Med Sci 
1970;6:435-7. 

[183] Bachrach U. Antiviral activity of oxidized polyamines. Amino 
Acids 2007;33:267-72.

[184] Lin TI, Heider H, Schroeder C. Different modes of inhibition by 
adamantane amine derivatives and natural polyamines of the 
functionally reconstituted influenza virus M2 proton channel 
protein. J Gen Virol 1997;78:767-74. 

[185] Even-Or O, Samira S, Rochlin E, et al. Immunogenicity, protec-
tive efficacy and mechanism of novel CCS adjuvanted influenza 
vaccine. Vaccine 2010;28:6527-41.

[186] Even-Or O, Joseph A, Itskovitz-Cooper N, et al. A new intrana-
sal influenza vaccine based on a novel polycationic lipid-cera-
mide carbamoyl-spermine (CCS). II. Studies in mice and ferrets 
and mechanism of adjuvanticity. Vaccine 2011;29:2474-86.

[187] Fytas C, Kolocouris A, Fytas G, et al. Influence of an ad-
ditional amino group on the potency of aminoadamantanes 
against influenza virus A. II - Synthesis of spiropiperazines and 
in vitro activity against influenza A H3N2 virus. Bioorg Chem 
2010;38:247-51. 

[188] Zhao X, Jie Y, Rosenberg MR, et al. Design and synthesis of 
pinanamine derivatives as anti-influenza A M2 ion channel in-
hibitors. Antiviral Res 2012;96:91-9.

[189] Serkedjieva J, Manolova N, Bankova V. Anti-influenza virus 
effect of some propolis constituents and their analogues (esters 
of substituted cinnamic acids). J Nat Prod 1992;55:294-302.

[190] Kesel AJ. Synthesis of novel test compounds for antiviral chem-
otherapy of severe acute respiratory syndrome (SARS). Curr 
Med Chem 2005;12:2095-162. 

[191] Iwai A, Shiozaki T, Miyazaki T. Relevance of signaling mol-
ecules for apoptosis induction on influenza A virus replication. 
Biochem Biophys Res Commun 2013;441:531-7.

[192] Jurgeit A, McDowell R, Moese S, et al. Niclosamide is a proton 
carrier and targets acidic endosomes with broad antiviral ef-
fects. PLoS Pathog 2012;8:e1002976.

[193] Krátký M, Vinšová J. Antiviral activity of substituted salicylani-
lides – a review. Mini Rev Med Chem 2011;11:956-67. 

[194] Russell RJ, Kerry PS, Stevens DJ, et al. Structure of influenza 
hemagglutinin in complex with an inhibitor of membrane fu-
sion. Proc Natl Acad Sci U S A 2008;105:17736-41.

[195] Hosoya M, Matsuyama S, Baba M, et al. Effects of protease 
inhibitors on replication of various myxoviruses. Antimicrob 
Agents Chemother 1992;36:1432-6.

[196] Bahgat MM, Blazejewska P, Schughart K. Inhibition of lung 
serine proteases in mice: a potentially new approach to control 
influenza infection. Virol J 2011;8:27.

[197] Hamilton BS, Chung C, Cyphers SY, et al. Inhibition of in-
fluenza virus infection and hemagglutinin cleavage by the 
protease inhibitor HAI-2. Biochem Biophys Res Commun 
2014;450:1070-5.

[198] Lee MG, Kim KH, Park KY, et al. Evaluation of anti-influenza 
effects of camostat in mice infected with non-adapted human 
influenza viruses. Arch Virol 1996;141:1979-89. 

[199] Puzis LE, Lozitsky VP. Action of epsilon-aminocaproic acid on 
the proteolysis system during experimental influenza in mice. 
Acta Virol 1988;32:515-21.

[200] Tashiro M, Klenk HD, Rott R. Inhibitory effect of a pro-
tease inhibitor, leupeptin, on the development of influenza 
pneumonia, mediated by concomitant bacteria. J Gen Virol 
1987;68:2039-41. 

[201] Zhirnov OP, Klenk HD, Wright PF. Aprotinin and similar 
protease inhibitors as drugs against influenza. Antiviral Res 
2011;92:27-36.

[202] Zhou Y, Wu C, Zhao L, et al. Exploring the early stages of the 
pH-induced conformational change of influenza hemagglutinin. 
Proteins 2014;82:2412-28.

[203] Leikina E, Delanoe-Ayari H, Melikov K, et al. Carbohydrate-
binding molecules inhibit viral fusion and entry by crosslinking 
membrane glycoproteins. Nat Immunol 2005;6:995-1001.

[204] Streeter DG, Witkowski JT, Khare GP, et al. Mechanism of ac-
tion of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Vi-
razole), a new broad-spectrum antiviral agent. Proc Natl Acad 
Sci U S A 1973;70:1174-8.

[205] Crotty S, Cameron C, Andino R. Ribavirin’s antiviral mech-
anism of action: lethal mutagenesis? J Mol Med (Berl) 
2002;80:86-95.

[206] Chan-Tack KM, Murray JS, Birnkrant DB. Use of ribavirin to 
treat influenza. N Engl J Med 2009;361:1713-4. 

[207] Gangemi JD, Nachtigal M, Barnhart D, et al. Therapeutic ef-
ficacy of liposome-encapsulated ribavirin and muramyl tripep-
tide in experimental infection with influenza or herpes simplex 
virus. J Infect Dis 1987;155:510-7. 

[208] Smee DF, Hurst BL, Day CW, et al. Influenza Virus H1N1 inhi-
bition by serine protease inhibitor (serpin) antithrombin III. Int 
Trends Immun 2014;2:83-86.

[209] Stoller JK, Lacbawan FL, Aboussouan LS. Alpha-1 Antitrypsin 
Deficiency. In: Pagon RA, Adam MP, Ardinger HH, et al, edi-
tors. GeneReviews ® [Internet]. Seattle: University of Washing-
ton, 1993-2014. 2006 Oct 27 [updated 2014 May 01].

[210] Campos MA, Alazemi S, Zhang G, et al. Influenza vaccina-
tion in subjects with alpha1-antitrypsin deficiency. Chest 
2008;133:49-55. 

[211] Yagi S, Ono J, Yoshimoto J, et al. Development of anti-influ-
enza virus drugs I: improvement of oral absorption and in vivo 
anti-influenza activity of Stachyflin and its derivatives. Pharm 
Res 1999;16:1041-6. 

[212] Yoshimoto J, Yagi S, Ono J, et al. Development of anti-influ-
enza drugs: II. Improvement of oral and intranasal absorption 
and the anti-influenza activity of stachyflin derivatives. J Pharm 
Pharmacol 2000;52:1247-55. 

[213] Minagawa K, Kouzuki S, Yoshimoto J, et al. Stachyflin and ace-
tylstachyflin, novel anti-influenza A virus substances, produced 
by Stachybotrys sp. RF-7260. I. Isolation, structure elucidation 
and biological activities. J Antibiot (Tokyo) 2002;55:155-64.

[214] Minagawa K, Kouzuki S, Kamigauchi T. Stachyflin and acetyl-
stachyflin, novel anti-influenza A virus substances, produced by 
Stachybotrys sp. RF-7260. II. Synthesis and preliminary struc-
ture-activity relationships of stachyflin derivatives. J Antibiot 
(Tokyo) 2002;55:165-71. 

[215] Motohashi Y, Igarashi M, Okamatsu M, et al Antiviral activity 
of stachyflin on influenza A viruses of different hemagglutinin 
subtypes. Virol J 2013;10:118.

[216] Watanabe K, Sakurai J, Abe H, et al. Total synthesis of 
(+)-stachyflin: a potential anti-influenza A virus agent. Chem 
Commun (Camb) 2010;46:4055-7.

[217] Nakatani M, Nakamura M, Suzuki A, et al. A new strategy to-
ward the total synthesis of stachyflin, a potent anti-influenza A 
virus agent: concise route to the tetracyclic core structure. Org 
Lett 2002;4:4483-6.

[218] Combrink KD, Gulgeze HB, Yu KL, et al. Salicylamide in-
hibitors of influenza virus fusion. Bioorg Med Chem Lett 
2000;10:1649-52.

[219] Zhu L, Li Y, Li S, et al. Inhibition of influenza A virus (H1N1) 



R. GASPARINI et Al.

124

fusion by benzenesulfonamide derivatives targeting viral he-
magglutinin. PLoS One 2011;6:e29120.

[220] Yu KL, Torri AF, Luo G, et al. Structure-activity relationships 
for a series of thiobenzamide influenza fusion inhibitors derived 
from 1,3,3-trimethyl-5-hydroxy-cyclohexylmethylamine. Bioorg 
Med Chem Lett 2002;12:3379-82.

[221] Yuan S. Drugs to cure avian influenza infection-multiple ways 
to prevent cell death. Cell Death Dis 2013;4:e835

[222] Ye M, Zheng JB, Yu KJ, et al. Effects of high dose ulinastatin 
treatment in patients with severe pneumonia complicating in-
fluenza A H1N1 infection. Zhongguo Wei Zhong Bing Ji Jiu Yi 
Xue 2011;23:48-9.

[223] Naganuma A, Mizuma H, Doi I, et al. A case of acute respira-
tory distress syndrome induced by fulminant influenza A (H3 
N2) pneumonia. Nihon Kokyuki Gakkai Zasshi 2000;38:783-7.

[224] Munakata M, Kato R, Yokoyama H, et al. Combined therapy 
with hypothermia and anticytokine agents in influenza A en-
cephalopathy. Brain Dev 2000;22:373-7.

[225] Leng YX, Yang SG, Song YH, et al. Ulinastatin for acute 
lung injury and acute respiratory distress syndrome: A sys-
tematic review and meta-analysis. World J Crit Care Med 
2014;3:34-41.

[226] Ketscher L, Hannß R, Morales DJ, et al. Selective inactiva-
tion of USP18 isopeptidase activity in vivo enhances ISG15 
conjugation and viral resistance. Proc Natl Acad Sci U S A 
2015;112:1577-82.

[227] Uchida Y, Watanabe C, Takemae N, et al. Identification of 
host genes linked with the survivability of chickens infected 
with recombinant viruses possessing H5N1 surface anti-
gens from a highly pathogenic avian influenza virus. J Virol 
2012;86:2686-95.

[228] Liu AL, Li YF, Qi W, et al. Comparative analysis of selected 
innate immune-related genes following infection of immortal 
DF-1 cells with highly pathogenic (H5N1) and low pathogenic 
(H9N2) avian influenza viruses. Virus Genes 2015, in press.

[229] Loregian A, Mercorelli B, Nannetti G, et al. Antiviral strategies 
against influenza virus: towards new therapeutic approaches. 
Cell Mol Life Sci 2014, in press.

[230] Bauman JD, Patel D, Baker SF, et al. Crystallographic frag-
ment screening and structure-based optimization yields a new 
class of influenza endonuclease inhibitors. ACS Chem Biol 
2013;8:2501-8.

[231] Sheppard S. Moroxydine: the story of a mislaid antiviral. Acta 
Derm Venereol Suppl (Stockh) 1994;183:1-9. 

[232] Mertens T, Eggers HJ. Moroxydine. Dtsch Med Wochenschr 
1980;105:184.

[233] Dreyfus P. Treatment of influenzal infections by a moroxydine 
derivative. Sem Ther 1966;42:51-2.

[234] Furuta Y, Takahashi K, Fukuda Y, et al. In vitro and in vivo 
activities of anti-influenza virus compound T-705. Antimicrob 
Agents Chemother. 2002;46:977-81.

[235] Caroline AL, Powell DS, Bethel LM, et al. Broad spectrum 
antiviral activity of favipiravir (T-705): protection from high-
ly lethal inhalational Rift Valley Fever. PLoS Negl Trop Dis 
2014;8:e2790. 

[236] Oestereich L, Rieger T, Neumann M, et al. Evaluation of anti-
viral efficacy of ribavirin, arbidol, and T-705 (favipiravir) in 
a mouse model for Crimean-Congo hemorrhagic fever. PLoS 
Negl Trop Dis 2014;8:e2804.

[237] Smither SJ, Eastaugh LS, Steward JA, et al. Post-exposure 
efficacy of oral T-705 (Favipiravir) against inhalation-
al Ebola virus infection in a mouse model. Antiviral Res 
2014;104:153-5.

[238] Safronetz D, Falzarano D, Scott DP, et al. Antiviral efficacy of 
favipiravir against two prominent etiological agents of han-
tavirus pulmonary syndrome. Antimicrob Agents Chemother 
2013;57:4673-80.

[239] Iwai Y, Murakami K, Gomi Y, et al. Anti-influenza activity of 
marchantins, macrocyclic bisbibenzyls contained in liverworts. 
PLoS One 2011;6:e19825.

[240] Shaw ML, Klumpp K. Successes and challenges in the antiviral 
field. Curr Opin Virol 2013;3:483-6.

[241] Loregian A, Coen DM. Selective anti-cytomegalovirus com-
pounds discovered by screening for inhibitors of subunit inter-
actions of the viral polymerase. Chem Biol 2006;13:191-200.

[242] Fukuoka M, Minakuchi M, Kawaguchi A, et al Structure-based 
discovery of anti-influenza virus A compounds among medi-
cines. Biochim Biophys Acta 2012;1820:90-5

[243] Sugiyama K, Obayashi E, Kawaguchi A, et al. Structural in-
sight into the essential PB1-PB2 subunit contact of the influ-
enza virus RNA polymerase. EMBO J 2009;28:1803-11.

[244] Chase G, Wunderlich K, Reuther P, et al. Identification of influ-
enza virus inhibitors which disrupt of viral polymerase protein-
protein interactions. Methods 2011;55:188-91.

[245] Li C, Ba Q, Wu A, et al. A peptide derived from the C-terminus 
of PB1 inhibits influenza virus replication by interfering with 
viral polymerase assembly. FEBS J 2013;280:1139-49.

[246] Nasser EH, Judd AK, Sanchez A, et al. Antiviral activity of in-
fluenza virus M1 zinc finger peptides. J Virol 1996;70:8639-44.

[247] Li L, Chang S, Xiang J, et al. Screen anti-influenza lead com-
pounds that target the PA(C) subunit of H5N1 viral RNA poly-
merase. PLoS One 2012;7:e35234.

[248] Clark MP, Ledeboer MW, Davies I, et al. Discovery of a novel, 
first-in-class, orally bioavailable azaindole inhibitor (VX-787) 
of influenza PB2. J Med Chem 2014;57:6668-78.

[249] Pagano M, Castagnolo D, Bernardini M, et al. The fight against 
the influenza A virus H1N1: synthesis, molecular modeling, and 
biological evaluation of benzofurazan derivatives as viral RNA 
polymerase inhibitors. Chem Med Chem 2014;9:129-50.

[250] Lepri S, Nannetti G, Muratore G, et al. Optimization of small-
molecule inhibitors of influenza virus polymerase: from thio-
phene-3-carboxamide to polyamido scaffolds. J Med Chem 
2014;57:4337-50.

[251] Gao J, Luo X, Li Y, et al. Synthesis and biological evaluation 
of 2-oxo-pyrazine-3-carboxamide-yl nucleoside analogues and 
their epimers as inhibitors of influenza A viruses. Chem Biol 
Drug Des 2014, in press.

[252] Dierkes R, Warnking K, Liedmann S, et al. The Rac1 inhibitor 
NSC23766 exerts anti-influenza virus properties by affecting the 
viral polymerase complex activity. PLoS One 2014;9:e88520.

[253] Elton D, Simpson-Holley M, Archer K, et al. Interaction of the 
influenza virus nucleoprotein with the cellular CRM1-mediated 
nuclear export pathway. J Virol 2001;75:408-19.

[254] Perwitasari O, Johnson S, Yan X, et al. Verdinexor, a novel 
selective inhibitor of nuclear export, reduces influenza a virus 
replication in vitro and in vivo. J Virol 2014;88:10228-43.

[255] Amorim MJ, Kao RY, Digard P. Nucleozin targets cytoplasmic 
trafficking of viral ribonucleoprotein-Rab11 complexes in influ-
enza A virus infection. J Virol 2013;87:4694-703.

[256] Su CY, Cheng TJ, Lin MI, et al. High-throughput identification 
of compounds targeting influenza RNA-dependent RNA poly-
merase activity. Proc Natl Acad Sci USA 2010;107:19151-6.

[257] Jiang H, Xu Y, Li L, et al. Inhibition of influenza virus replica-
tion by constrained peptides targeting nucleoprotein. Antivir 
Chem Chemother 2011;22:119-30. 

[258] Verhelst J, Parthoens E, Schepens B, et al. Interferon-induc-
ible protein Mx1 inhibits influenza virus by interfering with 
functional viral ribonucleoprotein complex assembly. J Virol 
2012;86:13445-55.

[259] Cianci C, Gerritz SW, Deminie C, et al. Influenza nucleopro-
tein: promising target for antiviral chemotherapy. Antivir 
Chem Chemother 2012;23:77-91.

[260] Pons M. Effect of actinomycin D on the replication of influenza 
virus and influenza virus RNA. Virology 1967;33:150-4. 



Compounds with anti-influenza aCtivity: present and future of strategies 
for the optimal treatment and management of influenza

125

[261] Vogel U, Scholtissek C. Inhibition of the intracellular trans-
port of influenza viral RNA by actinomycin D. Arch Virol 
1995;140:1715-23.

[262] Pons MW. The inhibition of influenza virus RNA synthesis by 
actinomycin D and cycloheximide. Virology 1973;51:120-8.

[263] Lejal N, Tarus B, Bouguyon E, et al. Structure-based discovery 
of the novel antiviral properties of naproxen against the nu-
cleoprotein of influenza A virus. Antimicrob Agents Chemother 
2013;57:2231-42.

[264] Zarubaev VV, Beliaevskaia SV, Sirotkin AK, et al. In vitro and 
in vivo effects of ingavirin on the ultrastructure and infectivity 
of influenza virus. Vopr Virusol 2011;56:21-5.

[265] Zarubaev VV, Garshinina AV, Kalinina NA, et al. Activity of 
Ingavirin (6 -(1H-Imidazol-4-yl)ethylamino]-5-oxohexanoic 
acid) against human respiratory viruses in vivo experiments. 
Pharmaceuticals 2011;4:1518-1534.

[266] Semenova NP, Prokudina EN, Livov DK, et al. Effect of the 
antiviral drug Ingaviruin on intracellular transformations and 
import into the nucleus of influenza A virus nucleocapsid pro-
tein. Vopr Virusol 2010;55:17-20.

[267] Loginova SIa, Borisevich SV, Shkliaeva OM, et al. Prophy-
lactic and therapeutic efficacies of Ingavirin, a novel Rus-
sian chemotherapeutic, with respect to influenza pathogen A 
(H5N1). Antibiot Khimioter 2010;55:10-2.

[268] Shishkina LN, Nebol’sin VE, Skarnovich MO, et al. In vivo ef-
ficacy of Ingavirin against pandemic A (H1N1/09)v influenza 
virus. Antibiot Khimioter 2010;55:32-5.

[269] Kolobukhina LV, Merkulova LN, Shchelkanov MI, et al. 
Efficacy of ingavirin in adults with influenza. Ter Arkh 
2009;81:51-4.

[270] Galegov GA, Andronova VL, Nebol’sin VE. Antiviral effect of 
Ingavirin against seasonal influenza virus A/H1N1 in MDCK 
cell culture. Antibiot Khimioter 2009;54:19-22.

[271] Loginova SIa, Borisevich SV, Maksimov VA, et al. Investigation 
of prophylactic activity of Ingavirin, a new Russian drug, against 
grippe A virus (H3N2). Antibiot Khimioter 2008;53:19-21.

[272] Shul’diakov AA, Liapina EP, Kuznetsov VI. Current principles 
in the chemoprophylaxis of acute respiratory viral infections. 
Ter Arkh 2013;85:27-33.

[273] Isaeva EI, Nebol’sin VE, Kozulina IS, et al. In vitro investiga-
tion of the antiviral activity of Ingavirin against human metap-
neumovirus. Vopr Virusol 2012;57:34-8.

[274] Gubareva LV, Kaiser L, Hayden FG. Influenza virus neurami-
nidase inhibitors. Lancet 2000;355:827-35. 

[275] Feng E, Ye D, Li J, et al. Recent advances in neuraminidase 
inhibitor development as anti-influenza drugs. ChemMedChem 
2012;7:1527-36

[276] Verma RP, Hansch C. A QSAR study on influenza neuramini-
dase inhibitors. Bioorg Med Chem 2006;14:982-96. 

[277] Barroso L, Treanor J, Gubareva L, et al. Efficacy and tolerabil-
ity of the oral neuraminidase inhibitor peramivir in experimen-
tal human influenza: randomized, controlled trials for prophy-
laxis and treatment. Antivir Ther 2005;10:901-10.

[278] Birnkrant D, Cox E. The Emergency Use Authorization of per-
amivir for treatment of 2009 H1N1 influenza. N Engl J Med 
2009;361:2204-7.

[279] Koyama K, Ogura Y, Nakai D, et al. Identification of bioac-
tivating enzymes involved in the hydrolysis of laninamivir oc-
tanoate, a long-acting neuraminidase inhibitor, in human pul-
monary tissue. Drug Metab Dispos 2014;42:1031-8.

[280] Weight AK, Haldar J, Alvarez de Cienfuegos L, et al. Attach-
ing zanamivir to a polymer markedly enhances its activity 
against drug-resistant strains of influenza a virus. J Pharm Sci 
2011;100:831-5.

[281] Hayden FG, Cote KM, Douglas RG Jr. Plaque inhibition assay 
for drug susceptibility testing of influenza viruses. Antimicrob 
Agents Chemother 1980;17:865-70.

[282] Jedrzejas MJ, Singh S, Brouillette WJ, et al. Structures of aro-
matic inhibitors of influenza virus neuraminidase. Biochemistry 
1995;34:3144-51.

[283] Li Y, Silamkoti A, Kolavi G, et al. Pyrrolidinobenzoic acid in-
hibitors of influenza virus neuraminidase: the hydrophobic side 
chain influences type A subtype selectivity. Bioorg Med Chem 
2012;20:4582-9.

[284] Kim CU, Lew W, Williams MA, et al. Structure-activity rela-
tionship studies of novel carbocyclic influenza neuraminidase 
inhibitors. J Med Chem 1998;41:2451-60.

[285] Kati WM, Saldivar AS, Mohamadi F, et al. GS4071 is a slow-
binding inhibitor of influenza neuraminidase from both A and B 
strains. Biochem Biophys Res Commun 1998;244:408-13.

[286] Kim CU, Lew W, Williams MA, et al. Influenza neuramini-
dase inhibitors possessing a novel hydrophobic interaction in 
the enzyme active site: design, synthesis, and structural analysis 
of carbocyclic sialic acid analogues with potent anti-influenza 
activity. J Am Chem Soc 1997;119:681-90.

[287] Jang YJ, Achary R, Lee HW, et al. Synthesis and anti-influenza 
virus activity of 4-oxo- or thioxo-4,5-dihydrofuro,4-c]pyridin-
3(1H)-ones. Antiviral Res 2014;107:66-75.

[288] Lou J, Yang X, Rao Z, et al. Design and synthesis of 6-oxo-
1,4,5,6-tetrahydropyrimidine-5-carboxylate derivatives as neu-
raminidase inhibitors. Eur J Med Chem 2014;83:466-73.

[289] Li J, Zhang D, Zhu X, et al. Studies on synthesis and structure-
activity relationship (SAR) of derivatives of a new natural prod-
uct from marine fungi as inhibitors of influenza virus neurami-
nidase. Mar Drugs 2011;9:1887-901.

[290] Ding Y, Dou J, Teng Z, et al. Antiviral activity of baicalin against 
influenza A (H1N1/H3N2) virus in cell culture and in mice and 
its inhibition of neuraminidase. Arch Virol 2014;159:3269-78. 

[291] Nayak MK, Agrawal AS, Bose S, et al. Antiviral activity of bai-
calin against influenza virus H1N1-pdm09 is due to modulation 
of NS1-mediated cellular innate immune responses. J Antimi-
crob Chemother 2014;69:1298-310.

[292] Wan Q, Wang H, Han X, et al. Baicalin inhibits TLR7/MYD88 
signaling pathway activation to suppress lung inflammation in 
mice infected with influenza A virus. Biomed Rep 2014;2:437-
441.

[293] Xu G, Dou J, Zhang L, et al. Inhibitory effects of baicalein on 
the influenza virus in vivo is determined by baicalin in the se-
rum. Biol Pharm Bull 2010;33:238-43.

[294] Nagai T, Suzuki Y, Tomimori T, et al. Antiviral activity of plant 
flavonoid, 5,7,4’-trihydroxy-8-methoxyflavone, from the roots 
of Scutellaria baicalensis against influenza A (H3N2) and B 
viruses. Biol Pharm Bull 1995;18:295-9.

[295] Nagai T, Miyaichi Y, Tomimori T, et al. In vivo anti-influenza 
virus activity of plant flavonoids possessing inhibitory activity 
for influenza virus sialidase. Antiviral Res 1992;19:207-17.

[296] Hale BG, Randall RE, Ortìn J, et al. The multifunctional NS1 
protein of influenza A viruses. J Gen Virol 2008;89:2359-76.

[297] Zhirnov OP, Konakova TE, Wolff T, et al. NS1 protein 
of influenza A virus down-regulates apoptosis. J Virol 
2002;76:1617-25.

[298] Kong JQ, Shen JH, Huang Y, et al. Development of a yeast two-
hybrid screen for selection of A/H1N1 influenza NS1 non-struc-
tural protein and human CPSF30 protein interaction inhibitors. 
Yao Xue Xue Bao 2010;45:388-94.

[299] Twu KY, Noah DL, Rao P, et al. The CPSF30 binding site on 
the NS1A protein of influenza A virus is a potential antiviral 
target. J Virol 2006;80:3957-65.

[300] Jablonski JJ, Basu D, Engel DA, et al. Design, synthesis, and 
evaluation of novel small molecule inhibitors of the influenza 
virus protein NS1. Bioorg Med Chem 2012;20:487-97.

[301] Mata MA, Satterly N, Versteeg GA, et al. Chemical inhibition 
of RNA viruses reveals REDD1 as a host defense factor. Nat 
Chem Biol 2011;7:712-9. 



R. GASPARINI et Al.

126

[302] Mahy BW, Cox NJ, Armstrong SJ, et al. Multiplication of influ-
enza virus in the presence of cordycepin, an inhibitor of cellular 
RNA synthesis. Nat New Biol 1973;243:172-4.

[303] Kurokawa M, Koyama AH, Yasuoka S, et al. Influenza virus 
overcomes apoptosis by rapid multiplication. Int J Mol Med 
1999;3:527-30. 

[304] Zhirnov OP, Klenk HD. Control of apoptosis in influenza virus-
infected cells by up-regulation of Akt and p53 signaling. Apop-
tosis 2007;12:1419-32.

[305] Palese P, Shaw ML. Orthomyxoviridae: the viruses and their 
replication. In: Knipe DM, Holey PM, editors. Fields Virology. 
5th Edition. Vol. 2. Philadelphia: Lippincott Williams & Wilkins 
2007, pp. 1647-1689.

[306] Wurzer WJ, Planz O, Ehrhardt C, et al. Caspase 3 activation 
is essential for efficient influenza virus propagation. EMBO J 
2003;22:2717-28.

[307] Hinshaw VS, Olsen CW, Dybdahl-Sissoko N, et al. Apoptosis: 
a mechanism of cell killing by influenza A and B viruses. J Virol 
1994;68:3667-73.

[308] Jaworska J, Coulombe F, Downey J, et al. NLRX1 prevents 
mitochondrial induced apoptosis and enhances macrophage 
antiviral immunity by interacting with influenza virus PB1-F2 
protein. Proc Natl Acad Sci USA 2014;111:E2110-9.

[309] Furman D, Jojic V, Kidd B, et al. Apoptosis and other immune 
biomarkers predict influenza vaccine responsiveness. Mol Syst 
Biol 2014;10:750.

[310] Feldman T, Kabaleeswaran V, Jang SB, et al. A class of allos-
teric caspase inhibitors identified by high-throughput screen-
ing. Mol Cell 2012;47:585-95.

[311] Dai J, Wang G, Li W, et al. High-throughput screening for anti-
influenza A virus drugs and study of the mechanism of procya-
nidin on influenza A virus-induced autophagy. J Biomol Screen 
2012;17:605-17.

[312] Muniruzzaman S, Pan YT, Zeng Y, et al. Inhibition of glyco-
protein processing by L-fructose and L-xylulose. Glycobiology 
1996;6:795-803. 

[313] Hussain S, Miller JL, Harvey DJ, et al. Strain-specific antivi-
ral activity of iminosugars against human influenza A viruses. J 
Antimicrob Chemother 2014, in press.

[314] Oguin TH 3rd, Sharma S, Stuart AD, et al. Phospholipase D fa-
cilitates efficient entry of influenza virus, allowing escape from 
innate immune inhibition. J Biol Chem 2014;289:25405-17.

[315] Husain M, Cheung CY. Histone deacetylase 6 inhibits influenza 
A virus release by downregulating the trafficking of viral com-
ponents to the plasma membrane via its substrate, acetylated 
microtubules. J Virol 2014;88:11229-39.

[316] Hamamoto I, Harazaki K, Inase N, et al. Cyclosporin A inhib-
its the propagation of influenza virus by interfering with a late 
event in the virus life cycle. Jpn J Infect Dis 2013;66:276-83.

[317] Hsieh CF, Yen HR, Liu CH, et al. Ching-fang-pai-tu-san inhibits 
the release of influenza virus. J Ethnopharmacol 2012;144:533-44. 

[318] Buffinton GD, Christen S, Peterhans E, et al. Oxidative stress 
in lungs of mice infected with influenza A virus. Free Radic Res 
Commun 1992;16:99-110. 

[319] Drago L, Nicola L, Ossola F, et al. In vitro antiviral activ-
ity of resveratrol against respiratory viruses. J Chemother 
2008;20:393-4. 

[320] Palamara AT, Nencioni L, Aquilano K, et al. Inhibition of 
influenza A virus replication by resveratrol. J Infect Dis 
2005;191:1719-29.

[321] Li C, Fang JS, Lian WW, et al. In vitro antiviral effects and 
3D QSAR Study of resveratrol derivatives as potent inhibi-
tors of influenza H1N1 neuraminidase. Chem Biol Drug Des 
2015;85:427-38.

[322] Furuya A, Uozaki M, Yamasaki H, et al. Antiviral effects of 
ascorbic and dehydroascorbic acids in vitro. Int J Mol Med 
2008;22:541-5.

[323] Uozaki M, Ikeda K, Tsujimoto K, et al. Antiviral effects of de-
hydroascorbic acid. Exp Ther Med 2010;1:983-986.

[324] Khare D, Godbole NM, Pawar SD, et al. Calcitriol [1, 25[OH]2 
D3] pre- and post-treatment suppresses inflammatory response 
to influenza A (H1N1) infection in human lung A549 epithelial 
cells. Eur J Nutr 2013;52:1405-15.

[325] Goldstein MR, Mascitelli L, Pezzetta F. Pandemic influenza A 
(H1N1): mandatory vitamin D supplementation? Med Hypoth-
eses 2010;74:756.

[326] Fedson DS. Pandemic influenza: a potential role for statins in 
treatment and prophylaxis. Clin. Infect. Dis 2006;43:199-205.

[327] Fedson DS. Treating influenza with statins and other immu-
nomodulatory agents. Antiviral Res 2013;99:417-35. 

[328] Mehrbod P, Hair-Bejo M, Tengku Ibrahim TA, et al. Simvasta-
tin modulates cellular components in influenza A virus-infected 
cells. Int J Mol Med 2014;34:61-73. 

[329] Glück B, Schmidtke M, Walther M, et al. Simvastatin treatment 
showed no prophylactic effect in influenza virus-infected mice. 
J Med Virol 2013;85:1978-82.

[330] Magulick JP, Frei CR, Ali SK, et al. The effect of statin therapy 
on the incidence of infections: a retrospective cohort analysis. 
Am J Med Sci 2014;347:211-6. 

[331] Cho WK, Weeratunga P, Lee BH, et al. Epimedium kore-
anum Nakai displays broad spectrum of antiviral activity in 
vitro and in vivo by inducing cellular antiviral state. Viruses 
2015;7:352-77. 

[332] Leibbrandt A, Meier C, König-Schuster M, et al. Iota-carra-
geenan is a potent inhibitor of influenza A virus infection. PLoS 
One 2010;5:e14320.

[333] Koenighofer M, Lion T, Bodenteich A, et al. Carrageenan na-
sal spray in virus confirmed common cold: individual patient 
data analysis of two randomized controlled trials. Multidiscip 
Respir Med 2014;9:57. 

[334] Romantsov MG, Golofeevskiĭ SV. Cycloferon efficacy in the 
treatment of acute respiratory tract viral infection and influenza 
during the morbidity outbreak in 2009-201. Antibiot Khimioter 
2010;55:30-5.

[335] Romantsov MG, Ershov FI, Kovalenko AL, et al. The therapeu-
tic efficacy of cycloferon and the pharmacological activity of 
interferon inducers. Ter Arkh 2014;86:83-8.

[336] Sukhinin VP, Zarubaev VV, Platonov VG, et al. Protective 
effect of cycloferon in experimental influenza. Vopr Virusol 
2000;45:26-30.

[337] Tazulakhova EB, Parshina OV, Guseva TS, et al. Russian expe-
rience in screening, analysis, and clinical application of novel 
interferon inducers. J Interferon Cytokine Res 2001;21:65-73.

[338] Ye S, Lowther S, Stambas J. Inhibition of Reactive Oxygen Spe-
cies Production Ameliorates Inflammation Induced by Influ-
enza A Viruses via Upregulation of SOCS1 and SOCS3. J Virol 
2015;89:2672-83.

[339] Selemidis S, Seow HJ, Broughton BR, et al. Nox1 oxidase sup-
presses influenza a virus-induced lung inflammation and oxida-
tive stress. PLoS One 2013;8:e60792.

[340] Vlahos R, Selemidis S. NADPH oxidases as novel pharmaco-
logic targets against influenza A virus infection. Mol Pharmacol 
2014;86:747-59.

[341] Sharma G, Sharma DC, Fen LH, et al. Reduction of influen-
za virus-induced lung inflammation and mortality in animals 
treated with a phosophodisestrase-4 inhibitor and a selective 
serotonin reuptake inhibitor. Emerging Microbes & Infections 
2013;2:e54.

[342] Marsolais D, Hahm B, Walsh KB, et al. A critical role for the 
sphingosine analog AAL-R in dampening the cytokine response 
during influenza virus infection. Proc Natl Acad Sci USA 
2009;106:1560-5.

[343] Sugamata R, Sugawara A, Nagao T, et al. Leucomycin A3, a 
16-membered macrolide antibiotic, inhibits influenza A vi-



Compounds with anti-influenza aCtivity: present and future of strategies 
for the optimal treatment and management of influenza

127

rus infection and disease progression. J Antibiot (Tokyo) 
2014;67:213-22. 

[344] BG-777. Accessible at http://www.drugbank.ca/drugs/
DB05839.

[345] Mbawuike I, Zang Y, Couch RB. Humoral and cell-mediated 
immune responses of humans to inactivated influenza vaccine 
with or without QS21 adjuvant. Vaccine 2007;25:3263-9.

[346] Panatto D, Amicizia D, Lai PL, et al. Utility of thymosin alpha-1 
(Zadaxin) as a co-adjuvant in influenza vaccines: a review. J 
Prev Med Hyg 2011;52:111-5.

[347] Carraro G, Naso A, Montomoli E, et al. Thymosin-alpha 1 
(Zadaxin) enhances the immunogenicity of an adjuvated pan-
demic H1N1v influenza vaccine (Focetria) in hemodialyzed pa-
tients: a pilot study. Vaccine 2012;30:1170-80.

[348] Gravenstein S, Duthie EH, Miller BA, et al. Augmentation of 
influenza antibody response in elderly men by thymosin alpha 
one. A double-blind placebo-controlled clinical study. J Am 
Geriatr Soc 1989;37:1-8.

[349] Chioato A, Noseda E, Felix SD, et al. Influenza and meningo-
coccal vaccinations are effective in healthy subjects treated 
with the interleukin-1 beta-blocking antibody canakinumab: 
results of an open-label, parallel group, randomized, single-
center study. Clin Vaccine Immunol 2010;17:1952-7.

[350] Jefferson T, Jones MA, Doshi P, et al. Neuraminidase inhibi-
tors for preventing and treating influenza in healthy adults and 
children. Cochrane Database Syst Rev 2014;4:CD008965.

[351] CDC. Influenza antiviral medications: summary for clinicians 
(current for the 2013-14 influenza season). Document available 
at: http://www.cdc.gov/flu/professionals/antivirals/summary-
clinicians.htm. Accessed on 24th July 2014. 

[352] WHO. Global Alert and Response (GAR) antiviral drugs for 
pandemic (H1N1) 2009: definitions and use. Document avail-
able at: http://www.who.int/csr/disease/swineflu/frequently_
asked_questions/antivirals/definitions_use/en/. Accessed on 
24th July 2014). 

[353] Budd A, Alleva L, Alsharifi M, et al. Increased survival after 
gemfibrozil treatment of severe mouse influenza. Antimicrob 
Agents Chemother 2007;51:2965-8.

[354] Lin KL, Sweeney S, Kang BD, et al. CCR2-antagonist 
prophylaxis reduces pulmonary immune pathology and mark-
edly improves survival during influenza infection. J Immunol 
2011;186:508-15.

[355] Zheng BJ, Chan KW, Lin YP, et al. Delayed antiviral plus im-
munomodulator treatment still reduces mortality in mice infect-
ed by high inoculum of influenza A/H5N1 virus. Proc Natl Acad 
Sci USA 2008;105:8091-6.

[356] Ghezzi P, Ungheri D. Synergistic combination of N-acetyl-
cysteine and ribavirin to protect from lethal influenza viral 
infection in a mouse model. Int J Immunopathol Pharmacol 
2004;17:99-102.

[357] Ottolini M, Blanco J, Porter D, et al. Combination anti-inflam-
matory and antiviral therapy of influenza in a cotton rat model. 
Pediatr Pulmonol 2003;36:290-4.

[358] Khanna M, Saxena L, Rajput R, et al. Gene silencing: a thera-
peutic approach to combat influenza virus infections. Future 
Microbiol 2015;10:131-40. 

[359] Wichadakul D, Mhuantong W, Jongkaewwattana A, et al. 
A computational tool for the design of live attenuated virus 
vaccine based on microRNA-mediated gene silencing. BMC 
Genomics 2012;13(Suppl 7):S15.

[360] Buggele WA, Johnson KE, Horvath CM. Influenza A virus in-
fection of human respiratory cells induces primary microRNA 
expression. J Biol Chem 2012;287:31027-40.

[361] Langlois RA, Albrecht RA, Kimble B, et al. MicroRNA-based 
strategy to mitigate the risk of gain-of-function influenza stud-
ies. Nat Biotechnol 2013;31:844-7.

[362] Zhang H, Li Z, Li Y, et al. A computational method for pre-

dicting regulation of human microRNAs on the influenza virus 
genome. BMC Syst Biol 2013;7(Suppl 2):S3. 

[363] Li Y, Chan EY, Li J, et al. MicroRNA expression and viru-
lence in pandemic influenza virus-infected mice. J Virol 
2010;84:3023-32.

[364] Betáková T, Svančarová P. Role and application of RNA in-
terference in replication of influenza viruses. Acta Virol 
2013;57:97-104. 

[365] Seth S, Templin MV, Severson G, et al. A potential therapeutic 
for pandemic influenza using RNA interference. Methods Mol 
Biol 2010;623:397-422.

[366] Ge Q, Filip L, Bai A, et al. Inhibition of influenza virus produc-
tion in virus-infected mice by RNA interference. Proc Natl Acad 
Sci USA 2004;101:8676-81.

[367] Winterling C, Koch M, Koeppel M, et al. Evidence for a crucial 
role of a host non-coding RNA in influenza A virus replication. 
RNA Biol 2014;11:66-75.

[368] Ouyang J, Zhu X, Chen Y, et al. NRAV, a long noncoding 
RNA, modulates antiviral responses through suppression of 
interferon-stimulated gene transcription. Cell Host Microbe 
2014;16:616-26. 

[369] Xiang DX, Chen Q, Pang L, et al. Inhibitory effects of silver na-
noparticles on H1N1 influenza A virus in vitro. J Virol Methods 
2011;178:137-42.

[370] Xiang D, Zheng Y, Duan W, et al. Inhibition of A/Human/
Hubei/3/2005 (H3N2) influenza virus infection by silver nanopar-
ticles in vitro and in vivo. Int J Nanomedicine 2013;8:4103-13.

[371] McKenzie Z, Kendall M, Mackay RM, et al. Nanoparticles 
modulate surfactant protein A and D mediated protection 
against influenza A infection in vitro. Philos Trans R Soc Lond 
B Biol Sci 2015;370:20140049. 

[372] Torrecilla J, Rodríguez-Gascón A, Solinís MÁ, et al. Li-
pid nanoparticles as carriers for RNAi against viral infec-
tions: current status and future perspectives. Biomed Res Int 
2014;2014:161794. 

[373] Okamoto S, Yoshii H, Akagi T, et al. Influenza hemagglutinin 
vaccine with poly(gamma-glutamic acid) nanoparticles enhanc-
es the protection against influenza virus infection through both 
humoral and cell-mediated immunity. Vaccine 2007;25:8270-8.

[374] Shoji M, Takahashi E, Hatakeyama D, et al. Anti-influenza ac-
tivity of c60 fullerene derivatives. PLoS One 2013;8:e66337.

[375] Amidi M, Romeijn SG, Verhoef JC, et al. N-trimethyl chitosan 
(TMC) nanoparticles loaded with influenza subunit antigen 
for intranasal vaccination: biological properties and immuno-
genicity in a mouse model. Vaccine 2007;25:144-53. 

[376] Sawaengsak C, Mori Y, Yamanishi K, et al. Chitosan nanopar-
ticle encapsulated hemagglutinin-split influenza virus mucosal 
vaccine. AAPS PharmSciTech 2014;15:317-25.

[377] Sawaengsak C, Mori Y, Yamanishi K, et al. Intranasal chi-
tosan-DNA vaccines that protect across influenza virus sub-
types. Int J Pharm 2014;473:113-25.

[378] Sanpui P, Zheng X, Loeb JC, et al. Single-walled carbon nano-
tubes increase pandemic influenza A H1N1 virus infectivity of 
lung epithelial cells. Part Fibre Toxicol 2014;11:66. 

[379] Govorkova EA, McCullers JA. Therapeutics against influenza. 
Curr Top Microbiol Immunol 2013;370:273-300.

[380] Govorkova EA, Webster RG. Combination chemotherapy for 
influenza. Viruses 2010;2:1510-29.

[381] Prabakaran M, Prabhu N, He F, et al. Combination therapy 
using chimeric monoclonal antibodies protects mice from le-
thal H5N1 infection and prevents formation of escape mutants. 
PLoS One 2009;4:e5672.

[382] Bastos LF, Coelho MM. Drug repositioning: playing dirty to 
kill pain. CNS Drugs. 2014;28:45-61.

[383] Wilkinson GF, Pritchard K. In vitro screening for drug reposi-
tioning. J Biomol Screen 2015;20:167-79.



R. GASPARINI et Al.

128

[384] Heldt FS, Frensing T, Pflugmacher A, et al. Multiscale mod-
eling of influenza A virus infection supports the development of 
direct-acting antivirals. PLoS Comput Biol 2013;9:e1003372.

[385] Smith SB, Dampier W, Tozeren A, et al. Identification of com-
mon biological pathways and drug targets across multiple res-
piratory viruses based on human host gene expression analysis. 
PLoS One 2012;7:e33174.

[386] Law GL, Tisoncik-Go J, Korth MJ, et al. Drug repurposing: 
a better approach for infectious disease drug discovery? Curr 
Opin Immunol 2013;25:588-92.

[387] Sharma D, Priyadarshini P, Vrati S. Unraveling the web of vi-
roinformatics: computational tools and databases in virus re-
search. J Virol 2015;89:1489-501. 

[388] Bao S, Zhou X, Zhang L, et al. Prioritizing genes responsi-
ble for host resistance to influenza using network approaches. 
BMC Genomics 2013;14:816.

[389] Li Z, Zhou H, Lu Y, et al. A critical role for immune system 
response in mediating anti-influenza drug synergies assessed by 
mechanistic modeling. CPT Pharmacometrics Syst Pharmacol 
2014;3:e135. 

[390] Frank D. One world, one health, one medicine. Can Vet J 
2008;49:1063-5. 

[391] Travis DA, Sriramarao P, Cardona C, et al. One medicine one 
science: a framework for exploring challenges at the intersec-
tion of animals, humans, and the environment. Ann N Y Acad 
Sci 2014;1334:26-44.

Abbreviations

AAT: alpha-1-antitrypsin; ALI: acute lung injury; ARDS: acute respiratory distress syndrome; Asp: aspartic acid; 
BINASE: Bacillus intermedius Ribonuclease; CAM: Clarihtromycin; cAMP: cyclic adenosin monophosphate; CAS: 
Chemical Abstract Service; CBP: CREB binding protein; CCL: CC chemokine ligand; CCL2: CCL type2; CCL5: 
CCL type 5; CFPTS: Ching-fang-pai-tu-san; cGMP: cyclic guanosine monophosphate; CHX: cycloheximide; CI: 
confidence interval; cIAPs: cellular inhibitors of apoptosis; CL: collectin; CL-43: CL type 43; CL-46: CL type 46; 
CME: Clathrin-Mediated Endocytosis; COX: cyclooxigenase; COX-2: COX type 2; CPE: cytopathic effect; CRM: 
chromosomal maintenance; CRM1: CRM type 1; CTs: combination therapies; CVN: Cyanovirin-N; CXCL: che-
mokine (C-X-C motif) ligand; CXCL10: CXCL type 10; CypA: cyclophilin A; CypB: cyclophilin B; DC: dendritic 
cell; DNA: deoxyribonucleic acid; DPPC: dipalmitoylphosphatidylcholine; DS: dextran sulphate; EB-peptide: entry 
block peptide; ECC: early combination chemotherapy; ERK: extracellular signal-regulated kinase; EV: enterovirus; 
EV71: EV type 71; FGF: fibroblast growth factor; FGF4: FGF type 4; FP: FluPep; FP1: FP type 1, also known 
as Tkip; GA: glycyrrhizic acid; GR: glycyrrhizin; GTP: guanosine-5′-triphosphate; GTPase: GTP hydrolase; HA: 
hemagglutinin; HAI-2: Hepatocyte growth factor activator inhibitor 2; HAIs: HA inhibitors; HBV: hepatitis B vi-
rus; HCV: hepatitis C virus; HGF: hepatocyte growth factor; HIV: Human Immunodeficiency Virus; HMBL: High 
mannose-binding lectin; HMG: 3-hydroxy-3-methylglutaryl-coenzyme A; HMGB: high-mobility-group; HMGB1: 
HMGB type 1; HMPV: Human Metapneumovirus; HPV: Human Papillomavirus; HRV: Human Rhinovirus; HSV: 
Herpes Simplex Virus; HSV-1: HSV type 1; IAV: influenza A virus; IBV: influenza B virus; IFN: interferon; IFN-α: 
alpha IFN; IFN-β: beta IFN; IKK: IκB kinase; IL: interleukin; IL6: IL type 6; IL8: IL type 8; IL10: IL type 10; ILI: 
influenza-like illness; IL1RA: IL type 1 receptor antagonist; IMPDH: Inosine 5’-monoposphate dehydrogenase; IRF: 
interferon-regulatory factor; IRF3: IRF type 3; ISG: interferon-stimulated gene; ISG15: ISG type 15; JNK: c-Jun 
N-termninal kinase; LMA3: Leucomycin A3; LMB: Leptomycin B; lncRNA: long non-coding RNA; M protein: matrix 
protein; M1: Matrix type 1 protein; M2 protein: Matrix type 2 protein; MAC: Melaleuca alternifolia concentrate; 
MAPK: mitogen-activated protein kinase; MBL: mannose-binding lectin; MBP: mannose-binding protein; MD: mo-
lecular dynamics; MDCK: Madin Darby Canine Kidney cell line; MIP1-beta: macrophage inflammatory protein 
type 1 beta; miRNA: microRNA; MPO: myeloperoxidase; mRNA: messenger RNA; MTOC: microtubule organizing 
center; mTOR: mammalian target of rapamycin; MTP-PE: muramyl tripeptide; MXSGT: Ma-xing-shi-gan-tang; 
NA: neuraminidase; NAIs: NA inhibitors; NADPH: nicotinamide adenine dinucleotide phosphate reduced; NB-DNJ: 
N-butyl-deoxynojirimycin; NCZ: nucleozin; NDV: Newcastle Disease Virus; NEP: nuclear export protein; NES: nu-
clear-export signal; Neu5Ac-S-CH2-Lev: α-2-S-[m-(N-levulinyl)aminobenzyl]-5-N-acetylneuraminic acid; NFKB: 
nuclear factor kappa B; NOX1: NADPH oxidase type 1; NOX2: NADPH oxidase type 2; NLRX1: Nucleotide-binding 
oligomerization domain-like receptor type 1; NRAV: negative regulator of antiviral response; Nrf2: Nuclear factor 
(erythroid-derived 2)-like 2, also known as NFE2L2; NS: Non-Structural protein; NS1: NS type 1; NS1A: NS type 1A; 
NS1ABP: NS1A binding protein; NSAIDs: non-steroidal anti-inflammatory drugs; OFCs: omeprazole family com-
pounds; ORadj: adjusted odds ratio; OTC: over the counter; PA: polymerase acidic protein; PB: polymerase basic 
protein; PB1: PB type 1; PB1-F2: PB1 frame 2; PB2: PB type 2; PCR: polymerase chain reaction; PDB: Protein 
Data Bank; PDTC: pyrrolidine dithiocarbamate; Pet: petasiphenol; PGE2: prostaglandin E2; Pgp: P-glycoprotein; 
PI3K: phosphatidylinositol 3-kinase; PLD: phospholipase D; PR-3: proteinase 3; qPCR: quantitative PCR; RE: 
recycling endosome; REDD1: regulated in development and DNA damage responses-1; RIB: ribavirin; RNA: ribo-
nucleic acid; RNAi: RNA interference; RNP: ribonucleoprotein; ROS: reactive oxygen species; RSV: Respiratory 
Syncytial Virus; RT-PCR; SA: sialic acid; SARS: Severe Acute Respiratory Syndrome; SINE: selective inhibitor of 
nuclear export; siRNA: short interfering RNA; SMC: sequential multidrug chemotherapy; SOCS: Suppressor of 
cytokine signaling; SOCS1: SOCS type 1; SP-A: surfactant protein A; SP-D: surfactant protein D; SREBP-1: sterol 
regulatory element-binding protein 1; SNMC: Stronger Neo-Minophafen C; SWCNTs: single-walled carbon nano-



Compounds with anti-influenza aCtivity: present and future of strategies 
for the optimal treatment and management of influenza

129

tubes; TBHQ: Tert-butyl-hydroquinone; TFs: theaflavins; Th1: T helper 1 cell; THC: tetrahydrocurcumin; TLR: 
Toll-like receptor; TLR2: TLR type 2; TLR7: TLR type 7; TMC: N-trimethyl chitosan; TNF: tumor necrosis factor; 
TNF-α: TNF type α; Treg: T regulatory cell; TTO: tea-tree oil; TZV: triazavirine; US: United States of America; 
USP: ubiquitin-specific peptidase; USP18: USP type 18; Val: valine; vATPase: VEGF: vascular endothelial growth 
factor; vRNA: viral RNA; vRNP: viral RNP; VZV: Varicella Zoster Virus; XPO-1: exportin-1.

n Received on November 3, 2014. Accepted on December 5, 2014.

n Correspondence: R. Gasparini, Department of Health Sciences of 
Genoa University, via Pastore 1, 16132 Genoa, Italy - E-mail: gas-
parini@unige.it


