
Transcriptional Regulation of Differentiation
and Functions of Effector T Regulatory Cells

Author Shin-ichi Koizumi, Hiroki Ishikawa
journal or
publication title

Cells

volume 8
number 8
page range 939
year 2019-08-20
Publisher MDPI
Rights (C) 2019 The Author(s).
Author's flag publisher
URL http://id.nii.ac.jp/1394/00001024/

doi: info:doi/10.3390/cells8080939

Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by OIST Institutional Repository

https://core.ac.uk/display/234765846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


cells

Review

Transcriptional Regulation of Differentiation and
Functions of Effector T Regulatory Cells

Shin-ichi Koizumi and Hiroki Ishikawa *

Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha,
Onna-son, Okinawa 904-0495, Japan
* Correspondence: hiroki.ishikawa@oist.jp; Tel.: +81-098-966-1601

Received: 16 July 2019; Accepted: 15 August 2019; Published: 20 August 2019
����������
�������

Abstract: Foxp3-expressing regulatory T (Treg) cells can suppress the activity of various types of
immune cells and play key roles in the maintenance of self-tolerance and in the regulation of immune
responses against pathogens and tumor cells. Treg cells consist of heterogeneous subsets that have
distinct phenotypes and functions. Upon antigen stimulation, naïve-like thymus-derived Treg cells,
which circulate in secondary lymphoid organs, can differentiate into effector Treg (eTreg) cells and
migrate to and control immune homeostasis of peripheral tissues. eTreg cells are heterogeneous in
terms of their ability to localize to specific tissues and suppress particular types of immune responses.
Differentiation and function of diverse eTreg subsets are regulated by a variety of transcription factors
that are activated by antigens and cytokines. In this article, we review the current understanding of
the transcriptional regulation of differentiation and function of eTreg cells.
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1. Introduction

Immune suppressive CD4 T cells expressing the transcription factor Forkhead box protein 3
(Foxp3), known as regulatory T (Treg) cells, play an essential role in maintaining immune tolerance
and tissue homeostasis [1]. Foxp3 is indispensable for Treg development, maintenance, and function,
and ectopic expression of Foxp3 is sufficient to provide CD4 conventional T cells with immune
suppressive functions and Treg phenotypes [1–3]. Foxp3 deficiency causes severe autoimmune diseases
in both human and mice as shown in IPEX syndrome (immune dysregulation, polyendocrinopathy,
enteropathy, X-linked) patients and scurfy mice, respectively [4–6].

Treg cells can be subdivided into various unique subsets, and this heterogeneity is essential
for Treg-mediated immune homeostasis. The first level of Treg subset classification is based on the
developmental pathways. Thymus-derived Treg (tTreg) cells differentiate from CD4/CD8 double-positive
or CD4 single-positive thymocytes in the thymus, depending on recognition of tissue-restricted
self-antigens expressed in medullary thymic epithelial cells [7–10]. On the other hand, peripherally
derived Treg (pTreg) cells differentiate from naïve CD4 T cells upon antigen stimulation in the presence
of TGF-β in the secondary lymphoid tissues [8,11]. Helios and neuropilin-1 (Nrp1) have been widely
used as markers to distinguish tTreg (Helios+ Nrp1+) and pTreg (Helios- Nrp1-) cells [12,13]. The roles
of tTreg and pTreg cells are distinct, as mice deficient for a Foxp3 cis regulatory element—conserved
non-coding sequence (CNS) 1, in which generation of pTreg cells, but not tTreg cells, is specifically
impaired—develop spontaneous inflammation in lung and gastrointestinal tissues [14].

The second level of Treg subset classification is based on Treg’s activation status. tTreg cells can be
subdivided into naïve-like central Treg (cTreg) cells (also known as resting Treg cells) and activated
effector Treg (eTreg) cells (also known as activated Treg cells or effector memory Treg cells) [15–20]. After
maturation, tTreg cells egress the thymus as cTreg cells, which are defined by CD62Lhigh(hi)CD44low(lo)
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or CC chemokine receptor (CCR7)hiCD44lo phenotypes, circulate in secondary lymphoid organs,
depending on the functions of homing receptors CD62L and CCR7 [15,16]. Upon antigen stimulation,
cTreg cells differentiate into eTreg cells, which are defined by CD62LloCD44hi or CCR7loCD44hi

phenotypes [15,16,21] (Figure 1). eTreg cells express higher levels of Treg effector molecules, such as
cytotoxic T cell antigen 4 (CTLA4) and inducible T cell costimulator (ICOS) compared to cTreg cells,
which likely contribute to enhanced suppressive activity of eTreg cells [15–17,21–24].
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Figure 1. Upon antigen stimulation, central Treg (cTreg) cells (CD62Lhi CCR7hi CD44lo) differentiate
into effector Treg (eTreg) cells (CD62Llo CCR7lo CD44hi) depending on TCR and CD28 signaling.
After activation, TCR-dependent transcription factors, such as interferon regulatory factor 4 (IRF4),
are induced and regulate the eTreg transcriptional program. In contrast, Foxo1 is inactivated by
Akt-signaling, which decreases expression of cTreg-related molecules. Loss of Id2, transcription factor
1 (TCF1), and lymphoid enhancer binding factor 1 (LEF1) expression is a signature of mature eTreg
cells. Mature eTreg cells highly express immune suppressive molecules, such as cytotoxic T cell antigen
4 (CTLA4) and inducible T cell costimulator (ICOS).

The majority of eTreg cells migrate to and accumulate in non-lymphoid peripheral tissues and
inflamed sites, probably due to a decrease in CD62L and CCR7 expression and a concomitant increase in
the expression of various chemokine receptors (e.g., CCR4, CCR6, and CCR10) and adhesion molecules
(e.g., KLRG1, CD103) [16,17,22,23]. eTreg cells can reside in non-lymphoid peripheral tissues, as tissue
Treg cells, and play a role not only in the maintenance of immune homeostasis but also in tissue repair
and regeneration [25–31]. For example, visceral adipose tissue (VAT)-Treg cells accumulate in and
suppress the inflammation of adipose tissue, thereby regulating insulin resistance [32–34]. In the
colon, Treg subsets expressing RAR-related orphan receptor (ROR)γt and GATA-binding protein 3
(GATA3) are involved in inhibiting inflammation and tissue repair, respectively [35–37]. Thus, each
tissue-specific Treg subset exhibits distinct functions and phenotypes, likely due to tissue-specific
environmental cues (Figure 2).

A subset of eTreg cells expressing CXC chemokine receptor 5 (CXCR5), known as follicular
regulatory T (Tfr) cells, accumulate in the germinal center (GC) of lymphoid organs and suppress GC
reactions that are required for high affinity antibody production of B cells [38–40]. In contrast, some
CXCR5+ Tfr cells with naïve-like phenotypes are present in the blood [41]. Unlike other Treg subsets,
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GC Tfr cells do not express the α chain of the interleukin (IL)-2 receptor, CD25 [42]. The TCR repertoire
of Tfr cells resembles that of Treg cells rather than Tfh cells, consistent with the notion that most Tfr
cells do not differentiate from naïve CD4 T cells, unlike Tfh cells [43].
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Figure 2. Peroxisome-proliferator-activated receptor γ (PPARγ), B cell lymphoma 6 (BCL6), T-bet,
GATA-binding protein 3 (GATA3), and RORγt regulate the differentiation and function of tissue Treg
cells derived from eTreg and peripherally derived Treg (pTreg) cells. Treg cells expressing PPARγ,
BCL6, or GATA3 mainly differentiate from tTreg cells, while RORγt+ Treg cells differentiate from
naïve CD4+ T cells [34–36,43,44] and T-bet+ Treg cells likely differentiate from both eTreg and pTreg
cells [45–47]. These tissue-specific Treg subsets express different functional molecules and play different
roles in maintaining tissue homeostasis by suppressing specific immune responses and regulating lipid
metabolism and tissue repair.

cTreg and eTreg cell maintenance relies on IL-2 and ICOS signals, respectively, in secondary
lymphoid tissues [15]; however, some tissue-specific Treg cells, including colonic Treg cells, are
maintained in an IL-2-dependent manner [48]. Although most eTreg cells require TCR signals for their
maintenance, a small subset of antigen-experienced Treg cells known as memory Treg cells can survive
even in the absence of cognate antigens in an IL-7-dependent manner [49,50].

Recent studies have revealed substantial heterogeneity in gene expression profiles within each Treg
subset, suggesting a considerable functional diversity of Treg cells. In fact, single-cell RNA-sequencing
(RNA-seq) analysis of Treg cells has demonstrated the complexity of cellular states in both cTreg and
eTreg cells and that eTreg cell diversity is affected by TCR signal strength [51]. In addition, comparative
single cell RNA-seq analysis of Treg cells in lymphoid and non-lymphoid (skin and colon) tissues
suggested that Treg heterogeneity is associated with the progressive trajectory of Treg states from the
lymph nodes to non-lymphoid tissues and the adaptation of Treg cells to each peripheral tissue [52].
Furthermore, mounting evidence indicates that differentiation and functional states of distinct Treg
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subsets are regulated by various transcription factors (Figures 1 and 2, Table 1). In this review, we focus
on the transcription factors that play crucial roles in eTreg differentiation and functions.

Table 1. A summary of eTreg-related transcription factor expression and functions.

Name Expression Function Target Upstream
Regulator

Ref.

IRF4 eTreg Regulates eTreg differentiation ICOS, Blimp1, FGL2, ST2,
GATA3, CCR8, CTLA4, KLRG1,
IL-10, CCR6

TCR+CD28+IL-2 [16,53,54]

BATF eTreg Promotes expression of
eTreg-related genes

ICOS, GATA3, ST2,
KLRG1, CCR4, CCR6

TCR+CD28+IL-2 [17,54,55]

JunB eTreg Promotes expression of
eTreg-related genes

ICOS, FGL2, CTLA4,
TIGIT, KLRG1

TCR+CD28+IL-2 [23,56,57]

Blimp-1 eTreg Promotes expression of
eTreg-related genes

IL-10, KLRG1,
Ebi3, CCR6, BCL2

TCR+CD28+IL-2 [58]

Myb eTreg Promotes expression of
eTreg-related genesin tTreg

ICOS, TIGIT, KLRG1,
BCL2, MYC

TCR+CD28+IL-2 [22]

RelA All Tregs Promotes expression of
eTreg-related genes

TIGIT, ST2, KLRG1, CD103,
CD30

TNF-α, GITR [59,60]

c-Rel All Tregs Promotes expression of
eTreg-related genes

TIGIT, ST2, ICOS,
EBI3,Blimp-1,IL-10

Unknown [59,61]

Id2 eTreg Suppresses Tfr differentiation
CXCR5, IL-10, HIF1-α, IKZF3,
Myb, IL-10 rα,
E2F2

TCR+CD28+IL-2 [62–64]
Id3 cTreg,

CD44lo eTreg
TCR+CD28+IL-2-
Erk,PI3K/mTOR

[62,63]

E2A/
HEB

eTreg Suppresses eTreg differentiation ICOS, IRF4, CD103,
KLRG1, RORγt

TCR+CD28 [65]

TCF1/
LEF1

cTreg,
CD44lo eTreg

Regulates Tfr
differentiationSuppresses
expression of eTreg-related genes?

CD44, ICOS, TIGIT, IRF4,
GATA3, Blimp-1,
T-bet, Bcl6, CXCR5

Unknown [66,67]

Foxo1 All Treg Maintains expression of
cTreg-related genes

CD62L, CCR7, Bim, GzmB TCR+CD28-Akt [18,68]

T-bet eTreg,
Tissue Tregs

Regulates migration to
Th1-inflammatory sites

CXCR3 IFNγ-STAT1 [45,69]

GATA3 Skin and
Intestinal tTreg

Maintains Treg homeostasis
Suppresses skin inflammation

ST2, Foxp3 TCR, IL-4, IL-33 [37,70,71]

RORγt Intestinal pTreg Regulates migration to intestinal
tissue

CCR6 IL-6/IL-23-STAT3,
Microbiota

[35,36,72]

BCL6 Follicular Treg Regulates Tfr differentiation CXCR5, PD-1 IL-21, IL-6 [73,74]
c-Maf eTreg Regulates RORγτ+ Treg and Tfr

differentiations
RORγt, CXCR5, IL-10 TCR+CD28+IL-2,

STAT3, Microbiota,
Notch1/2

[75–77]

STAT3 All Tregs Regulates RORγt+ Treg and Tfr
differentiation

TCF1, RORγt IL-6,IL-23,IL-21 [35,74,75,
78,79]

PPARγ VAT-Treg Regulates VAT-Treg differentiation CCR1, PCYT1A,
DGAT1, IL-10

TCR,IL-33,
Adipose
tissue-derived
factor?

[32,34,44,
54]

RORα Skin and Colon
Tregs

Promotes expression of
eTreg-related genes

CCR6, CD73, DR3 Unknown [52,80]

2. Transcription Factors in a Core eTreg Transcriptional Program

Although eTreg cells, particularly tissue Treg cells, heterogeneously express gene subsets including
Treg effector molecules and chemokine receptors (Figure 2), it has been suggested that the differentiation
of most eTreg cells depends on a common transcriptional program. In this section, we outline the
transcription factors that play a role in the core eTreg transcriptional program.

2.1. IRF4

A member of the interferon regulatory factor (IRF) family of transcription factors, IRF4, regulates
differentiation of a variety of immune cells [81]. IRF4 is expressed in eTreg and pTreg cells, but not in cTreg
cells, depending on TCR signal [16,21,23]. IRF4 is essential for eTreg generation, as IRF4-deficient Treg cells fail
to acquire eTreg phenotypes, including decreased CD62L expression and increased ICOS expression [53,58].
Treg-specific IRF4-deficient mice develop a lethal autoimmune disease characterized by loss of body weight,
splenomegaly, lymphadenopathy, and inflammation in lung, stomach, and pancreas [48]. Notably, T helper 2
(Th2)-dependent immune responses are specifically activated in Treg-specific IRF4-deficient mice, indicating
an essential role for eTreg cells in suppression of Th2-dependent immunity [53]. Furthermore, IRF4 is
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required for eTreg generation not only under Th2 inflammatory conditions but also under Th1 inflammatory
conditions, suggesting a generalized role for IRF4 in eTreg differentiation [58]. Loss of IRF4 in Treg cells
results in defective expression of the majority of eTreg-related molecules, including inducible T cell costimulatory
(Icos), Il10, Il-1 receptor 11 (Il1rl1), c-maf, fibrinogen-like protein 2 (Fgl2), Ccr8, and PR domain containing 1 (Prdm1),
confirming the necessity of IRF4 in eTreg differentiation [53,58]. Importantly, IRF4 can interact physically and
functionally with Foxp3 [53,58]. The colocalization of IRF4 and Foxp3 at the Icos locus [53] suggests that IRF4
may cooperate with Foxp3 to regulate eTreg differentiation and function. Thus, IRF4 plays a central role in
the eTreg transcriptional program.

2.2. BATF and JunB

IRF4 is thought to interact with AP-1 transcription factors, such as basic leucine zipper ATF-like
transcription factor (BATF) and JunB [82], which contain an alpha-helical basic region leucine zipper
(bZIP) domain, thereby regulating expression of genes containing AP-1/IRF4 composite elements
(AICEs) [83]. Indeed, IRF4, BATF, and JunB colocalize at AICE-containing gene loci in several T cell
subsets including Th17 and CD8 cytotoxic T cells [84–86]. Furthermore, loss of IRF4 and BATF similarly
impair differentiation of Th17 cells, CD8 cytotoxic T cells and T follicular helper (Tfh) cells [86–91].

Analysis of BATF-deficient mice has shown that BATF promotes Treg accumulation in the colon
and visceral adipose tissues (VAT) [54,92]. Furthermore, a recent analysis of mice bearing Foxp3
A384T mutation, which is found in IPEX patients, revealed a critical role for BATF in eTreg cells [17].
The Foxp3 A384T mutation in mice causes severe inflammation in the skin, liver, and colon and aberrant
activation of Th2 and Th17 immune responses, partly due to reduced expression of BATF. Both Foxp3
A384T mutant and BATF-deficient Treg cells fail to differentiate into eTreg cells and to accumulate in
peripheral tissues [17].

We have recently reported that JunB regulates an IRF4-dependent eTreg transcriptional
program [23]. Like BATF and IRF4, JunB is highly expressed in CD62L–ICOS+ eTreg cells in vivo and can
be induced by stimulation with anti-CD3 and anti-CD28 antibodies in the presence of IL-2 in vitro [23].
Treg-specific JunB-deficient mice exhibit severe inflammation in the colon and lung, aberrant activation
of Th1, Th2, and Th17 cells, and enhanced humoral immune responses [23]. Unlike IRF4, JunB is
not essential for eTreg generation, but JunB is required for homeostasis, colonic accumulation, and
TCR-dependent suppressive functions of eTreg cells [23]. JunB regulates expression of a subset of
eTreg-related genes, such as Icos, Klrg1, T cell immunoreceptor with Ig and ITIM domains (Tigit), Ctla4,
and Gzmb in Treg cells in BATF-dependent and BATF-independent manners [23]. Mechanistically,
JunB promotes DNA-binding of IRF4 at loci of eTreg-related genes containing AICE motifs, on which
JunB colocalizes with BATF and IRF4, such as Icos and Ctla4. Recently, using different JunB-deficient
mouse models, other groups also demonstrated that JunB is essential for the expression of eTreg-related
molecules [56,57], although the autoimmune phenotypes of their mice are different from those of our
mice [56].

2.3. Blimp1

B lymphocyte induced maturation protein 1, Blimp-1 (encoded by Prdm1) is transcriptionally
induced by IRF4 and regulates eTreg functions [50]. Blimp-1 is highly expressed in a subset of eTreg
cells producing IL-10 and promotes expression of a subset of IRF4 target genes, including Il10, Klrg1,
Epstein-Barr virus induced gene 3 (Ebi3), Ccr6, and B cell leukemia/lymphoma 2 (Bcl2), suggesting an important
role for Blimp1 in an IRF4-dependent eTreg transcriptional program [58]. Treg-specific Blimp1-deficient
mice are healthy at young ages, but they develop autoimmune inflammation in salivary glands and
pancreas with age [93,94]. In an experimental autoimmune encephalomyelitis model, Blimp1 was
expressed in Treg cells which accumulate in the inflamed central nervous system and contribute to
Treg stability by preventing IL-6-dependent induction of DNA methyltransferase 3 α (Dnmt3a), which
inhibits Foxp3 expression by methylating the CNS2 of Foxp3 [95]. Blimp-1 is also preferentially expressed
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in and is required for the suppressive activity of RORγt+ Treg cells by preventing the production of IL-17
inflammatory cytokine [96].

2.4. Myb

The proto-oncogene myeloblastosis (Myb) has been reported as an important regulator of
thymus-derived eTreg cells but not pTreg cells [22]. Myb expression is upregulated in ICOS+ eTreg
subset in vivo and is induced in Treg cells activated with TCR/CD28 stimulation in the presence of
IL-2 in vitro [22]. In Myb-deficient mice, expression of eTreg-related molecules, such as ICOS, TIGIT,
and KLRG1 is severely diminished in Nrp1+ tTreg cells [22]. In contrast, Myb is neither expressed
in nor required for differentiation of pTreg cells [22]. Unlike Myb, IRF4 is essential not only for
eTreg differentiation but also for pTreg differentiation. Furthermore, although IRF4 is critical for
the generation of all eTreg cells, Myb is likely required for differentiation of ICOS+ eTreg cells from
ICOS- eTreg cells, by regulating expression of genes that are associated with eTreg cell survival and
proliferation [22]. As in T cell development and Th2 differentiation [97,98], Myb promotes expression
of GATA3, but not T-box expressed in T cells (T-bet), in ICOS+ eTreg cells [22], suggesting that Myb
may also play a role in deciding the fate of GATA3-expressing eTreg subsets. Thus, Myb functions
suggest a stepwise transcriptional regulatory mechanism of eTreg differentiation and a key difference
between eTreg and pTreg transcriptional regulatory mechanisms.

2.5. NF-κB

The nuclear factor-κB (NF-κB) family is composed of NF-κB1 (p50), NF-κB2 (p52), RelA (p65),
RelB, and c-Rel [99]. Two distinct signaling pathways can turn on NF-κB-dependent transcription
programs by the inducing active form of NF-κB (dimerized NF-κB): the canonical NF-κb pathway
activates RelA/p65 and c-Rel/p65 heterodimers, while the non-canonical NF-κB pathway activates
RelB/p52 heterodimers [99]. TCR signal and a co-stimulatory signal cooperate to activate the canonical
NF-κB signaling pathway, which promotes conventional T cell activation [100]. The canonical NF-κB
signaling pathway has been shown to be critical for the development of Treg cells. Furthermore, recent
studies have shown that canonical NF-κB subunits play important roles in eTreg cells [60,101,102].

c-Rel is not only essential for thymic Treg development but also for eTreg functions [59,61].
Deletion of c-Rel in mature Treg cells causes only mild autoimmune phenotypes in aged mice, but it
promotes anti-tumor immunity mediated by CTLs [59,61]. In addition, pharmacological inhibition of
c-Rel can improve cancer immunotherapy based on immune checkpoint blockage, suggesting that
c-Rel is a potential target for cancer immunotherapy [61]. c-Rel-dependent regulation of expression of
eTreg-associated molecules, such as Integrin α E (Itgae), Tigit, Klrg1, Il1r2, and TNF receptor superfamily
member 8 (Tnfrsf8), may contribute to eTreg-mediated anti-tumor functions, rather than immune
homeostasis [61].

RelA also appears to be important for the differentiation and maintenance of eTreg cells.
Treg-specific deletion of RelA induces systemic autoimmune disease [59,60,103]. In a competitive
setting under non-inflammatory conditions, RelA-deficiency results in significant reduction in eTreg,
Tfr, VAT-Treg, and intestinal RORγt+ Treg cells [60]. RelA promotes expression of eTreg-related
molecules, such as Il10, Tigit, Icos, Ebi3, Prdm1, and Il1rl1. RelA can be activated by TNF-α and GITR,
which may promote eTreg survival [60]. RelA is not required for IRF4 induction and likely works
independently of IRF4 in eTreg cells [60].

2.6. Id2, Id3, E2A, and HEB

E proteins (E2A, HEB, E2-2), which belong to the basic-helix-loop-helix (bHLH) transcription
factor family, bind to and regulate genes containing E-box motifs [104]. On the other hand, Id proteins
(Id1-Id4) can form heterodimers with E-proteins and suppress their transcriptional activity [104].
Id2 and Id3 are essential for Treg maintenance, and Treg-specific Id2/Id3 double knockout mice
are lethal due to multi-organ autoimmunity and show increased Tfr number [62]. Although the
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specific roles of Id2 and Id3 in eTreg cells are not clear, expression of these proteins is dynamically
regulated during eTreg differentiation [62,63]. Almost all cTreg cells express Id3, but eTreg cells can
be subdivided into Id3+ and Id3- subsets. Id3- eTreg cells highly express ICOS, KLRG1, TIGIT, and
CTLA-4, suggesting that loss of Id3 expression is a signature for mature eTreg cells [63]. On the other
hand, eTreg cells, but not cTreg cells, highly express Id2 [63]. TCR signaling decreases expression of Id3
and increases expression of Id2 in Treg cells in vitro. A tight regulation of Id protein expression is likely
important for Treg cells, as Id2 overexpression impairs stability and the immune suppressive functions
of Treg cells [64]. In contrast, a recent study has revealed that E-proteins suppress differentiation
of eTreg cells, as E2A/HEB double knockout Treg cells exhibit increased expression of effector Treg
signature molecules, such as IRF4, ICOS, CD103, RORγt, and KLRG1, and enhanced eTreg stability and
suppressive function. Thus, interaction of Id and E proteins likely control eTreg differentiation [65].

2.7. TCF1 and LEF1

T cell specific transcription factor 1 (TCF1 encoded by Tcf7) and lymphoid enhancer binding
factor 1 (LEF1) are members of the high-mobility group (HMG) family, which has highly conserved
HMG DNA-binding domains [105]. These molecules have been shown to regulate not only T cell
development in the thymus [105] but also eTreg differentiation [66,76]. cTreg cells homogenously
express high levels of TCF1 and LEF1, while eTreg cells heterogeneously express these molecules [66].
TCF1− LEF1− eTreg cells, but not TCF1+ LEF1+ eTreg cells, highly express eTreg-related molecules,
such as Cd44, Icos, Tigit, Irf4, Gata3, Prdm1, and Tbx21, suggesting that loss of TCF1 and LEF1 correlates
with maturation of eTreg cells [66]. On the other hand, a subset of TCF1+LEF1+ eTreg cells express Tfr
signature genes, Bcl6 and Cxcr5 [66]. Indeed, Tfr cells can be differentiated from TCF1+ eTreg cells [66].
TCF1 binds directly to the Bcl6 gene locus and regulates its expression, thereby playing an essential role
in Tfr differentiation [66]. Treg-specific TCF1/LEF1 double knockout mice show spontaneous systemic
inflammation in thyroid and salivary glands, lung, and small and large intestines [66,76].

2.8. Foxo1

Foxo1, as well as Foxp3, belongs to the Forkhead box family of transcription factors [90].
Inactivation of Foxo1 is an essential process for cTreg cells to differentiate into eTreg cells. In cTreg
cells, Foxo1 is constitutively expressed, localized in the nucleus, and positively regulates expression of
cTreg-related genes such as Sell, which encodes CD62L, and Ccr7 [18,68]. In contrast, in eTreg cells,
AKT-dependent phosphorylation destabilizes Foxo1 and prevents it from accumulating in the nucleus,
resulting in the inhibition of expression of cTreg-related genes [18,68]. Indeed, Treg cells expressing
a constitutive active form of (Akt-insensitive) Foxo1 mutant cannot downregulate expression of CD62L
and CCR7 in Treg cells and thereby loses the ability to accumulate in peripheral tissues, which leads to
CD8 T cell-dependent autoimmunity and enhanced anti-tumor immunity [18].

3. Transcription Factors Regulating Differentiation of Distinct Subsets of eTreg Cells

eTreg cells generated in lymphoid tissue adopt distinct fates, including differentiating into various
tissue Treg and Tfr cells. The differentiation and function of distinct eTreg subpopulations are regulated
by various transcriptional programs. In this section, we focus on the transcription factors that contribute
to the diversity of eTreg cells.

3.1. T-Bet, GATA3, RORγt, Bcl6 and STAT5

T-bet, GATA3, RORγt, and B cell lymphoma 6 (Bcl6) define cell lineages of Th1, Th2, Th17, and
Tfh cells, respectively [106–108]. eTreg cells heterogeneously express these transcription factors, which
endow eTreg cells with suppressive functions specifically against T helper cells expressing the same
transcription factors (Figure 2).

T-bet is a member of the T-box family of transcription factors [109]. Analysis of T-bet fate mapping
reporter mice has shown that T-bet is stably expressed in 50–60% of colonic Treg cells and 20–40% of Treg
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cells in the lymphoid organs, lungs, small intestine, and liver [45]. Depletion of T-bet+ Treg cells in mice
results in aberrant activation of Th1 cells without affecting Th2 and Th17 cells [96]. Conversely, specific
depletion of T-bet- Treg cells induces aberrant activation of Th2 and Th17 cells but not Th1 cells [45].
Although T-bet-expressing Treg cells have unique immune suppressive functions, Treg-specific deletion
of T-bet in mice is not sufficient to develop spontaneous autoimmune inflammation, suggesting that
T-bet+ Treg’s suppressive activity is independent of T-bet expression under steady-state conditions [45].
However, T-bet-deficient Treg cells exhibit impaired proliferation under Th1 inflammatory conditions [46].
In Treg cells, T-bet can be induced by IFN-γ-STAT1 signaling and regulate the expression of CX3CR3,
which likely promotes migration of Treg cells to specific tissues [45,46].

GATA3, which belongs to the GATA family that bind to GATA motifs [110], is highly expressed
in skin Treg cells (~80%) [70,71] and colonic Treg cells (~30%) [37,71]. A recent study has shown that
Treg-specific GATA3-deficient mice develop severe skin inflammation with aberrant activation of
a Type 2 immune responses [70]. Another study has shown that GATA3 and T-bet double knockout
mice, but not their single knockout mice, develop multi-organ autoimmunity [47]. Like in Th2 cells,
IL-4 and IL-33 can upregulate GATA3 expression, which in turn promotes expression of IL-33 receptor
ST2 in Treg cells. GATA3 is required for stable Foxp3 expression in GATA3+ Treg cells [37,71,111].

RORγt is a member of the nuclear receptor family [112]. RORγt is expressed in colonic Treg
cells (~65%) and small intestinal Treg cells (~35%) [72]. The majority of RORγt+ Treg cells are Nrp1−

Helios1− pTreg cells, which are induced by commensal microbiota [35,36]. Probably depending on
different environmental cues, Treg-specific RORγt-deficient mice have shown impaired control of
distinct types of immune responses [35,36]. A report has shown that Treg-specific RORγt-deficient mice
have increased levels of serum IgE at the steady state, and their Th2 immune responses are accelerated
under Th2-inducing conditions [35]. Another report has shown that Treg-specific RORγt-deficient
mice have elevated production of Th17 and Th1 cytokines, but not Th2 cytokines, in the colon and
are more susceptible to trinitrobenzenesulfonic acid-induced colitis [36]. Furthermore, a recent study
has shown that a unique property of RORγt+ Treg cells, but not Treg’s RORγt itself, is critical for
suppression of Th17-dependent gut chronic inflammation [113]. Colonization of mice by Helicobacter
hepaticus results in accumulation of colonic RORγt+ Treg cells bearing TCRs specific to H. hepaticus [113].
In Treg-specific RORγt-deficient mice, although there is a mild increase in colonic H. hepaticus-specific
Th17 cells, gut inflammation is not induced upon H. hepaticus colonization [113]. However, depletion
of RORγt+ Treg cells by deleting the transcription factor c-Maf (further discussed below), which is
critical for generation of this cell population, causes significant increase of H. hepaticus-specific Th17
cells and severe gut inflammation [113].

Bcl6 is expressed in and required for differentiation of Tfr cells, which control germinal center
reactions [38,39]. In Treg-specific Bcl6-deficient mice, in which Tfr cells are not generated, humoral
immune responses during virus infection are significantly enhanced, and humoral autoimmunity is
spontaneously induced in aged mice [114]. Bcl6 directly regulates CXCR5 expression in both Tfh
and Tfr cells [115], which enables Tfr cells to accumulate in the germinal centers together with Tfh
cells and to suppress Tfh-dependent humoral immunity [38–40]. Signal transducer and activator
transcription 5 (STAT5) can inhibit Bcl6 expression directly or indirectly by inducing Blimp-1 and is
a negative regulator of Tfh differentiation [116–118]. Like Tfh cells, Tfr differentiation is inhibited by
IL-2-dependent STAT5 activation. Indeed, significant Tfr differentiation suppression has been observed
during viral infection when large amounts of IL-2 are produced [73]. Furthermore, loss of CD25
significantly decreases both the frequency and numbers of cTreg cells, but it does not affect the eTreg
population [15,119], suggesting that the homeostasis of cTreg cells, but not eTreg cells, is dependent on
IL-2/STAT5 signal. However, whether STAT5 promotes cTreg survival or inhibits eTreg differentiation
remains unclear.
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3.2. c-Maf

c-Maf (encoded by Maf ), which belongs to the AP-1 family of transcription factors, regulates the
function and development of various T cells [82,120]. c-Maf is essential for induction and maintenance
of RORγt+ Treg cells and Tfr cells [75–77]. c-Maf is highly expressed in CD62L- eTreg cells and intestinal
Treg cells and is induced by CD3, CD28 and IL-2 stimulation in vitro [76,77]. As mentioned above,
in mice colonized with H. hepaticus, generation of H. hepaticus-specific RORγt+ Treg cells depends on
c-Maf [75]. Furthermore, c-Maf-dependent suppression of colonic Th17 responses and IgA production
contribute to the maintenance of a healthy gut microbiota [76]. In Treg cells, c-Maf facilitates expression
of IL-10, while inhibiting expression of IL-17 [75].

3.3. STAT3

c-Maf and RORγt expression in Treg cells, as in CD4 T conventional cells, is regulated by signal
transducer and activator transcription 3 (STAT3) [35,75]. IL-6 and IL-23, both of which activate STAT3,
promote generation of colonic RORγt+ Treg cells [35]. Furthermore, IL-27, IL-6, and IL-21 can induce
c-Maf expression in Treg cells in vitro in a STAT3-dependent manner [75]. Similar to c-Maf, Treg-specific
ablation of STAT3 results in the development of spontaneous colitis with abnormal increase of colonic
Th17 cells [78]. STAT3 is also involved in Tfr differentiation, with Treg-specific STAT3-deficient mice
exhibiting a severely reduced Tfr cell number [75,79].Mammalian target of rapamycin (mTOR) signal,
which is required for Tfr generation, phosphorylates STAT3, which then binds to and likely promotes
the expression of Tcf1, which is essential for Tfr differentiation [79].

3.4. PPARγ and RORα

In addition to the above-mentioned lineage-defining transcription factors for T helper
differentiation and their regulatory transcription factors, eTreg cells heterogeneously express peroxisome-
proliferator-activated receptor γ (PPARγ) and retinoic acid receptor-related orphan receptor α

(RORα) [33,80], which regulate tissue-specific eTreg functions (Figure 2).
PPARγ, which is an essential transcription factor for adipocyte differentiation, is required for the

differentiation and functions of VAT-Treg cells [33]. VAT-Treg cells have been identified as a unique
subset of tissue Treg cells that accumulate in and maintain inflammation of adipose tissues, thereby
regulating insulin resistance [32,33]. In Treg-specific PPARγ-deficient mice, VAT-Treg cells are not
generated, and the effect of pioglitazone, an insulin-sensitizing drug, is diminished, suggesting that
VAT-Treg cells are a therapeutic target of diabetes [33]. VAT-Treg differentiation proceeds in a stepwise
manner: PPARγlo Treg cells, which are induced by unknown mechanisms in the secondary lymphoid
organs, migrate into adipose tissues and further differentiate into PPARγhi VAT-Treg cells, depending
on adipose tissue-specific signals as well as TCR, Foxp3, and IL33-ST2 signals [44]. TCR-dependent
activation of IRF4 and BATF is required for generation of PPARγ+ Treg cells, probably due to their
essential roles in ST2+ eTreg differentiation [54].

A nuclear receptor RORα is also involved in the regulation of tissue-specific functions of eTreg cells.
Skin Treg cells express high RORα levels, with Treg-specific Rorα deletion accelerating the inflammation
induced by innate lymphocyte 2 (ILC2) and Th2 cells in an atopic dermatitis mouse model [80]. In skin
Treg cells, RORα promotes the expression of death receptor 3 (DR3), which is also expressed in and
promotes activity of ILC2. RORα-dependent DR3 expression allows skin Treg cells to compete with ILC2
for the DR3 ligand, thereby suppressing ILC2-dependent immunity [80]. It has also been suggested that
the RORα-dependent suppression of IL-4 expression is required for the immune suppressive activity
of skin Treg cells. Like skin Treg cells, colonic Treg cells express higher RORα levels than lymphoid
tissue Treg cells [52], suggesting that RORα may regulate Treg functions in non-lymphoid tissues other
than skin.
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4. Conclusions and Perspectives

A central driver of eTreg differentiation is a transcriptional program mediated by IRF4, which
is activated by TCR. In concert with BATF, JunB, and probably other AP-1 transcription factors, IRF4
regulates expression of a majority of eTreg-related genes. IRF4-induced Blimp1 promotes expression
of a subset of eTreg-related genes, such as IL-10. In addition, Myb and NF-κB are also crucial for
the unfolding of the TCR-dependent eTreg transcriptional program. Furthermore, inactivation of
cTreg-related transcription factor Foxo1 is also required for eTreg differentiation. Heterogeneous
expression of these transcription factors in each eTreg cell, probably due to different strength and/or
duration of TCR signal, may contribute to the diversity of eTreg phenotypes. Future studies are needed to
reveal how these TCR-dependent transcription factors cooperate with each other in eTreg differentiation.

eTreg cells migrate to targeted tissues, adapt to the tissue environments, and exert specific
suppressive functions, depending on the transcription factors that are essential for differentiation of
T helper cell lineages (T-bet, GATA3, RORγt, and Bcl6) and tissue-specific cell types (e.g., PPAR-γ).
Expression of these transcription factors in eTreg cells can be induced in specific cytokine environments,
but the in vivo mechanisms regulating the expression of these transcription factors are not fully
understood. Particularly, how diverse eTreg subsets are generated and maintained at the steady state
remains an open question.

Like well-characterized CD8 memory T cells, a subset of antigen-experienced Treg cells can
survive for a long time after the removal of their cognate antigens and mount stronger suppressive
activity upon re-exposure to the same antigens [20,49,50,121]. Like eTreg cells, memory Treg cells also
exhibit decreased expression of the homing receptors CD62L and CCR7, and increased expression
of CTLA4 and ICOS [49,50]. This phenotypic similarity suggests a possible association between the
transcriptional programs of eTreg and memory Treg cells; however, the transcriptional mechanisms
underlying memory Treg differentiation remain largely unexplored.

In addition to the transcription factors discussed in this review, epigenetic modifications are
closely associated with eTreg differentiation [55,122–128]; however, the molecular links between the
Treg transcriptional program and epigenetic regulation remain poorly understood. Further elucidation
of the roles of eTreg-related transcription factors in gene expression, chromatin accessibility, and histone
modifications at the single cell level will allow us to identify the missing link between transcription
factors and epigenetic regulation in eTreg cells.

It has also been suggested that metabolic control is important in eTreg differentiation and
function [79,129,130]. For example, mTOR-dependent cholesterol biosynthesis likely promotes the
proliferation and expression of CTLA4 and ICOS in TCR-stimulated Treg cells [129], suggesting that
mTOR-dependent metabolic pathways play a role in eTreg energy generation. Interestingly, recent
studies have demonstrated that specific metabolic pathways and/or metabolites can regulate the
epigenetic status of T cells [113,131,132]. Mitochondrial respiration levels are higher in Treg cells than
in other T cell subsets, and the loss of mitochondria respiratory chain complex III results in decreased
Treg suppressive activity and increased DNA methylation [133], although the relevance of this in
eTreg populations remains unclear. It is important to determine how, and to what extent, cellular
metabolic pathways or metabolites regulate the activity of eTreg-related transcription factors and
epigenetic regulators.

Thus, further elucidation of transcriptional regulatory mechanisms and their crosstalk with
epigenetics and metabolism in the differentiation of eTreg, tissue Treg, and memory Treg cells may
contribute towards the development of drugs that target specific Treg functions.
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