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Abstract
We present transport measurements in a quasi-1D system of surface electrons on
liquid helium confined in a 101-µm-long and 5-µm-wide microchannel where an
electrostatic potential with periodicity of 1-µm along the channel is introduced. In
particular, we investigate the influence of such a potential on the nonlinear transport
properties of a quasi-1D Wigner solid (WS) by varying the amplitude of the periodic
potential in a wide range. At zero and small values of amplitude, the quasi-1D WS
in the microchannel shows expected features such as the Bragg–Cherenkov scattering
of ripplons and re-entrant melting. As the amplitude of the potential increases, the
above features are strongly suppressed. This behavior suggests the loss of long-range
positional order in the electron system, which is reminiscent of re-entrant melting
behavior due to lateral confinement of the WS in the channel.

Keywords 2D and quasi-1D electron systems · Wigner solid · Nonlinear electron
transport

1 Introduction

A lattice of interacting charged particles driven against an external periodic potential
presents an attractive system tomodel sliding friction,which is relevant to diverse fields
of science [1]. The basic model that describes sliding friction between crystalline
interfaces, the one-dimensional (1D) Frenkel–Kontorova (FK) model, consists of a
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chain of particles coupled by a harmonic nearest neighbor interaction and subject to an
external spatially periodic potential. The competition between these two interactions
determines essential physical features, such as the stick–slip motion when particles
are acted upon by an additional adiabatically increasing driving force and the Aubry
transition to a superlubricity state. It is understood that these processes are governed
by the excitation of topological defects in the system and are strongly influenced by
incommensurate periodicities of the lattice and potential [2]. Experimentally, the FK
model was studied in diverse physical systems, such as solid interfaces [3,4], 2D
colloidal monolayers [5–7] and cold ions in optical lattices [8,9], and continues to
attract a lot of attention.

Electrons on helium present an ultra-clean system of charged particles on a liquid
substratewhere theFKmodel can potentially be realized.Owing to the strongCoulomb
interaction between electrons, the system crystallizes into a two-dimensional Wigner
solid (WS) at densities of order 1013 m−2 and at temperatures around 1K. Electrostatic
pressure exerted by localized electrons in the solid phase causes a commensurate
deformation of the liquid surface, the so-called dimple lattice, that couples to the WS
and significantly alters its transport along the surface under an external driving electric
field. In particular, the coherent Bragg–Cherenkov (BC) emission of surface capillary
waves, ripplons, with a wavelength equal to the lattice constant leads to a deepening
of the dimples and results in the saturation of the electron current [10,11]. At high
driving fields, electrons decouple from the dimples, and the WS is in a sliding state
characterized by much larger values of current [12,13]. The regime of coherent BC
emission of ripplons, where the lattice of electrons couples to the dimples, has a loose
analogy to the two-dimensional (2D) case of the FK model particularly for a case in
which the mean distance between particles equals the spatial period of the substrate
potential. Indeed, it shows some typical features predicted by the FK model, such
as a de-pinning transition and hysteresis [14,15]. However, one main aspect of the
FK model, the role of incommensurability between electrons and dimple lattices, is
automatically eliminated by the origin of the dimple lattice itself.

Experimental devices for studying transport properties of electrons on helium have
generally a structure of the field-effect transistor for a two-dimensional electron gas
in semiconductors, for example in a form of thin films [16] or microchannels [17].
It was shown that confining electrons in capillary-condensed microchannel structures
facilitates control of the electron system by imposed electrostatic potentials [18–20]
and allows for observation of new interesting features associated with electron trans-
port and phase transitions in the system, such as clocked electron transport [21],
discrete transport through a point-contact constriction [22,23], suppressed and re-
entrant melting of a quasi-1D electron crystal [24–26], stick–slip motion of WS [27],
inhomogeneousWS [28] and effect of size of aWSon sliding transition [29].Motivated
by these studies and by the possibility of studying the FK model in an electron-on-
helium system, we designed and fabricated a microchannel device in which a spatially
periodic electrostatic potential of varying amplitude could be imposed on the elec-
trons confined in the channel. Here, we present the results of our preliminary studies
of electron transport along the microchannel in the presence of a periodic potential.
In particular, we report the strong suppression of typical features associated with the
crystalline ordering, such as the re-entrant melting ofWS and the nonlinear BC regime
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of electron transport, by the periodic potential. These results are discussed in terms of
the loss of long-range crystalline ordering in the electron system under application of
an external potential.

2 Sample andMethods

Our microchannel device was fabricated on a silicon oxide substrate using optical
and e-beam lithography methods. The device consisted of two large arrays of 5 µm
microchannels that acted as two electron reservoirs, connected by a central 101 µm-
long and 5µm-wide microchannel; see Fig. 1a, b. This structure was composed of two
patterned gold layers separated by an insulating layer of silicon nitride with a thickness
of 550 nm. The bottom gold layer (dark golden color in Fig. 1a) consisted of three
electrodes that defined the bottoms of two reservoirs and the central channel. The top
gold layer (light gold color in Fig. 1a) consisted of two electrodes, the split-gate and
guard electrodes. The insulating layer separating the two gold layers was removed
within the microchannels to form rectangular grooves having a height of 550 nm.
Microchannels were filled with superfluid 4He by capillary action from bulk liquid
helium, the level of which was maintained slightly below the device.

A special feature of our device is the bottom electrode of the central channel,
which consisted of two separate parts, “Ch1” and “Ch2,” in the shape of an inter-
digital capacitor with fingers aligned across the channel; see inset of Fig. 1b. Each
finger was 250 nm wide, and the adjacent fingers of two electrodes were separated by
250-nm gaps. Thus, by applying a potential difference ΔVch = |Vch1 −Vch2| between
electrodes Ch1 and Ch2, we could create a spatially periodic electrostatic potential
along the channel with a period of 1 µm. As an example, Fig. 1c shows the spatial
variation in the potential at the center of the channel at a distance of 550 nm above
the bottom electrode (that is, approximately at the level of liquid helium filling the
channel) calculated using the finite element method (FEM) for ΔVch = 0.5 V. In this
case, voltages Vch1 = Vch + ΔVch/2 and Vch2 = Vch − ΔVch/2 were assigned to
electrodes Ch1 and Ch2, respectively, to have a common bias of 1.5 V at the bottom
of the central microchannel.

The surface of the liquid helium filling the microchannels was charged with elec-
trons produced by thermal emission from a tungsten filament placed a fewmillimeters
above the device, while a positive bias was applied to the reservoir’s bottom electrodes
and the guard electrode was grounded. Transport of electrons through the central
microchannel was measured by the standard capacitive-coupling (Sommer–Tanner)
method. An AC voltage Vac with frequency f = 99.5 kHz was applied to one of the
reservoir electrodes, while both in-phase and quadrature components of the current
I induced by electron motion in the other reservoir electrode were measured with a
lock-in amplifier. The response of the device was well described by a lumped RC-
circuit [30], in which two capacitances (∼ 1 pF) between the left and right reservoir
electrodes and the charged surface of the liquid are connected in serieswith a resistance
R of the electrons in the central channel. Due to the large size of the reservoirs, which
consisted of a large number of microchannels connected in parallel, the total resistance
of the device is dominated by the resistance of electrons in the central microchannel,
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(a) (a)

(c)

Fig. 1 aMicroscopic image of the microchannel device used in the experiment. Bottom and top gold layers
are indicated by dark and light golden colors, respectively. The central microchannel (CM) connecting
the left and right reservoirs, LR and RR, respectively, is shown in detail in the next panel. b False-color
scanning electron micrograph of the CM region of the device. The bottom of the channel is formed by
two electrically isolated electrodes, Ch1 and Ch2, in the shape of inter-digital capacitor plates. The inset
shows a magnified image of these plates. c Variation in the electrostatic potential along the microchannel
(x-direction) calculated using FEM at the surface of liquid helium in the middle of CM for Vsg = − 0.8 V,
Vch = 1.5 V and ΔVch = 0.5 V. The inset shows a magnified portion of the potential at the surface at the
center of CM (Color figure online)

which justifies the above lumped-RC model. In turn, R depends on the density of
electrons in the central microchannel, which is determined by the number of electrons
in the reservoirs and the voltages applied to different electrodes of the device.

3 Experimental Results

3.1 Phase Diagram of the Electron SystemWithout Applying a Periodic Potential

First, we checked the performance of the fabricated device by applying the same
potential to both electrodes Ch1 and Ch2 of the central microchannel (Vch = Vch1 =
Vch2) and measuring the current in the device I while applying a peak-to-peak AC
voltage Vac = 5 mV to the device (Fig. 2) for various values of Vch and bias Vsg
applied to the split-gate electrode of the central microchannel. To understand this
diagram, it is convenient to use a simplified capacitance model to find the relationship
between the density of electrons in the central microchannel and voltages applied
to different electrodes of the device [23]. First, we define the total capacitance of
the liquid surface in the central microchannel CΣ = Cch + Csg, where Cch and Csg
are capacitances between the liquid surface and the channel’s bottom and split-gate
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Fig. 2 Magnitude of electron current I measured as a function of split-gate electrode potential Vsg and
channel potential Vch = Vch1 = Vch2 at T = 0.86 K. The dashed (white) line shows potential threshold
values for channel opening, as described in the text (Color figure online)

electrodes, respectively. It is also convenient to introduce the dimensionless coupling
constantsα = Cch/CΣ andβ = Csg/CΣ ,which satisfy the obvious relationα+β = 1.
Then, the potential at the uncharged liquid surface can bewritten as Vb = αVch+βVsg.
When the device is chargedwith electrons, the potential of the charged liquid surfaceVe
must be the same everywhere, owing to highmobility of the surface electrons on liquid
helium. The value of Ve is determined by voltages applied to the reservoir’s bottom
and guard electrodes and the number of electrons in the reservoir, and is assumed to
be fixed once the device is charged. Note that occasionally, loss of electrons from the
device is observed, which is reflected in discontinuous jumps of the measured current
I . Such data are not considered here. Then, by the definition of capacitance, we can
define the total charge Q of electrons in the channel Q = CΣ(Ve − Vb). A further
simplification can be made by assuming a uniform density distribution of electrons in
the channel, that is, Q = −ensS, where ns is the areal density of surface electrons,
e > 0 is the electron charge and S is the channel area. Such a parallel-plate capacitance
approximation is partially justified by a large aspect ratio (∼ 10) of the wide, shallow
microchannel used in our device. Using Cch = εε0S/d, where d = 550 nm is the
height of the microchannel in our device, ε = 1.056 is the dielectric constant of liquid
helium and ε0 = 8.85 × 1012 F/m is the permittivity of free space, we obtain the
relation

ns = εε0

αed

(
αVch + βVsg − Ve

)
. (1)

The above equation is useful to characterize the device and to estimate various
quantities. For example, the maximum density of electrons corresponds to the condi-
tion Ve = Vsg, in which electrons cease to be confined across the microchannel by the

split-gate potential, from which we find n(max)
s = εε0(Vch − Vsg)/(ed). In contrast,

the zero density of electrons in the central microchannel corresponds to the condition
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αVch + βVsg = Ve, which determines the threshold value of the channel voltage for
given values of Vsg and Ve

V (th)
ch = 1

α
Ve − 1 − α

α
Vsg. (2)

Below this threshold value, the potential at the uncharged surface in the central
microchannel Vb is lower than Ve; therefore, the central microchannel is completely
depleted of electrons and the current I in the device is zero. The experimental values of
V (th)
ch are plotted in Fig. 2 with a dashed (white) line. By fitting this line using Eq. (2),

we obtain Ve = 0.92 V and α = 0.77 (therefore β = 0.23).
Above the threshold line in the Vsg −Vch plane, see Fig. 2, the current in the device

is determined by the resistance R of electrons in the microchannel, which in turn
depends on the phase of the electron system. For weak confinement of the electron
system, which corresponds to lower values of Vch and more positive values of Vsg, the
system is in the liquid phase. This corresponds to low resistance R and large current I ;
see Fig. 2. For stronger confinement of the electron system,which corresponds to larger
values ofVch andmore negative values ofVsg, the systemcrystallizes into aWS [24,31].
As a result, the resistance R of electrons in the central microchannel increases due
to the formation of the commensurate dimple lattice, and the measured current I
drops significantly. A spectacular behavior is observed in the intermediate voltage
range, where the current I exhibits a fringed pattern; see Fig. 2. This phenomenon
was identified as the re-entrant melting of the WS [25,26]. As the confining potential,
therefore the width of the electron system in the microchannel, is varied by the voltage
applied to the electrodes, the WS in the microchannel undergoes intermittent melting
as a result of increased fluctuation of electron positions between stable configurations
corresponding to different numbers of electron rows across the channel. Therefore,
the fringes, which are nearly parallel to the threshold line, see Fig. 2, can be identified
by the different number of electron rows in the microchannel. It is worth noting that
deep in the WS phase region the threshold line slightly deviates from the fitting line.
Apparently, that is because a continuous electron distribution approximation, which
is used to derive Eq. (2), may not work so well for the case of a few rows of electrons
in the WS state, where the granular nature of electrons has to be taken into account.

3.2 Effect of Periodic Potential

Next, we investigate the effect of a spatially periodic potential applied to electrons in
the microchannel on the current. To do this, we apply potentials Vch1 = Vch+ΔVch/2
and Vch2 = Vch − ΔVch/2 to electrodes Ch1 and Ch2, where Vch = 1.5 V is a
fixed common bias applied to two electrodes, and ΔVch can be varied from 0 to
2 V. The absolute value of the current I in the device is plotted in Fig. 3 for vari-
ous values of ΔVch and Vsg. For ΔVch � 0.7 V, we observe fringes of current due
to the re-entrant melting of the WS, as described earlier. For the sake of illustra-
tion, the solid (red) line plots the measured current I versus Vsg for ΔVch = 0.25 V.
For ΔVch � 0.7 V, the behavior becomes drastically different; see Fig. 3. The re-
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Fig. 3 Magnitude of electron current I measured at T = 0.86 K for driving AC voltage Vac = 0.5 mV
as a function of the split-gate electrode potential Vsg for different values of potential difference
ΔVch = |Vch1 − Vch2| between channel electrodes Ch1 and Ch2. The common bias for the two channel
electrodes is fixed at Vch = 1.5 V. Solid (red) line shows current I versus Vsg measured at a fixed value
ΔVch = 0.25 V. Dashed (white) line shows potential threshold values for the channel opening, as described
in the text (Color figure online)

entrant melting fringes disappear and the measured current I increases significantly
to a value comparable to that for electrons in the liquid phase (c.f. Fig. 2). This
behavior might suggest that the application of a sufficiently strong periodic potential
suppresses crystallization of the electron system into the WS phase. Under contin-
uous electron distribution approximation, the onset of charging of electrons in the
central microchannel ΔV (th)

ch can be expressed similarly to Eq. (2). Considering the
contribution to ΔVch by electrodes Ch1 and Ch2, the potential threshold line can be
expressed as

ΔV (th)
ch = 2

γ

(−Ve + αVch + βVsg
)
, (3)

where γ is the coupling constant maximum from the Ch2 electrode. The dashed line
plotted in Fig. 3 indicates the potential threshold line determined by the experimental
values of ΔV (th)

ch in the region of ΔVch ≥ 0.7 V. By fitting this line with Eq. (3), we
obtain γ = 0.02. For lowΔVch, where signatures of theWS phase are still prominent,
again there is a deviation of the threshold line from the fitting line, suggesting that
granular nature of electrons cannot be ignored in this regime.

To understand the effect of the spatially periodic potential on the electron sys-
tem, it is instructive to estimate the variation in the electron density ns in the central
microchannel using the parallel-plate capacitance approximation. As described ear-
lier, the electron density can be estimated as ns = ε0ε (Vb − Ve) /(αed), where the
potential Vb at the uncharged surface of liquid helium in the central microchannel
can be calculated numerically using the FEM; see Fig. 1c. We find that at the mid-
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dle of the channel the density varies nearly sinusoidally with average value n̄s and
amplitude Δns . In particular, for Ve = 0.92 V, Vsg = − 0.4 V, Vch = 1.5 V and
ΔVch = 0.7 V using the above approximation we estimate n̄s = 3.9 × 1013 m−2 and
Δns = 0.4 × 1013 m−2. For an infinite 2D electron system, the melting of the WS is
expected to occur when the value of the plasma parameterΓ = e2

√
πns/(4πε0εkBT )

exceeds 130 ± 10 [13,32]. For T = 0.86 K, the critical density of electrons corre-
sponds to ns = 1.4 × 1013 m−2. Therefore, a small variation in electron density due
to the applied periodic potential estimated above cannot cause melting of WS for an
infinite electron system. On the other hand, as was pointed out earlier, the variation
in lateral confinement of the electron system in the microchannel can cause a loss
of the long-range crystalline order in the quasi-1D WS due to structural transitions
between two stable configurations of the electron lattice corresponding to changing
the number Ny of electron rows in the channel by one [25,26]. This is exactly the
mechanism that explains the phenomenon of re-entrant melting in this system. There-
fore, one can expect that a variation in Ny along the microchannel caused by the
applied periodic potential can induce a similar loss of long-range positional order,
which in turn strongly changes the transport of the electron system observed in the
experiment. For simplicity, we assume that the smallest reciprocal lattice vector of
the WS points in the x-direction. The number of electron rows can be estimated as
Ny = (4/3)1/4 w

√
ns , where w is the width of the electron system in the microchan-

nel. For Ve = 0.92 V, Vsg = − 0.4 V, Vch = 1.5 V andΔVch = 0.7 V, we estimate that
w varies from 3.63 to 3.54µm, and Ny changes from 25 to 23. Therefore,ΔNy ≈ 2. In
other words, the variation in the confining potential due to an applied periodic poten-
tial with ΔVch = 0.7 V is sufficient to cause a structural transition between Ny- and
(Ny +1)-row configurations, which increases fluctuations in the positions of electrons
and suppresses nonlinear transport features usually associated with an electron system
in the WS phase.

To confirm suppression of nonlinear transport features associated with the crys-
talline ordering of the electron system, we measured the current I as a function of
the driving amplitude Vac in the presence of periodic potential for different values of
ΔVch. A typical set of such I V curves is shown in Fig. 4 for four different values
of ΔVch = 0, 0.7, 1.0 and 1.26 V. Without the periodic potential (ΔVch = 0), the
I V curve clearly shows two characteristic features of nonlinear transport, namely a
BC plateau of current due to coherent emission of ripplons by the driven WS and a
sharp rise of current due to sliding of the WS from the commensurate dimple lattice.
Application of the periodic potential suppresses both features of nonlinear transport
of the WS. In particular, for sufficiently large ΔVch � 0.7 V, both features essentially
disappear, and the electron transport approximates that of the electron system in liquid
phase. This agrees with the suppression of re-entrant melting described earlier.

4 Discussion

The re-entrant melting, which results from competition between stable configurations
corresponding todifferent numbers of electron rows, is particularly important in studies
of finite-size crystalline systemswhere the spatial order of particles is strongly affected
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Fig. 4 Magnitude of electron current I measured at T = 0.86 K as a function of peak-to-peak driving AC
voltage Vac at f = 99.5 kHz for different values of ΔVch. The common bias for the two channel electrodes
was fixed at Vch = 1.55 V, while the split-gate voltage was fixed at Vsg = − 0.25V (Color figure online)

by their confinement [31]. The interplay between the electron lattice configuration and
confining potential is an interesting problem of structural phase transitions [33]. In our
experiment, the confinement is spatiallymodulated by an external periodic potential of
varying strength. A characteristic feature of our observation is a threshold value of the
amplitude of the periodic potential above which the nonlinear transport of the electron
systemassociatedwith its crystalline ordering is suppressed.Our estimations presented
above show that this corresponds to about 10% variation in the electron density in the
microchannel and variation in the number Ny of electron rows across the channel of the
order one. More accurate estimations could be made by calculating the distribution of
the electrical potential and electron density across themicrochannel (y-direction) using
the FEM [26,30]. However, to properly account for the granular nature of electrons,
molecular dynamics (MD) calculation is preferable [31]. Therefore, we did not try to
improve the continuous density approximationmodel used in the previous section.MD
calculations for the electron system in our device are currently under development.

As demonstrated in our work, the employed microchannel device can be used to
study structural phase transitions in quasi-1D electron systems. Also, we are interested
in using similar devices to study the FK model employing a 1D chain of electrons
subject to the periodic potential. Of particular interest is the realization of an incom-
mensurate case where the ratio of the mean distance between electrons to the spatial
period of potential is equal to the “golden ratio” (

√
5 + 1)/2. This is the subject of

future experimental efforts.

5 Summary

We have investigated the transport properties of a quasi-1D WS on the surface of
liquid helium confined to a 5-µm-long microchannel and subjected to an applied
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electrostatic potential with periodicity of 1 µm along the channel. Nonlinear features
of WS transport were suppressed by increasing the potential amplitude. We attribute
this observation to structural transitions and suppression of the crystalline ordering of
the electron system induced by the spatially modulated confinement.
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