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Abstract

Optical nanofibers (ONFs) interfaced with atoms have found numerous applications for
the development of quantum technologies. They feature a strong evanescent field at their
waist, thereby providing an intense and tightly focused beam over long distances. This
can be used to achieve strong interactions between light and matter, enabling trapping,
probing, and control of atoms along the waist. However, little experimental work has
been done with the higher-order fiber guided modes (HOM). These feature inhomoge-
neous polarization distributions around the waist and some carry more than ~ of angular
momentum (AM). Owing to the intense field gradient in their evanescent field, ONFs
make excellent platforms to excite quadrupole-allowed transitions which could be used to
store high-density information encoded on the AM of guided light. We predicted a tran-
sition probability up to 6 times stronger than for free-space beams using the fundamental
mode and up to 4 times stronger using linearly polarized HOMs. We also studied a single-
color, two-photon transition at 993 nm between the 5S1/2 and 6S1/2 atomic levels in a hot
rubidium vapor and showed its suitability as a frequency reference. We experimentally
verified the particular selection rules for this transition and showed that they may be used
to characterize the polarization at the waist of an ONF embedded in a cloud of atoms
formed by a magneto-optical trap. Finally, we developed a method to generate HOM-like
beams in free-space, inject them into an ONF, and decompose the modal excitation at
the output via transfer matrix calculation. This approach combined with absorption of
guided-light by cold atoms may be used to infer the mode excitation at the waist and
allow us to selectively excite HOMs.
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A-H Anti-Helmholtz

AOM Acousto-optic modulator
APD Avalanche photo-diode
ATS Autler-Townes splitting
BB Beam blocker
BD Beam displacer
BS Beam splitter

CCD Charge coupled device
CF flange ConFlat flange

CM Concave mirror
CMOS Complementary metal-oxyde semiconductor
CVB Cylindrical vector beam
CW Continuous wave

DLCZ protocol Duan-Lukin-Cirac-Zoller protocol
DM Dichroic mirror

DSM D-shaped mirror
ECDL Extended cavity diode laser

EH Electric hybrid
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MFC Mass-flow controller
MMF Multimode fiber
MOT Magneto-optical trap
NA Numerical aperture
NIR Near infrared

OAM Orbital angular momentum
ONF Optical nanofiber
PBS Polarizing beam-splitter
PCL Plano-convex lens
PD Photodiode

PDC Phase discrepancy compensation
PID controller Proportional integrate derivative controller

PM fiber Polarization maintaining fiber
PMT Photo-multiplier tube
PP Polarization paddle

PVC Polyvinyl chloride
QWP Quarter-wave plate

RF Radio-frequency
RMS Root-mean square
SAM Spin angular momentum

sCMOS Scientific complementary metal oxide semiconductor
SEM Scanning electron microscope

Sh Shutter
SLM Spatial light modulator

SPCM Single-photon counting module
TE Transverse electric
TM Transverse magnetic

TOF Time-of-flight
TRM Transfer matrix
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UV Ultraviolet



Nomenclature

n1 Refractive index of the fiber core
n2 Refractive index of the fiber cladding

neff Effective refractive index
e Elemental electric charge (1.602 177× 10−19 C)
r Position vector
α Damping coefficient
κ Magnetic field gradient
ε0 Free space permittivity (8.854 188× 10−12 Fm−1)
χa Scalar polarizability

E(r) Electric field
U(r) Potential energy

Ω Rabi frequency
Ω̄ Root-mean-square Rabi frequency
ω Angular frequency
ω0 Resonant angular frequency for a given transition
ωL Angular frequency of a laser beam
ωD Doppler shift
ωcool Cooling beam frequency
ωrep Repumping beam frequency
δ Frequency detuning from resonance
λ Wavelength
µB Bohr magneton (9.274 009× 10−24 J T−1)
k Wavevector of a light field
k0 Wavevector of a light field in vacuum
F Force
B Magnetic field amplitude
E0 Amplitude of an electric field
U Potential energy
Γ Decay rate of the excited state

Γs Scaterring rate
ρee Population in the excited state
β Modal propagation constant inside an optical nanofiber
a Fiber radius

∇T,cyl Transverse Laplace operator
I Intensity

Isat Saturation intensity
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xii Nomenclature

Jl Bessel function of the first kind
Yl Bessel function of the second kind
Il Modified Bessel function of the first kind
Kl Modified Bessel function of the second kind
E Spatial envelope of the electric field
H Spatial envelope of the magnetic field

Θz Tapering angle
zb Beating length
W Waist
K Kinetic energy
T Temperature
TD Doppler limited temperature

RSP Detector’s response
Vmeas Measured voltage
Rload Load resistance
D Distance between lens and MOT
kB Boltzmann constant (1.3806 485× 10−23 m2Kgs−2K−1)

vrms Root-mean-square velocity
M Atomic mass
h Planck constant (6.626 070× 10−34 m2Kgs−1)
~ Reduced Planck constant (1.054 718× 10−34 m2Kgs−1)

Qij Components of the electric quadrupole moment tensor
ηosc Enhancement factor of the oscillator strength
P Power
S Stokes vector
T Mueller matrix for a transformation

Eref Electric field of the reference beam
Iref Intensity of the reference beam
Esig Electric field of the signal beam
Isig Intensity of the signal beam
Itot Intensity of the combined beams
ktilt Difference between the reference beam and signal beam wavevectors
d Fiber diameter



"A mode is a mode, is a mode, is a mode."
J. P. Dowling (June 2017)
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Chapter 1

Introduction to Optical Nanofibers1

The development of quantum-based devices is becoming increasingly necessary for future
technological advances and, as a result, enormous effort is being made to find suitable
experimental platforms, one of which is optical nanofibers (ONFs) interfaced with cold
neutral atoms [1]. ONFs [2] are increasingly being used in cold atom experiments due
to their versatility and the advantages they have when developing all-fibered systems
for quantum technologies. They provide researchers with a method for overcoming the
Rayleigh range for achieving high intensities in a tightly confined beam over a relatively
long distance and can act as a noninvasive tool for probing cold atoms. These devices,
as described in the following, have been used for atom probing [3–5], manipulation and
trapping [6–8], the study of atom-dielectric surface interactions [9, 10], and the observation
of nonlinear optics phenomena in atomic media [11, 12]. The functionality of ONFs
in relation to the realization of atom-photon hybrid quantum systems [13–17] is also
becoming more evident as some of the earlier technical challenges are surpassed.

In what follows, a comprehensive description of the state-of-the-art of the ONF-neutral
atom field is presented. First, a description of the composition of a nanofiber is given and
the methods available for its fabrication are briefly described. Some of the numerous
advantages offered by such a device as compared to tightly focused, free-space beams are
discussed. A summary of applications in which these fibers have been interfaced with hot
atomic vapors and cold atomic systems are then presented. Very recent work on nonlinear
optics phenomena is also discussed, such as electromagnetically induced transparency
(EIT) and the associated slow light feature that led to the realization of ONF-based
atomic memories. Finally, we provide some insight on work realized exploiting the higher
order modes (HOM) of an optical nanofiber, an overlooked part of the field which is at
the heart of this PhD thesis. The chapter ends with a conclusion section that clarifies the
focus of the work presented here.

1This chapter was adapted from the work published in T. Nieddu, V. Gokhroo, and S. Nic Chormaic,
Optical nanofibers and neutral atoms," J. Opt. 18, 053001 (2016) [1]. T. Nieddu wrote the review article
under the supervision of V. Gokhroo and S. Nic Chormaic.
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Figure 1.1: Schematic of an ONF. Three parts, indicated by the red dotted lines, can be
distinguished: the pigtail, the taper, and the waist. The original core essentially vanishes
at the waist where it is replaced by the former cladding.

1.1 Optical Nanofiber Basics

Fabrication of an ONF usually consists of heating a commercially available optical fiber,
stripped of its acrylic coating, to a temperature close to the glass melting point (i.e.,
1550◦C for silica). Under these conditions, the stripped region of the fiber enters a plastic
regime and can be elongated without breaking. As the pulling process is carried out,
three regions appear: the pigtail, the taper, and the waist. The composition of an ONF
is sketched in Fig. 1.1.

The pigtail consists of the unmodified part of the original optical fiber. In this region,
the refractive index difference between the core and cladding is typically small; the core,
with refractive index, n1 ≈ 1.46, is made from doped silica and has a slightly larger
refractive index than that of the cladding, n2 ≈ 1.45, made out of silica, in order to
ensure conditions for total internal reflection are met. In general, n1− n2 << 1 and light
guided in this region is said to be in the weakly guiding regime. The second region, called
the taper, is a transition region in which the diameter of the original core reduces with
the taper length, until it becomes so negligible it can be viewed as having vanished. At
this point, the former cladding becomes the new core, thereby forming the third region or
waist. The waist, with its core made out of the former cladding, i.e., silica, is clad by the
surrounding medium, which is viewed as the vacuum throughout this PhD work. This
medium needs to be of lower refractive index than silica in order to allow guided-light to
propagate within the ONF, and we have n1 ≈ 1.45 and n2 = 1. Due to the large refractive
index difference between the core and cladding, light propagating in this region is said to
be in the strongly guiding regime. Depending on the wavelength of the light launched into
the fiber, and the diameter of the waist, a significant evanescent field can be generated
[18]. This property finds a large range of applications which shall be discussed further in
this chapter.

Several ONF fabrication methods have been reported in the scientific literature [19–26].
The choice of a specific method generally depends on one’s needs, aims, and resources.
For cold atom experiments, the so-called flame-brushing technique [20, 25] tends to be
preferred over others as it offers fine control over both the taper shape and the waist size.
Routinely, ONFs with waist diameters as small as 350 nm can be fabricated. Similar
advantages were recently reported using a microheater-based fiber-pulling rig [27].
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To avoid deterioration of the guiding properties of an ONF during the fabrication
process, the so-called adiabatic criterion needs to be respected [28]. Previously, our group
calculated the adiabatic criterion for fabrication of near-lossless nanofibers to permit the
propagation of the first two families of modes, namely the linearly polarized (LP) modes,
LP01 and LP11 [29], for the case of an 80 µm diameter pretapered fiber. The technique
was later refined by Ravets et al., using optical fibers with a 50 µm diameter cladding [30].
They obtained HOM propagation efficiency in the LP11 family up to 97.8%. Hoffman et al.
subsequently reported fabrication of ultrahigh transmission ONFs for efficient support of
both the fundamental mode and the first group of HOMs [31]. They observed the spatial
evolution of HOMs in the LP11 group, over the whole fiber length, via Rayleigh scattering
imaging [32]. With this method, they were able to identify and control modal propagation
in the LP11 group. Nagai and Aoki proceeded to further optimize the tapering process
by adjusting the tapering angle during the pull in order to closely match the adiabatic
criterion for a given fiber diameter, reducing the overall length of the taper region [26].
This procedure was originally developed for fundamental mode nanofibers, but should, in
principle, be easily extended to fabricate fibers for higher order modes. A more detailed
description of adiabatic tapering will be presented in Chapter 2 specifically for a HOM-
ONF that we fabricated and installed in the cold atom system used throughout this thesis
work.

1.2 Probing Atoms using ONFs

ONFs have attracted considerable interest for particle trapping and manipulation and,
more recently, for the development of atom-based quantum technologies. Such devices,
being by design photonic waveguides, are particularly praised for their potential role as
efficient and reliable photonic communication channels between distant quantum systems
[33]. Atoms localized close to the waist’s surface can emit light that couples preferentially
to the guided modes of the fiber [3, 34, 35]. This, in turn, can enhance or inhibit the
photon emission rate [36], depending on the orientation of the induced dipole, and can be
engineered to generate a lateral translation-invariant force on the atoms [37]. The coupled
photons in these modes are correlated in either a bunching or an anti-bunching fashion,
as demonstrated experimentally by Nayak et al. [38]. Due to the significant evanescent
field produced at the waist, the guided light can interact with atoms in its vicinity via
absorption [39].

Extensive work on in-fiber spectroscopy of hot vapors [40–43] has also been done.
However, introduction of an ONF into an atomic vapor often results in the atoms adsorb-
ing to the fiber’s surface, thereby reducing its efficiency as a probing tool. Several ways of
dealing with this problem have been explored. For example, desorption of Rb atoms was
demonstrated by coupling low power light that is blue-detuned from an atomic resonance
into the ONF [41], or by placing the fiber on a flange-mounted heater [44]. Alternatively,
it was also proposed to switch to a vapor of metastable xenon atoms [45], as the noble
gas interacts less with the fiber. Saturated absorption at the nW level was shown in this
system.

Due to the ultra-low pressures needed in cold atom experiments in contrast to vapor
experiments, the problem of atom adsorption on the fiber does not occur to a detrimental
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level. This makes the ONF an excellent tool to probe and characterize atom clouds created
in a MOT [46, 47]. Our group was particularly active in this field of research [4, 5, 48],
using an ONF embedded in a cold atomic system to measure the temperature of a cloud
of 85Rb atoms via several different techniques. In [5], temperature variations of the order
of µK created by changes in the cooling lasers’ alignment, intensities, or detuning, were
detected by comparing the fluorescence signals coupling into the ONF throughout the dif-
ferent stages of a release-recapture process. A dark-MOT [48] of the same atomic species
was also characterized using similar methods. Later, Grover et al. [49] performed tem-
perature measurements in a MOT of 87Rb atoms. The characterization method, although
relying on fluorescence collected from an ONF, used a correlation function to extract the
velocity of atoms surrounding the fiber and, hence, their temperature. It has also been
proposed to use an ONF as position sensors of trapped atoms in an optical lattice [50].

The above-mentioned intense optical field at the waist can be created even for low
input powers. This can be used for exploring nonlinear optics phenomena in atomic media,
which is in stark contrast to the power requirements for similar experiments performed
with free-space beams, i.e., typically a few mW, giving intensities of the order of ≈ 10
mW/cm2 for tightly focused beams. Several years ago, our group made this evident by
showing Autler-Townes splitting (ATS) of the 5S1/2 → 5P3/2 transition, when probing
the 5P3/2 → 5D5/2 transition via a nanofiber-mediated two-photon process in laser-cooled
87Rb atoms [11]. The ATS appeared for input powers as low as 20 nW and, in addition,
frequency up-conversion from 776 nm to 420 nm was observed at powers as low as 0.2
nW, corresponding to intensities at the waist of the order of 104-105 mW/cm2.

1.3 Nanofiber-Based Traps for Cold Atoms
The interaction of atoms with an evanescent light field has long been known [51–55]. In
the 1990’s, it was proposed [56], and later demonstrated [57], that atoms could be guided
inside a hollow-core fiber using the optical dipole force resulting from the interaction with
the guided light. Later, Ito et al. [58] designed a similar experiment using blue-detuned
light to repel atoms from the fiber’s inner surface and guide them along the center of the
core. Loading atoms inside a fiber is nontrivial and, to overcome some of the limitations,
Balykin et al. [59] proposed trapping 133Cs atoms outside the ONF by propagating a
red-detuned laser beam in the fundamental guided mode (i.e., HE11). This mode creates
a dipole force gradient within the evanescent field which attracts the surrounding atoms
towards the fiber.

To understand how atoms can be trapped in the vicinity of an ONF’s waist using a
combination of beams detuned from resonance, it is necessary to identify the forces at
play. Consider a single atom placed in an oscillating electric field, E(r), such that a dipole
moment, −er, is induced in the atom. Mathematically, we have [60]

− er = ε0χaE(r), (1.1)

where e is the fundamental electric charge, ε0 is the electric permittivity in vacuum and
χa is the scalar polarizability. The interaction between this dipole and the electric field
yields a potential energy, U(r), given by

U(r) =
1

2
er . E(r), (1.2)
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where the factor of 1/2 arises due to the dipole moment being induced rather than per-
manent. Assume the electric field is a plane wave, propagating along the z-direction and
polarized in the x-direction with angular frequency, ω, and wave number, k, with a field,
E(r) = E0(r) cos(ωt − kz)êx. Then, the force acting on the atom in the z-direction is
expressed as

Fz =
−∂U
∂z

= −ex
2

∂E

∂z

= −ex
2

[
∂E0

∂z
cos(ωt− kz) + kE0 sin(ωt− kz)

]
.

(1.3)

The expression in Eq. (1.3) can be written with the dipole moment expressed in terms of
its components on the Bloch sphere and time-averaged to get the final expression for the
forces as (see for example p.198 of [60] for a detailed development)

F̄z =− ~δ
2

Ω

δ2 + Ω2/2 + Γ2/4

∂Ω

∂z

+
~kΓ

2

Ω2/2

δ2 + Ω2/2 + Γ2/4
,

(1.4)

where Γ is the decay rate of the excited state, Ω is the Rabi frequency, and δ = ωL −
ω0 is the detuning between the laser frequency, ωL, and the atomic transition resonant
frequency, ω0, of the considered transition. The first term of Eq. (1.4) describes the dipole
force, whereas the second term is the scattering force, which plays a central role in laser
cooling processes. It is important to note that the dipole force depends on the gradient
of the electric field intensity and the frequency detuning. For negative detuning (i.e., a
red-detuned beam), an atom placed in the vicinity of the ONF and interacting with its
evanescent field will experience a force pointing in the same direction as the gradient of
intensity, i.e., towards the fiber’s center. For fibers with a waist diameter roughly half
the light’s wavelength, this force can be balanced by the centrifugal force acting on atoms
revolving around the ONF [59] and, hence, can be used to trap them. However, the
number of atoms that can be trapped using this scheme is restricted to those possessing
an initial angular momentum along the fiber axis within an appropriate range. Le Kien
et al. [61] proposed an improved version of the ONF trap, relying on a two-color scheme:
a red-detuned beam to attract the atoms towards the ONF and a blue-detuned beam
to repel and prevent them from sticking to its surface. In this case, the van der Waals
potential created by the fiber [9, 10] acts together with the red-detuned beam to attract
the atoms, while the blue-detuned beam prevents them from sicking to its surface.

The experimental achievement of the two-color trapping scheme was made in 2010 [6].
As depicted in Fig. 1.2, laser-cooled 133Cs atoms were trapped around the waist of an
ONF using the evanescent field resulting from the combination of a blue-detuned beam
and two counter-propagating red-detuned beams with respect to the 133Cs D2 line. The
trapping scheme was done in a collisional-blockade regime [62], which allows only one atom
at most per trapping site at a time. Approximately 2,000 atoms were estimated to be
trapped around the nanofiber. Atoms trapped in this configuration showed ground state
coherence times on the order of milliseconds [63]. This trapping scheme was extended to
create a conveyor belt [8] and led to the transportation of cold caesium atoms over a few
mm along the ONF. Lee et al. later adapted the two-color scheme to trap 87Rb atoms
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Figure 1.2: Principle behind the experimental implementation of the first ONF-mediated
atom trap. a) Layout of the experimental set-up and schematic of the standing wave trap-
ping sites. The counter-propagating red-detuned beams create trapping sites, while the
blue-detuned beam prevents atoms from sticking to the surface of the fiber. b) Fluores-
cence image of trapped 133Cs atoms in the evanescent field of an ONF. APD: Avalanche
photodiode, BS: Beam-splitter, DM: Dichroic mirror, IF: Narrow-band infrared filter.
Reproduced from [6].

[64]. They reported trapping of only 300 atoms, 7 times less than reported in [6] for 133Cs
atoms. This was attributed to the difference in atomic structure between 133Cs and 87Rb,
the latter being subject to larger light shifts. It was also proposed to use the fictitious
magnetic field generated by a nanofiber-guided light field in combination with an external
magnetic bias field to create trapping potentials along the waist [65].

The above-mentioned light shifts can be problematic for the transfer of coherent in-
formation over long distances [66]. One solution is to use the so-called magic wavelengths
[67]. When the trapping laser is operating at these specific wavelengths, hyperfine levels of
interest undergo the same AC Stark shift, thus leaving the transition frequency unchanged.
Several groups have been working on perfecting these state-insensitive traps, showing im-
proved trap lifetimes and lower trapping powers in the two-color scheme for both rubidium
and caesium atoms [7, 66, 68, 69]. Although extremely efficient, state-insensitive traps
are restrictive as one is required to work with a specific trapping wavelength.

1.4 Collective Effects and Atomic Memories

Achievement of a fiber-based atom trap can be seen as a stepping-stone towards more
complex experiments. With this tool at hand, researchers are able to study 1D-arrays of
atoms periodically positioned in the vicinity of a nanofiber waist and associated collective
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effects. For example, two groups demonstrated Bragg reflection from an atomic mirror
created by means of an ONF-mediated atom trap [15, 16]. Note that collective effects
have also been studied in systems which did not involve fiber-trapped atoms. Solano et
al. recently demonstrated sub- and super-radiance in a MOT, showing that atoms in
the vicinity of a nanofiber could interact over long distances by exchanging fluorescent
photons coupled to the guided modes [17].

The development of an efficient quantum memory is fundamental to the creation of
any quantum-based computing system. In a quantum network, a quantum memory acts
as a node connecting quantum channels in which information is written, stored, and read
out [70]. Quantum information is easily lost over long distances due to the lossy nature of
photonic channels such as optical fibers. This problem can be resolved by setting quantum
repeaters along a transmission channel [71]. These repeaters rely on heralding photons
which can be detected to indicate a quantum system is entangled, all the while preventing
the collapse of this entanglement when performing the measurement. Light-atom systems
are good candidates for this purpose and extensive work on the implementation of optical
quantum memories, reviewed in [72], has been done to date. Very recently, Corzo et
al. [73] demonstrated heralded collective excitation in an atomic array, paving the way
towards the implementation of an all-fibered DLCZ protocol2 [71].

In particular, it has been proposed to store information carried by light in atoms, via
EIT [74]. This effect, first demonstrated in 1990 with strontium atoms [75], relies, in its
simplest form, on three atomic levels, which can be arranged in the so-called Λ-, ladder-,
or V-configurations [76]. The three atomic levels, which we denote by |1〉, |2〉, and |3〉,
need to be chosen such that the transitions |1〉 → |2〉 and |2〉 → |3〉 are allowed, but
|1〉 → |3〉 is forbidden. If a weak probe field addresses |1〉 → |2〉 and a strong control field
addresses |2〉 → |3〉, then, for a definite range of frequencies, the optical medium becomes
transparent to the probe field. In addition to the induced transparency window, EIT also
features a drastic reduction in the group velocity of the light beam passing through the
material [77]. EIT, and the associated slow light feature, have been generated in atomic
media using the evanescent field at the waist [78, 79]. Our group demonstrated a ladder-
type EIT process in laser-cooled 87Rb atoms [12], using powers below 1 µW in each of
the required beams. Storage of guided light in a cold atomic system using the slow-light
feature was also demonstrated [13, 14]. In [13], fiber-trapped 133Cs atoms were used,
following a trapping scheme similar to that presented in [6]. The probe pulse was stored
and retrieved on demand, with a recovery efficiency of 3%. In [14], a similar experiment
was carried out, this time using cold Cs atoms trapped in a MOT overlapping the waist
of an ONF. The retrieval efficiency of the stored pulse was much better in this case and
reached up to 10%.

2The implementation of the DLCZ protocol relies on three-level systems in atomic ensembles. Similar
to the EIT Λ-configuration, the system has two ground states, |1〉 and |3〉, which can only be connected
via an intermediate excited state, |2〉. An atomic ensemble is initially prepared in |1〉 and excited with
a weak pulse detuned from the |1〉 → |2〉 transition. This probabilistically transfers one atom of the
ensemble to the |3〉 state, emitting a heralding Stokes photon in the process. Two such atomic ensembles
can be excited in a similar manner, for which detection of a Stokes photon in the far field heralds their
entanglement.
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Figure 1.3: Scanning electron microscope image of a nanofiber Bragg grating fabricated
via FIB milling. The fiber has a diameter of ∼ 560 nm and each slit is ∼ 150 nm wide
and ∼ 100 nm deep. Two neighboring slits are separated by ∼360 nm. Reproduced from
[89].

1.5 Fiber-Integrated Cavities

Strong coupling can be viewed as an essential requirement to devise quantum networks
based on neutral atoms [70, 80, 81] and, until recently, free-space cavities were the most
promising method for enabling an atomic system to enter this regime [82]. Although
ONFs offer similar features to those of cavities, albeit in a more scalable manner, there
is an interest to combine both in order to enhance the interaction between the light and
matter. Some proposals have highlighted the advantages of creating a cavity network, in
which each cavity is linked to others via fibers [83, 84]. Le Kien et al. have proposed
an alternative solution, consisting of ONFs with a fiber Bragg grating (FBG) at either
end of the waist [85–87]. The system combines both aspects in one and can be used to
demonstrate the strong coupling regime with relatively low cavity finesse. Such devices
could lead to improvements in the generation of EIT [85], or entangled photons [88],
and thus pave the way to quantum information generation and storage in an all-fibered
network. These proposals are experimentally achievable as Nayak et al. have reported
fabrication of FBG-ONFs using a focused ion beam (FIB) milling technique [89], an image
of which is presented in Fig. 1.3. Kato and Aoki [90] demonstrated strong coupling for a
single trapped atom and an all-fibered optical cavity based on an ONF spliced between
two fiber Bragg grating mirrors.

Another type of ONF-based cavity, the ring cavity, was recently developed [91]. The
principle behind this type of cavity is fairly simple: an ONF is connected to both ends of a
fiber-splitter in order to create a cavity. Using such a device, Ruddell et al. demonstrated
collectively enhanced strong coupling between the guided-light and an ensemble of atoms
trapped in a MOT [91], thereby further illustrating the potential offered by such devices
for future quantum advances.

1.6 Exploiting Higher Order Fiber Modes

Waveguides, such as optical fibers, feature optical modes in which guided light can prop-
agate. The capability of a step-index waveguide to guide light is determined by the value
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of a dimensionless parameter called the V-number [92, 93], defined as

V =
πd

λ

√
n2
1 − n2

2, (1.5)

where d = 2a is the fiber waist diameter, λ is the wavelength of light, and n1, n2 are the
refractive indices of the fiber core and cladding, respectively. A waveguide is said to be
single-mode when V < 2.405. Modes that are permitted to propagate are characterized
by their propagation constant, β [2]. Depending on the guiding regime, two families of
modes can be distinguished: (i) the LP family and (ii) the true modes of the waveguide,
namely transverse electric (TE), transverse magnetic (TM), hybrid electric (HE), and
electric hybrid (EH) modes. We will loosely refer to the latter modes as HOMs in the
following.

In standard optical fibers, the refractive index difference between the core and the
cladding is typically small, on the order of 10−3, leading to the aforementioned weakly-
guiding regime. This leads to true modes of a particular LP family to be degenerate in β.
Light propagating in these modes tends to excite combinations of HOMs, interfering to
form the LP modes [92], a selected sample of which are plotted in Fig. 1.4. These families
of modes have very distinct propagation constants. At the waist of ONFs, however, the
refractive index difference between the core and the cladding is much larger, on the order
of 10−1, and light propagates in the strongly-guiding regime. The HOMs are analytic so-
lutions to Maxwell’s equations for a cylindrical, step-index, waveguide; they are no longer
degenerate in β and can, in principle, be selectively excited. The transverse polarization
profiles of the first few modes making the LP01 and LP11 groups are shown in Fig. 1.5.
These modes were simulated for a waist diameter of 700 nm and a wavelength of 780 nm.
Note that, even though four profiles are presented, the LP01 and LP11 families consist of
six modes, as hybrid modes can exist in the so-called even or odd configuration3.

Most experiments carried out so far with nanofibers embedded in atomic systems have
focused solely on exploiting the fundamental modes, i.e., the HE11 modes. To date, our
group has been the only one to report experimental work in which higher-order modes of
an ONF have been shown to interact with cold atoms [94]. This scarcity in experimental
work on HOMs and atoms is mainly due to the fact that, even though no longer degenerate,
the β values for the HOMs within an LP family remain fairly close to that of other modes
within the same LP group. In the example of the modes presented in Fig. 1.5, the β
values are [10.31, 8.78, 8.48, 8.26] × 106 m−1 for the modes [HE11, TE01, TM01, HE21].
As a consequence, light coupled to the HOMs of an LP family tends to cross-talk with
other modes within the same LP family. This makes selective excitation an arduous
task, especially when compared to the relative simple excitation of the fundamental fiber
modes, HE11.

1.6.1 Potential applications for HOMs in atomic systems

Despite the technical challenges associated with HOMs, a large amount of theoretical
work has been carried out in the past few years. Le Kien et al. recently published a full
theoretical characterization of a number of HOMs in an ONF [95]. These modes hold

3The suffix even and odd refers to the parity of the mode function defining the transverse electric field
with respect to a given axis. The horizontal axis is chosen as the reference throughout the thesis.
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Figure 1.4: Electric field profiles of some LP modes. The red and blue colors indicate
positive and negative amplitudes of the fields, respectively. Each mode, LPij, is char-
acterized by two indices, with i indicating the number of pairs of lobes and j being the
radial order. An additional index is used to indicate whether the mode is even, e, or odd,
o.

Figure 1.5: Polarization profiles of true-modes forming the first two LP groups. The
hybrid electric, HE11, mode is shown in its odd configuration and HE21 in its even con-
figuration. Blue represents a low beam intensity and red a high beam intensity.
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promise for a large range of applications. For example, they could be used to improve the
probing of atomic systems [35, 96, 97]. An early theoretical study carried out by Masalov
and Minogin found that fluorescent photons emitted from an excited 85Rb atom close to
the fiber’s surface would preferentially couple to the higher order modes rather than the
fundamental mode [35]. Le Kien et al. recently developed a more complex model of a
similar system, using 87Rb instead of 85Rb [97], and found coupling values nearly three
times lower than those predicted by the simple model used in [35]. In addition, Le Kien
et al. showed that, for an atom close to the fiber waist, its spontaneous emission prefer-
entially couples to the HE21 modes by up to 2 times more than for others modes. This
behavior was valid for fiber radii relevant to the PhD work reported in this thesis. One
issue this brings to light is that experiments limited to single-mode ONFs are effectively
discarding a high percentage of light coupled into them from excited atoms. By using a
HOM-ONF, signals should be increased, making detection of the low light levels typically
involved in, for example, two photon processes, easier to detect.

Atom trapping using HOMs has also been proposed by several groups using different
combinations of modes [98, 99]. Interference patterns resulting from the combination of
two co-propagating, blue-detuned HOMs of LP11, or one of the HOMs and the funda-
mental mode, should yield deeper trapping potentials at lower powers than what can be
achieved in trapping schemes based solely on the fundamental mode [98]. A red-detuned
version of this type of HOM + fundamental mode trap was also proposed by Fu et al. for
a larger waist diameter [100]. Moreover, these modes offer the possibility of engineering
trapping geometries that would allow for better control over the atom trap positions.
This could also provide a mean to overcome limitations of fundamental mode fiber-based
dipole traps that rely on a red-detuned, standing wave configuration yielding trapping
sites separated by half a wavelength. With HOMs, the separation between each atom and
their position relative to the fiber may be controlled by modifying the trapping beams’
polarization [99, 101]. This is depicted in Fig. 1.6, which shows the trap geometries pro-
posed in [99]. The method also relies on a two-color scheme in which counter-propagating
red-detuned beams are in a HOM, while a blue-detuned beam is in the fundamental
mode. One can choose from a periodically spaced ring, a periodic quadrupole, or a
quadruple-helix trap geometry by fixing the red-detuned trapping beams’ polarization to
circular-circular with same handedness, linear-linear, or circular-circular with opposite
handedness, respectively. Several ways of implementing a coherent tractor beam for cold
atoms next to an HOM-ONF have also been proposed [102].

ONFs are highly valuable tools for the study of chiral systems due to the non-zero
longitudinal field component at their waist [103]. In particular, the inhomogeneous polar-
ization profiles that are a feature of HOMs makes them more chiral than the fundamental
mode, and can even lead to superchirality (i.e., more chiral than circularly polarized light,
thought initially to yield maximum chirality) [104]. This superchiral property is present
along the whole length of the waist, a drastic difference from superchirality in free-space,
only theorized until now to be found at the nodes of a standing wave made of circularly
polarized beams [105].

Among the HOMs, hybrid modes (i.e., the HE and EH) are of particular interest for
quantum information encoding. Indeed, in addition to spin-angular momentum (SAM),
which is encoded on the polarization of the guided mode, these modes can also carry orbital
angular momentum (OAM), which, in turn, can lead to a total angular momentum greater
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Figure 1.6: Various geometries achievable in two-color HOM trapping schemes. (a) Both
of the red-detuned counter-propagating beams have circular polarization with identical
handedness yielding periodic ring-like trapping potentials. (b) Both beams have linear
polarization yielding periodic quadrupole-like potentials. (c) Both beams have circular
polarization but with opposite handedness yielding a quadruple-helix trapping potential.
Reproduced from [99].

than ~ [95] (see Fig. 1.7). Quantum information encoding using the OAM of light has seen
tremendous development in the last few years (for a review see, for example, [106, 107]).
The possibility to transfer high-density information encoded on both the SAM and OAM
to a cold atomic system from an ONF is particularly interesting. This perspective is, in
part, what motivated the theoretical work presented in Chapter. 4.

1.6.2 Selective excitation of HOMs

In most of the aforementioned applications, selective excitation of specific guided modes
in the ONF is necessary. A first step towards mode selection comes from tailoring the
value of the V-number. Figure 1.8 shows a plot of the effective refractive index of a mode,
defined as neff = β/k, as a function of V . By monitoring the transmission of light injected
into the optical fiber during the tapering process, the number of propagating modes can
be directly tailored [28, 29, 31]. Note that the fundamental mode is always present.

Excitation of a specific LP family of modes in an optical fiber can be achieved by
inducing birefringence in the fiber via mechanical stress [108], though it is difficult to do
in a controlled manner. Alternatively, Laguerre-Gaussian beams (LG) with appropriate
topological charge and radial order can be created in free-space and launched into the fiber
to excite the same modes [109]. For example, an LG01 beam launched into an optical fiber
will maximally overlap with the LP11 group, thus minimizing chances of cross-talk with
other LP groups. Using a spatial light modulator (SLM) to combine two LG beams with
unitary and opposite topological charge, namely LG01 and LG0−1, leads to the creation of
cylindrical vector beams (CVBs) [110], which can be regarded as the free-space equivalent
of HOMs [111]. Previously, CVBs have been obtained after excitation of higher order
modes in an optical fiber, either via control of the polarization [112] or the phase [113] of
an input LG beam. In subsequent work, Fatemi and Beadie created similar beams using
an optical fiber by first characterizing the mode mixing via interferometric decomposition
of the fiber output and then correcting for it by applying mechanical stress at the input
pigtail of the fiber [114]. Only two methods have been developed to characterize the
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Figure 1.7: Capability of the hybrid modes to carry more than ~ of total angular
momentum. The total angular momentum per photon, jz, is plotted as a function of the
fiber radius, a, for different circularly polarized hybrid modes. Reproduced from [95].

Figure 1.8: Effective refractive index as a function of the V-number for modes in the
first three LP groups.
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modes excited at the waist of an optical nanofiber; One uses Rayleigh scattering from
imperfections at the waist [32], whereas the other uses near-field probing of the waist
with another fiber [115, 116].

1.7 Conclusion

The main focus of this PhD work was to selectively excite the higher order modes in
an optical nanofiber, with particular interest in the LP11 family to study interactions
between atoms and HOMs. This research is of particular importance for applications
such as novel trap geometries, OAM encoding, addressing quadrupole transitions, etc.
The novel trap geometries could, for example, be used to move atoms further or closer
to the waist surface than the conventional two-color dipole trap, thereby allowing one to
tune the photon coupling strength into a guided mode. However, in order to achieve this
goal it is essential to overcome a number of other experimental and technical challenges
and these form the basis of the work presented here.

In Chapter 2, a brief mathematical description of the origin of HOMs in a nanofiber is
provided, including the explicit expressions of their field components in polar coordinates.
The chapter also provides a detailed explanation of the methodology used to fabricate a
high transmission nanofiber supporting up to the first group of HOMs and to install it into
a cold atom setup. Next, some basics behind laser cooling of neutral atoms are provided
in Chapter 3 , along with a description of the cold atom setup used for most of this PhD
work. The characterization of the MOT is additionally detailed.

In Chapter 4, a theory of a quadrupole interaction between a single atom and the
evanescent field at the waist of a nanofiber is presented. The results show that ONFs form
an excellent platform to mediate such transitions, as the transition probability is enhanced
up to 6-fold when compared to free-space beams. The quadrupole excitation may also
be driven by HOMs which leads to speculations about potential future applications for
high-density quantum information encoding.

As the quadrupole excitation described in Chapter 4 could not be studied experi-
mentally due to technical reasons, a similar system involving a single-color two-photon
transition was studied. The results of experiments carried out in a hot vapor and with
a nanofiber embedded in a MOT are presented in Chapter 5. Exploiting the selection
rules for this transition, it may be possible to perform polarization tomography at the
waist, which would be a valuable tool for the improvement of ONF-mediated atom trap-
ping schemes. This could also prove useful for the development of methods to selectively
excite HOMs at the fiber waist.

Chapter 6 presents initial results for interfacing HOMs with cold atoms in a MOT in
order to determine the modes excited at the waist of a nanofiber. Details of the main
technical challenges that were encountered are provided. This led to the development of
an improved experimental setup, designed to generate HOM-like beams in free-space, to
optimize their injection into the nanofiber, and to decompose the fiber output profiles
in terms of its eigenmodes. Preliminary results obtained with the new setup are also
presented.

Finally, Chapter 7 concludes this thesis, summarizing the work achieved so far and
presenting some outlook on both the HOM and the two-photon projects, specifically in
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the context of developing nanofiber-based quantum technologies.





Chapter 2

Optical Nanofibers: Higher Order
Mode Propagation, Fabrication, and
Integration with Cold Atoms

Technical challenges associated with selective modal excitation at the waist of an ONF
have, so far, limited experimental work aimed at interfacing HOMs with atoms. However,
as mentioned in Chapter 1, some higher order modes could potentially offer a series of
advantages compared to the fundamental mode for atom probing [35, 97], trapping [98–
100], or manipulation [102], and for the study of chiral systems [104]. This chapter first
provides a brief mathematical description of the origin of HOMs in a step-index waveguide.
Expressions for the mode profile function components in polar coordinates of both the
electric and magnetic fields are introduced. Since the work presented herein focuses on
the study of the first six true fiber guided modes, each mode type described hereafter
is accompanied by an illustration of the appropriate intensity profile. The fabrication of
a high transmission HOM-ONF is then explained in detail, followed by the description
of its installation inside the ultrahigh vacuum (UHV) chamber that was used for most
experiments presented in this thesis.

2.1 Guided Modes of a Step-Index Fiber

2.1.1 Eigenvalue equations

An ONF can be approximated as a perfectly cylindrical, step-index fiber in which the
refractive index of the core, n1, is larger than the refractive index of the cladding, n2.
Mathematically, the fiber is represented by the following index profile

n(r) =

{
n1, 0 < r 6 a,
n2, a < r <∞, (2.1)

where a denotes the core radius, r is the radial position from the fiber center, and it is
assumed that the cladding radius is infinite. This assumption is common in fiber optics as
the cladding radius is generally around 40 µm to 62.5 µm, which is an order of magnitude
larger than the core radius of a few µm. If the fiber is assumed to be isotropic and source-
free, Maxwell’s equations for light propagating within this system can be reduced to the

17
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following set of Helmholtz equations [92]

(∇2
T,cyl + n2k2 − β2)Ψz = 0, (2.2)

with ∇2
T,cyl = ∇2 − ∂2/∂z2 representing the transverse Laplace operator in cylindrical

coordinates, k = 2π/λ is the wave number, β is the modal propagation constant and
Ψz = {Ez, Hz} represents the z-component of either the electric or magnetic field of the
input light wave, respectively. This equation is separable into its individual components
[92, 93] and solutions may take the form

Ψz = Ψ(r) exp(±ilφ), (2.3)

with Ψ(r) being the radial part and the exponential term representing the azimuthal
part. Here, l = 1, 2, 3, ..., and z, r, and φ denote the longitudinal, radial, and azimuthal
components of the field, respectively. Inserting this into Eq. (2.2) gives

∂2rΨ(r) +
1

r
∂rΨ(r) +

(
n2k2 − β2 − l2

r2

)
Ψ(r) = 0, (2.4)

which is a Bessel differential equation, the solutions of which are Bessel functions of order
l. Two cases can be distinguished, depending on the sign of n2k2 − β2, and their general
solutions can be calculated to yield [93]

Ψ(r) = c1Jl(hr) + c2Yl(hr) if n2k2 − β2 > 0,
Ψ(r) = c3Il(qr) + c4Kl(qr) if n2k2 − β2 < 0,

(2.5)

where h =
√
n2k2 − β2, q =

√
β2 − n2k2, the ci represent constants, Jl and Yl are Bessel

functions of order l of the first and second kind, respectively, and Il and Kl are modified
Bessel functions of order l of the first and second kind, respectively.

For confined propagation of light at the waist, the effective refractive index, β/k0,
should be larger than the cladding’s refractive index; this leads to the case n2k2−β2 < 0.
For r →∞, Il diverges and leads to nonphysical solutions. Therefore, c3 = 0 and we are
left with the term c4Kl(qr) in the radial part of the field, see Eq. (2.3), describing the
exponential decay of the evanescent field at the waist of the fiber.

Solving Eq. (2.2) for the fields in the core yields four eigenvalue equations, corre-
sponding to the four possible guided modes inside a cylindrical optical fiber, namely the
hybrid electric (HE), electric hybrid (EH), transverse electric (TE), and transverse mag-
netic (TM) modes. We list the analytical expressions for their eigenvalue equations here.
The full mathematical development starting from Maxwell’s equations can be found in
Appendix A.
EHlm modes:

Jl+1(ha)

haJl(ha)
=
n2
1 + n2

2

2n2
1

K ′l(qa)

qaKl(qa)
+

(
l

(ha)2
−R

)
, (2.6)

HElm modes:
Jl+1(ha)

haJl(ha)
= −

(
n2
1 + n2

2

2n2
1

)
K ′l(qa)

qaKl(qa)
+

(
l

(ha)2
−R

)
, (2.7)

TE0m modes:
J1(ha)

haJ0(ha)
= − K1(qa)

qaK0(qa)
, (2.8)
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TM0m modes:
J1(ha)

haJ0(ha)
= − n2

2K1(qa)

qan2
1K0(qa)

, (2.9)

with

R =

[(
n2
1 − n2

2

2n2
1

)2(
K ′l(qa)

qaKl(qa)

)2

+

(
lβ

n1k0

)2(
1

q2a2
+

1

h2a2

)2
]1/2

. (2.10)

In these expressions, K ′l denotes dK(qa)/d(qa).

2.2 Components of the Mode Profile Functions
From the mode conditions given in Eqs. (2.6), (2.7), (2.8), and (2.9), it is possible to
get the full expression for the mode profile functions in cylindrical coordinates. In what
follows, the formalism developed in [95] is used. We write the components of the electric
and magnetic fields in the form[

E
H

]
=

1

2

[
E
H

]
exp(−iωt) + c.c, (2.11)

where E and H are spatial envelopes which satisfy the Helmholtz equation. A guided
mode with propagation constant, β, and azimuthal mode order, l, is described by[

E
H

]
=

1

2

[
e
h

]
exp[i(βz + lϕ)], (2.12)

where e and h are defined as the reduced mode profile functions. These functions can
be decomposed in terms of their components in cylindrical coordinates. The notations
r̂ = x̂ cosϕ+ŷ sinϕ, ϕ̂ = −x̂ sinϕ+ŷ cosϕ, and ẑ are chosen to represent the unit vectors
in cylindrical coordinates {r, ϕ, z}, and link them with the Cartesian coordinates {x, y, z}.
The next section gives the explicit expressions for the reduced mode profile functions in
the cylindrical basis.

2.2.1 Hybrid modes

The hybrid modes, HE or EH, possess longitudinal and transverse components with re-
spect to the ONF’s axis for both the magnetic and electric fields. They are defined here for
l > 0. In the first two LP families, namely LP01 and LP11, four hybrid modes are found.
The first pair of hybrid modes are the HE11,e and HE11,o modes, which are degenerate in
β, and form the LP01 group in the weakly-guiding regime. These modes are also called
fundamental modes as they are always present in a step-index ONF. The next pair of
modes, the HE21,e and HE21,o modes, form part of the LP11 group and are also degenerate
in β, even in the strongly-guiding regime. Each of these modes can be quasicircularly or
quasilinearly polarized, the prefix "quasi" being used here to distinguish them from fields
in free-space as these fiber modes have, in general, a nonzero component along the fiber
axis. Explicit expressions for the mode functions in cylindrical coordinates are given for
both polarizations below.
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Quasicircularly polarized hybrid modes

For a quasicircularly polarized hybrid mode, expressions for the full mode functions are
given by

E (flp)
circ = e(flp)eifβz+iplϕ

H(flp)
circ = h(flp)eifβz+iplϕ,

(2.13)

in which the reduced mode profile functions are given by

e(flp) = err̂ + peϕϕ̂ + fezẑ,

h(flp) = fpr̂hr + fϕ̂hϕ + pẑhz,
(2.14)

where f = ±1 is the mode propagation direction, l is the azimuthal mode order, and
p = + or− is defined as the phase circulation direction, essentially indicating the direction
of rotation of a quasicircularly polarized mode.

As mentioned previously, in order to write the expressions for the components of the
reduced mode functions, one needs to calculate the constants A,B,C, and D in Eq. (A.23)
from the eigenvalue equations, and insert the result into Eqs. (A.21) and (A.22). However,
prior to giving the explicit expressions for the components (er, eϕ, ez) and (hr, hϕ, hz), it
is useful to introduce the following parameters

s = l

(
1

h2a2
+

1

q2a2

)[
J ′l (ha)

haJl(ha)
+

K ′l(qa)

qaKl(qa)

]−1
,

s1 =
β2

k2n2
1

s,

s2 =
β2

k2n2
2

s.

(2.15)

Then, we find for r < a

er = iA
β

2h
[(1− s)Jl−1(hr)− (1 + s)Jl+1(hr)],

eϕ = −A β

2h
[(1− s)Jl−1(hr) + (1 + s)Jl+1(hr)], (2.16)

ez = AJl(hr),

and

hr = A
ωε0n

2
1

2h
[(1− s1)Jl−1(hr) + (1 + s1)Jl+1(hr)],

hϕ = iA
ωε0n

2
1

2h
[(1− s1)Jl−1(hr)− (1 + s1)Jl+1(hr)], (2.17)

hz = iA
βs

ωµ0

Jl(hr).
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For r > a

er = iA
β

2q

Jl(ha)

Kl(qa)
[(1− s)Kl−1(qr) + (1 + s)Kl+1(qr)],

eϕ = −A β

2q

Jl(ha)

Kl(qa)
[(1− s)Kl−1(qr)− (1 + s)Kl+1(qr)], (2.18)

ez = A
Jl(ha)

Kl(qa)
Kl(qr),

and

hr = A
ωε0n

2
2

2q

Jl(ha)

Kl(qa)
[(1− s2)Kl−1(qr)− (1 + s2)Kl+1(qr)],

hϕ = iA
ωε0n

2
2

2q

Jl(ha)

Kl(qa)
[(1− s2)Kl−1(qr) + (1 + s2)Kl+1(qr)], (2.19)

hz = iA
βs

ωµ0

Jl(ha)

Kl(qa)
Kl(qr).

The parameter A can be determined from the power in the guided mode. Examples of
such modes are illustrated in Fig. 2.1, which shows the intensity profiles of quasicircularly
polarized HE11 and HE21 modes for an ONF radius of a = 350 nm and a wavelength of
λ = 780 nm. It is clear that, with these parameters, the evanescent field in the HE21

mode is much more intense than in the fundamental mode.

Quasilinearly polarized hybrid modes

Quasilinearly polarized hybrid modes can be described as the combination of a clockwise
and a counter-clockwise quasicircularly polarized hybrid mode. As such, the full mode
functions of such fields are given by [93, 95]

E (flϕpol)

lin =
1√
2

(E (fl+)
circ e−iϕpol + E (fl−)

circ eiϕpol),

H(flϕpol)

lin =
1√
2

(H(fl+)
circ e−iϕpol + H(fl−)

circ eiϕpol),
(2.20)

where the angle, ϕpol, is the phase angle that determines the orientation of the symmetry
axis of the mode profile in the plane transverse to the fiber. We can write

E (flϕpol)

lin = e(flϕpol)eifβz,

H(flϕpol)

lin = h(flϕpol)eifβz,
(2.21)

where e(flϕpol) and h(flϕpol) are the reduced mode profile functions of quasilinearly polarized
hybrid modes, expressed as

e(flϕpol) =
1√
2

(e(fl+)ei(lϕ−ϕpol) + e(fl−)e−i(lϕ−ϕpol)),

h(flϕpol) =
1√
2

(h(fl+)ei(lϕ−ϕpol) + h(fl−)e−i(lϕ−ϕpol)).
(2.22)
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Figure 2.1: Intensity profiles of the first two HE modes with quasicircular polarization.
(a) Top-down view of the quasicircularly polarized HE11 mode’s intensity profile. (b)
Same mode as in (a) viewed in 3-D. (c) Top-down view of the quasicircularly polarized
HE21 mode’s intensity profile. (d) Same mode as in (c) viewed in 3-D. In (a) and (c)
the black circle at the center of the figure indicates the fiber surface. The ONF radius is
a = 350 nm and the wavelength is λ = 780 nm.
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Figure 2.2: Intensity profiles of quasilinearly polarized HE11 modes and respective pari-
ties. (a) Top-down view of the mode’s intensity profile with even parity. The black arrows
represent local polarization vectors. (b) Same mode as in (a) viewed in 3-D. (c) Top-down
view of the mode’s intensity profile with odd parity. The arrows once again indicate the
local polarization of the field. (d) Same mode as in (c) viewed in 3-D. In (a) and (c)
the black circle at the center of the figure indicates the fiber surface. The ONF radius is
a = 350 nm and the wavelength is λ = 780 nm.
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Figure 2.3: Intensity profiles of quasilinearly polarized HE21 modes and respective pari-
ties. (a) Top-down view of the mode’s intensity profile with even parity. The black arrows
represent local polarization vectors. (b) Same mode as in (a) viewed in 3-D. (c) Top-down
view of the mode’s intensity profile with odd parity. The arrows once again indicate the
local polarization of the field. (d) Same mode as in (c) viewed in 3-D. In (a) and (c)
the black circle at the center of the figure indicates the fiber surface. The ONF radius is
a = 350 nm and the wavelength is λ = 780 nm.
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Quasilinearly polarized hybrid modes are often labeled with a "parity" suffix [93],
namely even or odd. The parity is determined by the value of ϕ and corresponds to the
orientation of the mode in the transverse plane. Figure 2.2 shows the intensity of the
field in the transverse plane of the ONF for both parities of the HE11 mode. Figure 2.3 is
similar but for both parities of the HE21 mode.

2.2.2 TE modes

Transverse electric (TE) modes have nonzero components in cylindrical coordinates only
for hr, hz, and eϕ (see Appendix A Section A.2 for a detailed mathematical development).
This yields the full mode functions

E (f) = e(f)eifβz,

H(f) = h(f)eifβz,
(2.23)

with the reduced mode profile functions

e(f) = ϕ̂eϕ,

h(f) = f r̂hr + ẑhz.
(2.24)

The associated mode function components are given explicitly below. For the components
of the electric field at r < a, we have

er = 0,

eϕ = i
ωµ0

h
AJ1(hr), (2.25)

ez = 0.

For the magnetic field components we have,

hr = −iβ
h
AJ1(hr),

hϕ = 0, (2.26)
hz = AJ0(hr).

Beyond the boundaries of the ONF, i.e., r > a, the electric field components are

er = 0,

eϕ = −iωµ0

q

J0(ha)

K0(qa)
AK1(qr),

ez = 0, (2.27)

and the magnetic field components are given by

hr = i
β

q

J0(ha)

K0(qa)
AK1(qr),

hϕ = 0,

hz =
J0(ha)

K0(qa)
AK0(qr). (2.28)
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Figure 2.4: Intensity profile of a TE01 mode. (a) Top-down view of the mode’s intensity
profile. The black arrows represent local polarization vectors. (b) Same as in (a) viewed
in 3-D. In (a) the black circle at the center of the figure indicates the fiber surface. The
ONF radius is chosen to be a = 350 nm and the wavelength is λ = 780 nm.

The intensity profile of a TE01 mode, which belongs to the LP11 family in a weakly-
guiding waveguide, is given in Fig. 2.4. For the used parameters, it can be noted that
most of the field intensity is found in the evanescent field, outside the boundaries of the
ONF. This contrasts with the intensity profiles for the HE11 mode (c.f. Fig. 2.2).

2.2.3 TM modes

In contrast to the TE case, transverse magnetic (TM) modes possess nonzero components
only for er, ez, and hϕ. The full mode functions are given by

E (f) = e(f)eifβz,

H(f) = h(f)eifβz,
(2.29)

with the reduced mode profile functions given by

e(f) = r̂er + f ẑez,

h(f) = fϕ̂hϕ.
(2.30)

explicit expressions for each electric field component for r < a are given by

er = −iβ
h
AJ1(hr),

eϕ = 0,

ez = AJ0(hr), (2.31)
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and for each magnetic field component we have

hr = 0,

hϕ = −iωε0n
2
1

h
AJ1(hr),

hz = 0. (2.32)

When r > a, the electric field components are

er = i
β

q

J0(ha)

K0(qa)
AK1(qr),

eϕ = 0,

ez =
J0(ha)

K0(qa)
AK0(qr), (2.33)

and the magnetic field components are

hr = 0,

hϕ = i
ωε0n

2
2

q

J0(ha)

K0(qa)
AK1(qr),

hz = 0. (2.34)

The intensity profile for the TM01 mode is shown in Fig. 2.5. This mode also belongs
to the LP11 family in a weakly-guiding waveguide. In contrast with the TE01 mode shown
previously, the field intensity is distributed between the outer and the inner part of the
ONF. The evanescent field component is also larger than for an HE11 mode.

2.3 Practical Considerations for the Fabrication of a
HOM Optical Nanofiber

As mentioned in Chapter 1, several methods to fabricate ONFs exist [25]. Fabrication of
high-transmission HOM-ONFs is, in comparison, more challenging than the fabrication
of fundamental mode optical nanofibers. This is a direct consequence of the difference
in the adiabatic condition requirements for both types of fibers. For fundamental mode
ONFs, an exponential taper profile is usually sufficient to achieve high transmission [31].
For a HOM-ONF, particular attention needs to be paid to the taper profile to ensure the
fabrication parameters satisfy the adiabatic condition.

2.3.1 Adiabatic tapering

Reducing the size of an optical fiber and changing its overall shape inevitably induces
modifications to its guiding properties. In order to prevent coupling from a given guided
mode to any undesired mode, such as core or cladding modes, the optical fiber has to be
adiabatically tapered down to the target diameter. The adiabatic condition sets a limit
on the local taper angle, Θz, such that [117]

Θz =
a(z)

zb
=
a(z)(β1 − β2)

2π
, (2.35)
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Figure 2.5: Intensity profile of a TM01 mode. (a) Top-down view of the mode’s intensity
profile. The black arrows represent local polarization vectors. (b) Same as in (a) viewed
in 3-D. In (a) the black circle at the center of the figure indicates the fiber surface. The
ONF radius is chosen to be a = 350 nm and the wavelength is λ = 780 nm.

where a(z) is the ONF radius at a position, z, along the fiber axis and zb = (β1 − β2)/2π
is defined as the beat length between two modes with propagation constants β1 and β2.
Note that both β values are also functions of the local taper radius. If the local taper angle
is larger than Θz, the guided mode starts beating with other modes and its transmission
decreases. Previously, our group calculated the conditions required to adiabatically taper
both fundamental mode and HOM-ONFs [28, 29]. From this work, we see that the limit
on the tapering angle becomes smaller if modes in the LP11 family are to be supported
in the fiber; this is a direct result of the propagation constants for neighboring modes
being relatively close to each other. In particular, the authors of [28, 29] showed that
the usual exponential taper profile used when fabricating fundamental-mode ONFs is not
well-suited for HOM-ONFs.

The required shape of a taper can be determined by evaluating the reverse problem
defined in [117]. For an exponential taper, for example, the fiber should be uniformly
heated and stretched. In our case, for higher order mode propagation, we decided to
adopt a tri-linear profile as it yields high transmission for the LP11 family. When making
the fiber, we start with a small tapering angle (e.g. 0.064 mrad), which is increased twice
(e.g. to 0.1 mrad and 0.2 mrad) before finishing the pulling process exponentially. This
method, although not fully optimized (see [26] for optimization of the taper profile), keeps
the taper length relatively short, typically ∼ 5 cm, and respects the adiabatic criterion. It
was also shown [29, 30] that starting with as small a cladding-to-core ratio as possible for
the pretapered fiber improves the quality of the fabricated HOM-ONFs. Careful choice
of the initial optical fiber is therefore crucial.
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2.3.2 Choice of Initial Optical Fiber

For the HOM experiments reported in this thesis, we used a FiberCore SM1250(9/80)
optical fiber, with a numerical aperture (NA) between 0.11 and 0.13 and a core diameter
of ∼ 5 µm. With a cladding diameter of 80 µm, the core-to-cladding ratio is smaller and
better-suited for the fabrication of HOM-ONFs. Note that optical fibers with a 50 µm
cladding have been used [30] and may be even more suitable. However, working with this
fiber size would cause some difficulties in other aspects, such as splicing to standard fiber
pigtails. The SM1250(9/80) fiber is single mode at a 1150 nm wavelength but becomes
multimode below this value. At our working wavelength of 780 nm, the fiber allows the
first four LP families, namely LP01, LP11, LP21, and LP02, to be guided. The fiber must
be cut into sections of 50 cm in length prior to tapering, as coupling light through the
whole fiber spool yields no light at the output. This is due to the fact that the fiber is not
designed for multimode operation at 780 nm and any bend in the fiber results in the guided
light leaking out. One end of this section of fiber is spliced with a SM1250(9/80) few-mode
fiber (FMF), using a fusion splicer (Fujikura, Arc Fusion Splicer FSM60S) and connected
using a bare fiber terminator (Thorlabs, BT1 + B30126A9 connector) to a coupling lens
(Thorlabs, C220TMD-B) with a focal length of 11 mm and an NA of 0.25. The middle
part of the fiber is clamped onto the fiber-pulling rig and prepared for tapering.

2.3.3 Importance of cleanliness

The fiber-pulling rig, which will be described hereafter, is operated by many members
of the research unit for various projects. If an ONF is to be installed in an UHV cham-
ber, cleanliness is of utmost importance. Contamination of components supporting the
ONF and installed in the vacuum chamber will degas overtime and prevent the system
from reaching the 10−9 mbar of pressure required to carry out cold atom experiments.
In particular, contaminants, such as grease or dust, on the surface of the ONF are to
be avoided at all costs as they not only prevent good transmission of the guided light,
but eventually result in the nanofiber melting and breaking once a few mW of power is
launched into it under vacuum. Any dust particle on the fiber creates a local "hot spot"
when light propagates through it; light in the evanescent field is then scattered at this
hot spot, rather than guided through the fiber. With no possibility of heat dissipation in
the quasi free-hanging nanofiber, it heats up, melts, and subsequently breaks.

A first step towards ensuring the ONF remains spotless, is to create a clean fabrication
environment. The fiber-pulling rig is installed in a clean-box in which a top-bottom
laminar air flow is created by a vent continuously kept on, except for when an ONF is
being fabricated. The air entering the clean-box is first passed through high-efficiency
particulate (HEPA) filters and the positive pressure difference it creates between the
inside and the outside of the box ensures that contaminants cannot diffuse inwards. In
addition, anyone operating the rig is instructed to wear a lab coat and nitrile gloves,
whether working towards installing an ONF in vacuum or not. Finally, at the start of
every day, the whole rig system, its surroundings, and the inside of the clean box are
wiped with Isopropyl alcohol (IPA).

The fiber to be tapered is initially stripped of its acrylic coating over a ∼10 cm region,
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long enough to accommodate the maximum hot-zone1 width. The stripped region is then
wiped once dry, once with IPA, once with acetone, and once more with IPA. The fiber is
then clamped onto the pulling rig using V-groove fiber clamps and its cleanliness analyzed
by imaging the stripped region using a camera equipped with a microscope objective. If
the cleanliness is deemed unsatisfactory, the fiber is discarded and a new one is prepared
for pulling.

2.3.4 Oxy-Hydrogen fiber-pulling rig

The fiber-pulling rig used to fabricate our HOM-ONF was designed by several members
of the group over the years and has been described in detail elsewhere [21, 25]. Here, we
only give a brief description of its method of operation. A picture of the fiber-pulling rig
is presented in Fig 2.6. The heat source is a clean oxy-hydrogen torch that heats up the
fiber to a temperature between 1200◦C and 1500◦C. At this temperature, the fiber enters
a plastic regime which allows it to be extended without breaking. The torch is mounted
on a 2D-translation stage with one axis perpendicular to the fiber axis and the other
parallel to it, allowing the flame to move in towards the fiber and brush it once positioned
under it. A mass-flow controller (MFC), not shown in the picture, precisely controls
the gas flow rate of the oxygen-hydrogen mix. We use a volumetric hydrogen to oxygen
ratio of 2:1 to ensure complete combustion of the gas, the byproduct being water. The
fiber pigtail is clamped onto motorized translation stages by means of a series of clamps.
The motion of every translation stage involved in the fabrication process is controlled via
an XPS-Q4 controller interfaced through LabVIEW. For the HOM-ONF, pre-calculated
stage velocities, accelerations, and flame positions are loaded into the program and then
communicated to the relevant translation stage. Compared to what was discussed in
[21, 25], we have an improved version of the fiber-rig, specifically built for the cold atom
group. This allows for the fabrication of high transmission and defect-free ONFs.

2.4 Fabrication of a High Transmission HOM-ONF

In the work reported by Hoffman et al. [32], transmission of the whole LP11 family was
monitored to determine the quality of a HOM-ONF during fabrication. Here, the method
of fabrication slightly differs, in that the transmission of a single mode, i.e., HE21, is
monitored at the output of the fiber. We believe this gives more information about the
quality of the taper profile. For example, a loss of transmission in the HE21 mode gives
a good estimation of the waist diameter of the ONF which can serve as a valuable tool
to iteratively calibrate the pulling parameters and produce HOM-ONFs with as small a
diameter as possible while still allowing propagation of every mode in the LP11 family.
In addition, we use a flame brushing method in which the pulling stages move away from
each other at a constant speed rather than the oscillating stage method reported in [32].

1We define the hot-zone as the region of the fiber brushed by the flame during the pulling process.
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Figure 2.6: Picture of the fiber-pulling rig. (A) flame nozzle, (B) front camera, (C)
primary pulling stages. Various clamping methods, such as magnets and V-grooves, are
used to hold the fiber in place during the pulling process.

2.4.1 Tapering the fiber

A schematic of the ONF fabrication setup is presented in Fig. 2.7. A 780 nm beam
originating from a fibered laser is collimated and reflected off a spatial-light modulator
(SLM) (Meadowlark, 512 × 512 pixels Analog SLM) to generate an LG01 beam in free-
space. This beam is launched into the free end of the FMF which, as we mentioned
previously, was spliced to the fiber to be pulled. The LG01 beam excites the whole
LP11 family of modes and a two-lobed profile is observed at the output if no further
modification is made to the system. To observe the desired HE21 mode at the output of
the fiber clamped on the pulling-rig, the FMF is looped through three polarization paddles
(PPs) which, by way of a rotation-induced twist, allow us to change its birefringence
properties, thereby adjusting the mode excitation. On the other side of the pulling-
rig, the output pigtail is connected to a coupling lens (Thorlabs, C240TMD-B) allowing
free-space propagation of the beam. This beam passes through a 50/50 beam-splitter
(BS); the transmitted beam then goes through a polarizer and onto a CMOS camera
(Thorlabs, DCC1545M), whereas the reflected beam strikes an avalanche photodetector
(APD) (Thorlabs, InGaS APD110C). Rotation of the polarizer while monitoring the beam
profile allows us to estimate which HOM has been excited. As mentioned previously, we
try to excite one of the HE21 modes as their cutoff indicates that the fabricated ONF has
a diameter which is too small to support the whole LP11 family of modes. Transmission
in the selected mode is also monitored during the pulling process using the same APD.
A typical transmission profile is shown in Fig. 2.8. Another CMOS camera (Thorlabs,
DCC3240N) allows us to image the flame-brushing process and detect any impurity on
the surface of the fiber. In case of contamination of the fiber or observation of defects on
its surface, the pulling process is stopped and the optical fiber is replaced.
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Figure 2.7: Layout of the HOM-ONF fabrication setup. Excitation of the whole LP11

family is realized by injection of an LG01 beam at 780 nm into a patch cord FMF to which
the fiber to be tapered is spliced. The specific mode excited is determined via rotation
of a linear polarizer placed in front of CAM2 and transmission is monitored on an APD.
CAM1 images the flame-brushing to ensure no defect is created. C1-C3: Coupling lenses,
SLM: Spatial-light modulator, M1-M4: Mirrors, FMF: Few-mode fiber, PP: Polarization
paddles, OF: optical fiber, CAM1-CAM2: CMOS cameras, BS: Beam-splitter, P: Linear
polarizer, APD: Avalanche photodetector.

Figure 2.8: Transmission of a HE21 mode monitored during the fabrication of a HOM-
ONF. The fabrication process takes ∼25 min, after which the fiber is disconnected from
the APD, resulting in the abrupt transmission drop observed at the end of the plot.
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Figure 2.9: Two batches of three HOM-ONFs fabricated using tri-linear tapering. The
fibers have been prepared for SEM imaging of the waist diameter to calibrate the pulling
process. The region labeled "W" indicates the approximate position of the waist for each
ONF. Fibers 1-3 were fabricated with pulling parameters calculated to yield a final waist
diameter of 700 nm. Fibers 4-6 were fabricated with an aimed final waist diameter of 750
nm.

Pulling parameters, such as the pulling speed and variation of the hot-zone width
during the pulling, are first calculated from the reverse problem detailed in [117]. Several
such programs are publicly available but, in the work presented here, we used a MATLAB
script written in-house by Dr. K. Karlson. Discrepancies between computed and exper-
imental parameters may exist, yielding waist diameters that differ from those we would
expect. Calibration of the fabrication process is therefore required prior to installing a
HOM-ONF into a cold atom system.

Direct imaging of the fiber waist during the pulling process would require a sub-
diffraction microscopy apparatus to be incorporated into the pulling rig. This being
technically challenging, we decided to fabricate test HOM-ONFs and measure their waist
diameter using a scanning electron microscope (SEM). The accuracy of our pulling process
is statistically determined by fabricating batches of HOM-ONFs with identical pulling
parameters and comparing their final waist diameters. Each batch contains three HOM-
ONFs, which is, in general, sufficient to give a good indication of the pulling process
accuracy. If transmission drops while pulling a fiber, or if some scattering indicating the
presence of a contaminant is observed on the camera facing the pulling rig, the fabrication
is stopped and the optical fiber is discarded. After successful fabrication, a small section
of the ONF containing the waist is cut and then glued onto a microscope slide, which
is then coated with a 3 nm conductive layer of Pt-Pd by ion sputtering. SEM imaging
becomes possible at this point. An example of test HOM-ONF batches prepared for SEM
imaging is shown in Fig. 2.9.

Here, two separate batches of three HOM-ONFs each were used to calibrate the pulling
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Figure 2.10: SEM images of two HOM-ONFs with different waist diameters. (a) SEM
image and measured diameter of ONF 1 in Fig. 2.9. This fiber waist diameter is too small
to support the HE21 mode. (b) SEM image and measured diameter of ONF 5 in Fig. 2.9.
This fiber would be suitable for our cold atom experiment.

parameters calculated by our MATLAB program. The first batch, ONFs 1 to 3, was
fabricated with pulling parameters calculated to yield a final waist diameter of 700 nm.
For ONFs 1 and 2, a change in the output profile from a two-lobed pattern to a perfect
Gaussian beam was observed and this coincided with a major drop in transmission of
the HE21 mode. These observations hinted that the waist diameter of these fibers was
too small to support the HE21 mode and that the resulting weakly transmitted Gaussian
beam was a consequence of imperfect coupling at the input to the original FMF. This
was confirmed by SEM imaging, from which a waist diameter of 600 nm was measured
(Fig. 2.10(a)). This value is smaller than the cut-off diameter of 657 nm for a 780 nm
wavelength. The second batch, ONFs 4 to 6, were fabricated with a target final diameter
of 750 nm. These ONFs were found to be suitable for our cold atom experiment as
the waist diameters were measured to be 698 nm, 747 nm and 764 nm. An example of
measurement via SEM imaging is shown for ONF 5 in Fig. 2.10(b).

2.4.2 Mounting the fiber

Once pulling parameters have been established to yield a consistent waist diameter, they
are used to pull a new HOM-ONF that can be installed inside the UHV chamber. If the
fiber shows more than 85% transmission in the HE21 mode and if no defect is observed
on its surface, it is deemed to be good. A U-shaped mount, that facilitates the fiber
installation into the vacuum chamber (see Fig. 2.11(a)), is first brought below the HOM-
ONF using a 3-axis translation stage and precisely adjusted so that it is oriented parallel
to the fiber axis. The entire mounting process takes place in the clean-box with the HEPA
filters on to ensure a contaminant-free environment. We then use a UV-cured polymer
(Norland Optical Adhesive 61), chosen for its high-viscosity and its fast curing time, to
glue the pigtails of the tapered fiber onto the U-mount. Note that the polymer has not
been observed to degas, even under UHV conditions, thus further motivating our choice.

The U-shaped mount is specifically designed so that both ends of the tapered fiber’s
pigtails are in contact with it in a manner that maximizes the guiding properties of
the fiber. Transmission is nevertheless monitored at all time to ensure the HOM-ONF
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Figure 2.11: (a) Sketch of the U-mount connected to the feed-through flange. (b) Photo
of the HOM-ONF installed in the vacuum chamber. The red area between the dotted
lines shows part of the hollow blank flange. The fiber has been highlighted in cyan.

remains unaffected by the gluing process. Once mounted, the fiber is cut to leave ∼ 15 cm
of pigtail on either side. One side is passed through a large, specially grooved blank CF
flange, which is itself connected to a smaller feed-through vacuum flange used to close
the vacuum chamber. The U-mount is connected to a rod sticking out of the flange (see
Fig. 2.11(b)). The mount has a length of 9 cm and a height of 2 cm. Its base is 0.3 cm
thick and each "pillar" surface is 0.5 cm by 0.5 cm. The rod connecting the fiber mount to
the flange is chosen to be 4 cm in length such that, once the fiber is installed, the middle
of the waist aligns with the center of the science chamber. Prior to its installation, the
HOM-ONF is shielded by a PVC sleeve, one end of which has been modified to tightly fit
inside the groove of the above-mentioned blank flange.

2.5 Installation of the Fiber in the Vacuum Chamber

Cold atom experiments are conducted under UHV conditions, which typically require
pressures around 10−8 or 10−9 mbar, and thus need careful preparation of the vacuum
system that hosts them. Contaminants such as dust, water and oils, or trapped air
between screws, for example, can lead to outgassing, which prevents the creation of a
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vacuum suitable for experiments. A common practice to deal with these problems is to
clean the vacuum system components in an ultrasonic bath (i.e., sonicate them) and then
proceed to a bake-out of the vacuum chamber at temperatures higher than 100◦C while
pumping the pressure down. However, baking out the chamber to such temperatures can
damage, and sometimes destroy, a nanofiber installed in the chamber. To avoid this issue,
we prepare the vacuum chamber a few days before installing the HOM-ONF.

2.5.1 Preparation of the vacuum system

Once calibration of the pulling process has been achieved and HOM-ONFs can be produced
with the desired waist diameter in a reproducible manner, the vacuum system is prepared.
The first step of the preparation consists in wiping any part that will either seal the
vacuum chamber, or be inside of it, with acetone using dust-free lens tissues. Each
component is handled with nitrile gloves to avoid deposition of oil from contact with the
skin. Components to be installed inside the vacuum chamber (e.g. U-mount, connecting
rod, Teflon ferrules, etc.) are successively sonicated in hot baths of soapy water, deionized
water, acetone, and finally IPA, for 15 minutes in each case. These components are then
wrapped in aluminium2 foil and stored in a clean-box where a low vacuum (∼ 10−2 mbar)
is created. The vacuum chamber is sealed and a vacuum pump (HiCube 80 Eco Turbo
Pump), which combines both a diaphragm pump and a turbo pump, is switched on.

A schematic of the closed vacuum system is depicted in Fig. 2.12, where three regions
(A, B, and C) have been identified. Region A consists of the main science chamber
(Kimball Physics 8 Multi-CF Spherical Square) in which the U-mount with the HOM-
ONF will be installed and where the rubidium atoms are laser-cooled and trapped in
a MOT. The distance between the feed-through flanges, F1 and F2, is 24 cm. Region
B, which connects A and C together, is equipped with rubidium dispensers (SAES Rb
getters). These are replaced before the vacuum system is closed when the need arises.
Finally, region C consists of a six-way cross connecting together a pressure gauge (Agilent
FRG-720/730 Pirani Bayard-Alpert gauge), a titanium-sublimation pump (TSP) (Agilent
TSP Filament Cartridge), an ion pump (Agilent 4UHV VacIon Plus Starcell 75) and a
viewport. The sixth port is connected to a T-valve, itself connected to the vacuum pump,
which can be opened or closed as desired. The ion pump is kept far enough away from the
main chamber to prevent its magnetic field from affecting the cloud of cold atoms. The
whole vacuum system is made out of stainless steel, with CF connectors. Copper gaskets
are inserted between the knife edges of the flanges and, once compressed, seal the system.

Once the pressure in the vacuum chamber has reached 10−6 mbar, we proceed with
the second step of the preparation process, a bake-out. Each region is wrapped with 20
mm-wide heating tapes (AS ONE ribbon heaters) and then covered in aluminium foil to
make the heating as uniform as possible and prevent heat dissipation during the baking
process. Along with thermocouples that monitor the temperature in each region, the
heating tapes are connected to a home-made PID system that controls the temperature.
The temperature is gradually increased to 130◦C by increments of 10◦C every hour. This
allows for homogeneous heating of the whole system. Note that the vacuum pump is kept
on during the entire bake-out process. This temperature is maintained overnight.

2All chemical elements will be written using the UK spelling.
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Figure 2.12: Schematic of the vacuum system used for the cold atom experiments. (A)
Science chamber in which the cold atom cloud is created and trapped; (B) Connecting
region with Rb dispensers; (C) Six-way cross which connects the pressure gauge, the
titanium sublimation pump (TSP) and the ion pump bellows. The port at the bottom of
the figure is a viewport and the last port (not shown) connects via a bellows to a turbo
pump.
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Figure 2.13: Characteristic pearl-necklace pattern resulting from contamination of an
ONF by particles. No more than 1 µW of power was launched into the fiber to take this
picture. Increasing the power beyond this point broke it.

We start the next day by slowly reducing the temperature of the system, here too
by increments of 10◦C every hour. After reaching room temperature, the aluminium foil
and heating tapes are removed. Once a HOM-ONF has been successfully fabricated and
mounted on the U-mount in the fabrication room, the vacuum pump is turned off, discon-
nected, and the freed port is connected to a nitrogen supply. As the T-valve is opened,
the vacuum fills with nitrogen until atmospheric pressure has been reached. At this point,
we remove the flanges on either side of the science chamber (F1 and F2 in Fig. 2.12). The
constant supply of nitrogen maintains a positive pressure difference between the inside of
the vacuum chamber and the outside. The chamber is open and ready for the installation
of the HOM-ONF.

2.5.2 Transport from the fabrication room to the cold atom lab
and installation

Early attempts at transporting a tapered fiber from the fabrication room to the vacuum
chamber resulted in high contamination of its surface. This was made evident by the
presence of scattering points, such as those depicted in Fig. 2.13, appearing along the
length of the fiber once light was coupled into it. Carrying the HOM-ONF in a shielded
container and opening it at the last minute before installation inside the vacuum chamber
resulted in less contamination, but it remained significant nonetheless. It was, thus,
decided that the strategy to adopt was to keep the fiber shielded even as it was being
installed inside the vacuum chamber.

In Section 2.4, we detailed the fabrication method of a high-transmission HOM-ONF,
and its subsequent mounting on the U-mount. We mentioned a PVC sleeve used to shield
the assembled components during their transportation to the vacuum chamber, a picture
of which is shown in Fig. 2.14. The sleeve is a 32 cm long PVC tube, chosen to be much
longer than the distance of 24 cm between the two feed-through flanges of the science
chamber so that it could be removed on one side after the HOM-ONF installation. One
end was bored down to a smaller cylinder with an inner diameter of 6 cm and an outer
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Figure 2.14: Protective sleeve used to transport the HOM-ONF to the vacuum chamber.
The front end has been bored into a cylinder that tightly fits inside the circular groove
carved in a blank flange. The sleeve’s length is chosen such that it is longer than the
distance between the two relevant ports of the vacuum chamber during installation of the
HOM-ONF.

diameter of 6.9 cm, over a 2 cm length. This part is designed to tightly fit inside a blank
flange in which a 2 cm deep, 7 cm wide circular groove was carved.

With the sleeve shielding it, the mounted HOM-ONF is transported to the open,
nitrogen-filled, vacuum chamber. All the parts are inserted inside the science chamber,
except for the feed-through and flanges that seal one side of the chamber. Once the
components are screwed in place, the PVC sleeve is carefully removed from the opposite
side, and another feed-through flange is used to close the system.

2.5.3 Sealing the chamber and making vacuum

The vacuum chamber is now mostly closed, with only the feed-through part of flanges F1
and F2 remaining to be put in place. First, the HOM-ONF’s two pigtails are wiped with
IPA using a lens tissue. The pigtails are passed through a pre-drilled Teflon ferrule, seen
in Fig. 2.15(a), which is inserted in the feed-through port of the flange. A Swagelok c©

nut is threaded through the pigtail and screwed onto the feed-through port, Fig. 2.15(b),
squeezing the Teflon ferrule in the process, thereby sealing the system. This technique is
used in most ONF experiments [118]. The Teflon ferrules were fabricated by the OIST
machine shop, using precision machining to drill perpendicularly and at the center of the
ferrules (schematized in Fig. 2.15(c)), in order to minimize twisting of the tapered fiber’s
pigtails when tightening the Swagelok c© nut.

Next, the nitrogen supply is gradually switched off and eventually disconnected once
the vacuum chamber is sealed. The bellows of the vacuum pump is connected back onto
the T-valve and the pump is switched on. Pressure in the vacuum chamber is first brought
down from atmosphere to ∼ 10−3 mbar by the diaphragm pump, after which the turbo
pump kicks in. The system is left to run overnight, typically bringing the pressure to
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Figure 2.15: Final elements sealing the vacuum system at the HOM-ONF’s pigtails.
(a) Picture of a blank 1/4 inch Teflon ferrule. (b) Assembled feed-through flange, Teflon
ferrule, and Swagelok c© nut. (c) Schematic of the hole drilled in a Teflon ferrule which
allows us to thread a fiber pigtail through it.

10−8 mbar. If, at this point, the pressure is still considered too high, a leak test is carried
out by squirting small quantities of methanol in the CF flanges’ notches, designed for this
very purpose, while monitoring the pressure. Once the leak has been fixed, the pressure
quickly goes down to the value mentioned above.

Taking advantage of the high pumping rate of the turbo pump, we now burn off the
protective coating from the rubidium dispensers. These are placed far enough away from
the center of the science chamber (see Fig. 2.12) to avoid collisions between hot atoms and
the cold atoms, once the latter have been trapped in a MOT. Each dispenser consists of a
slotted metallic case containing rubidium, covered in a protective chromate mixture. The
metallic case is electrically connected to copper wires, sealed with ceramic feed-throughs,
shown in Fig. 2.16, through which a current can be passed. The metallic case heats up by
the Joule effect, along with the protective layer which evaporates. Current through the
dispensers is slowly increased by increments of 0.5 A every 30 minutes, up to 4 A, after
which only rubidium evaporates out of the slot in the metallic casing. The incremental
method ensures that the protective coating is progressively pumped out and that the
pressure inside the UHV chamber does not increase too quickly. Once burnt off, the
dispensers are turned off and the pressure goes back down to values in the low 10−7 or
high 10−8 mbar. If the pressure is not in this range, an additional step involving the TSP
is required. A pneumatic valve isolates the six-way cross from the rest of the system,
while the TSP undergoes a complete sublimation cycle via periodic injection of a high
current through its coated filaments. The pneumatic valve is then reopened and, once
the pressure has settled in the low 10−8 mbar, the T-valve is closed, and the turbo pump
is turned off and disconnected. The ion pump now takes over and keeps pumping the
system down to 10−9 mbar at which cold atom experiments can be done.
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Figure 2.16: Electrical feed-through of the Rb dispensers. (A) Science chamber; (B)
Blank flange; (C) Pair of electrical feed-through connected to Rb dispensers, one of which
is currently in use; (D) Spare pair of dispensers.

2.5.4 Robustness test in vacuum

Upon reaching the UHV regime, no further baking is necessary. The robustness of the
HOM-ONF when injected with high laser power now needs to be tested. A good power
benchmark for these fibers lies in the range of 80 to 150 mW, as these values would be
sufficient to generate deep trapping potentials for cold atoms around the waist, even for
light guided in the fundamental mode3. While no fiber-mediated trapping was done in
this work, we have designed the system so that it could be implemented if necessary.
We found that the HOM-ONFs installed following the method described in the previous
sections can reliably take up to 120 mW of power at 780 nm, over extended periods of
time (at least two to four hours). This is likely due to the cleanliness of the fiber as barely
any scattering can be detected on a camera image (see Fig. 2.17).

The fiber diameter is then evaluated by injecting a 1064 nm beam into it. The incidence
angle to the fiber surface leads to coupling in all the modes available. As no mode other
than the fundamental mode was observed at the output of this HOM-ONF, an upper
limit on the waist diameter could be evaluated. As we also know that the HE21 mode
can propagate at 780 nm, this sets a lower limit on the waist diameter. We find that the
waist of our HOM-ONF lies between 664 nm and 775 nm.

3Higher power is required here to generate fiber-mediated trapping potentials when using the funda-
mental mode as our HOM-ONF is larger than in other ONF-based experiments. For example, compare
our waist diameter of 700 nm with the 400 nm waist diameter of the ONF used in [6].
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Figure 2.17: HOM-ONF installed in the chamber, injected with (left) 50 mW and
(right) 120 mW of power at 780 nm. No major contamination is observed, although fiber
defects become apparent at the higher power. Cleanliness is key for high transmission
HOM-ONFs in vacuum.

2.5.5 Installation of two fibers at once

In an earlier version of the project, we installed two ONFs at once in the vacuum chamber
(see Fig. 2.18). The first ONF was tailored to only allow the fundamental mode to
propagate at 780 nm, while the second was a HOM-ONF, fabricated as described in
Section 2.4. The installation procedure was similar to that described previously, the
only difference being that the two ONFs were mounted on the same U-mount prior to
their installation in the vacuum chamber. This presented several issues that ultimately
forced us to focus solely on interfacing a HOM-ONF with a cloud of cold atoms. For
example, the quality of the vacuum achieved when two ONFs were simultaneously installed
was worse than with a single fiber. This was likely due to having two holes drilled
in the Teflon ferrules. Contamination of one of the fibers was also more likely in this
case, as the first ONF was made some time before the second one. Finally, alternatively
overlapping the MOT with each ONF was a challenging task as the cooling beams had to
be aligned differently for both cases. This led to different MOT profiles (i.e., difference
in atom number, temperature, cloud diameter, density, etc.), preventing any significant
comparisons to be made between experiments performed with either fiber. We temporarily
fixed this issue by attaching the U-mount onto ultrahigh vacuum compatible 3D-stages
(SmarAct SLC-1730 positioners), which allowed us to move both fibers through the cloud
as opposed to the alternative. This proved very useful for working with the fundamental
mode ONF, but induced drastic mode mixing for the HOM-ONF as the pigtails on either
side were stretched during the motion or vibration of the stages.

2.6 Conclusion
This chapter provided a mathematical description of the origin of HOMs in strongly guid-
ing waveguides, along with their explicit expressions in cylindrical coordinates. The fab-
rication of HOM-ONFs used throughout this thesis work was described in detail, putting
emphasis on the degree of cleanliness required when installing such fibers in a UHV en-
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Figure 2.18: Two ONFs installed in the vacuum chamber. The top ONF is tailored to
guide up to the LP11 family of modes at 780 nm and exhibits some contamination. The
bottom ONF can only guide the fundamental mode at the same wavelength. Only a very
small MOT could be overlapped with this ONF due to the required misalignment of the
cooling beams.

vironment. Monitoring the transmission of one of the HE21 modes, excited at the output
of the fiber to be tapered, during the pulling process allowed us to fabricate HOM-ONFs
with a diameter close to the cut-off condition for a wavelength of 780 nm. The installation
of this fiber inside the vacuum chamber was also described, along with the thorough pro-
cedure needed to ensure pressures suitable for cold atom experiments could be reached.
We developed a way to completely shield the tapered fiber both before and during its in-
stallation inside the chamber to avoid contamination of its surface. This would deteriorate
its transmission and prevent us from injecting enough power to generate a fiber-mediated
atom trap in the future. The setup and procedures outlined here led to the fabrication
of a HOM-ONF and its installation in a UHV system; this was used for the experimental
work discussed in Chapter 6.





Chapter 3

Laser-Cooling and Trapping of
Rubidium Atoms

Most of the work reported in this thesis revolves around interfacing the guided modes of
an ONF with cold atoms trapped in a MOT. In Chapter 2, the fabrication and installation
of the HOM-ONF inside the UHV chamber were described. Here, the focus is put on the
second component essential for this type of experiment, namely the laser-cooling of neutral
atoms. This chapter first gives some theoretical background and includes a description of
the experimental setup that is used in the remainder of this work to create, control, and
characterize a cloud of cold 87Rb atoms trapped in a MOT.

3.1 Laser-Cooling of Neutral Atoms
The fundamental idea behind laser-cooling is that electromagnetic (EM) radiation from
a laser source can affect the kinetic energy of an atom by, for example, reducing it,
subsequently reducing its temperature. Considering an atomic gas with a well-defined
velocity distribution, one can relate the average kinetic energy of the gas, < K >, to the
notion of temperature, T . In 1D, this is expressed as

< K >=
kBT

2
, (3.1)

with kB being the Boltzmann constant. This is easily expanded to 3D and the relationship
between the root mean square (rms) velocity1, vrms, and temperature is established via

vrms =

√
3kBT

M
, (3.2)

where M is the mass of an atom in the sample considered. Atomic samples with ul-
tralow temperatures are highly valuable for applications in fundamental research, and,
in particular, for the study of quantum physics, as cancellation of the thermal motion in
matter allows one to access its quantum properties more easily. The importance of such
technological advance was highlighted by the award of the physics Nobel Prize in 1997 to

1The root mean square velocity of a freely expanding gas is defined as the square root of the mean
square, or, more explicitly, the square root of the average of the square of the velocity.

45



46 Laser-Cooling and Trapping of Rubidium Atoms

S. Chu, C. Cohen-Tannoudji and W.D. Phillips "for the development of methods to cool
and trap atoms with laser light". This field of research eventually led to the experimental
demonstration of Bose-Einstein condensation [119]. In what follows, the description of
laser-cooling of neutral atoms considers the simple case of a two-level atom. The reader
interested in more detailed theoretical considerations can see, for example, the books by
Foot [60] or Metcalf and van der Straten [120].

3.1.1 The scattering force

In Chapter 1, Eq. (1.4) contains the mathematical expression for the forces acting on
a single atom placed in an electric field derived from first principles. Two terms were
identified, corresponding to two different forces: the dipole force and the scattering force.
The dipole force is directly proportional to δ, the detuning of the laser frequency with
respect to the atomic transition considered. For resonant light, or light reasonably close
to resonance (i.e., a few MHz away from the transition), the contribution from this force
is negligible compared to the scattering force. Since this regime is generally adopted to
slow and cool atoms, we set the dipole force to zero in what follows.

The scattering force stems from an exchange of momentum between a photon and a
moving atom with which it interacts. Consider the situation depicted in Fig. 3.1. A single
atom is traveling with a velocity, v, towards a laser beam which bombards it with photons.
During each absorption process, a photon transfers its energy to the atom by exciting it
to a higher energy level. There is also a momentum effect, whereby the atom receives a
kick in the direction of the incoming photon; for laser detuning below atomic resonance,
this is preferentially against the direction of the atom’s motion. The atom decays back to
its ground state via spontaneous emission, thereby recoiling in the direction opposite to
the photon emission. The average recoil after many such cycles is null, as the spontaneous
emission process is isotropic. The only contribution felt by the atom is that of the initial
kick received after a photon is absorbed, thus resulting in a net force on the atom opposite
to its direction of motion. The atom is, therefore, slowed down over time.

Mathematically, the magnitude of the scattering force is the product of a photon’s
momentum, ~k where k is the wave vector of the photon, and a scattering rate, ΓS,
characteristic of the absorption-emission process:

Fscatt = ~kΓS. (3.3)

The scattering rate is defined as [60]

ΓS = Γρee, (3.4)

where Γ is the decay rate of the excited state and ρee is the population in the excited state.
By considering the full expression of ρee and incorporating it in the previous expressions,
we get

Fscatt = ~k
Γ

2

Ω2/2

(δ + ωD)2 + Ω2/2 + Γ2/4
, (3.5)

which gives a similar expression to Eq. (1.4), with the notable addition of the term ωD =
k.v, or a Doppler shift in frequency that accounts for the motion of the atom. This
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Figure 3.1: Slowing of an atom via the scattering force. The atom is moving along a
unique direction with a velocity v. Transfer of momentum from the photons impinging
onto the atoms generates a force that opposes the atom motion, slowing it in the process.

expression can be rewritten in a more experimentally appropriate form by considering
the link between the Rabi frequency, Ω, and the saturation intensity, Isat, such that
I/Isat = 2Ω2/Γ2, which gives

Fscatt = ~k
Γ

2

I/Isat
1 + (I/Isat) + (2(δ + ωD)/Γ)2

. (3.6)

This expression reaches a maximum when I → ∞ at which Fscatt = ~kΓ/2. As atoms
are decelerated, the Doppler shift decreases and the slowing laser beam goes out of res-
onance. To keep δ + ωD constant over time, either the laser frequency or the atomic
resonance frequency has to be adjusted. The latter case is in general preferred in atom
cooling experiments and its implementation relies on the creation of an inhomogeneous
magnetic field that induces a spatially-dependent Zeeman splitting of the energy levels.
This consideration eventually led to the development of the MOT, which will be explained
in Section 3.1.3.

3.1.2 Optical molasses

A direct expansion to the cooling scheme detailed above is to add another cooling beam,
co-propogating with the atom’s original direction of motion, as a single beam eventually
pushes the atom backwards. From there, this counter-propagating beam configuration
can be expanded to 3D (i.e., using six beams), as illustrated in Fig. 3.2, in order to ensure
efficient cooling of a freely expanding atomic gas.

In such a system, an atom experiences a force in each direction resulting from the
contribution of each beam. Again, the Doppler effect must be taken into account. For
simplicity, let us assume once more that the atom’s motion is confined to a unique dimen-
sion, with a pair of counter-propagating beams acting upon it, slightly red-detuned from
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Figure 3.2: Principle of an optical molasses. Pairs of counter-propagating, red-detuned
beams in the three directions of space create an "optically viscous" medium for a sample
of atoms placed at the intersecting region of all the beams.

the transition frequency (δ < 0). The total force felt by an atom in this case is

Ftot = ~k
Γ

2

[
I/Isat

1 + I/Isat + (2(δ + ωD)/Γ)2
− I/Isat

1 + I/Isat + (2(δ − ωD)/Γ)2

]
. (3.7)

In the limit of small velocities, k.v� Γ, and after expanding in series we have

Ftot ≈
I

Isat

8~k2δv
Γ [1 + (2δ/Γ)2]

≡ −αv, (3.8)

where we have introduced α, the damping coefficient. By using red-detuned beams, an
atom evolving in this system will absorb more photons from the beam opposing its motion
due to the compensation of the Doppler shift, whereas the co-propagating beam, being
Doppler shifted further away from resonance, has a lower probability to be absorbed.
Consequently, the atom experiences a damping force in the direction opposite to its motion
and is cooled. In 3D, the beams create an optically viscous medium around the atom,
thus justifying the term of optical molasses.

3.1.3 Magneto-optical trapping

We mentioned earlier that one way to compensate for the reducing Doppler shift when the
atom is slowed down is to generate an inhomogeneous magnetic field to create a spatially-
dependent Zeeman shift of the atomic energy levels. This situation is schematized in
Fig. 3.3 and describes the mechanism for the cooling and trapping of atoms in a MOT.
In Fig. 3.3(a), we show the required elements to generate the trap: (i) a pair of coils
in an anti-Helmholtz configuration, which generates the inhomogeneous magnetic field,
and (ii) three pairs of counter-propagating beams with orthogonal circular polarizations
(labeled σ+ and σ−) that overlap at the center of the trap. Note that the same scheme
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Figure 3.3: Principle of a MOT. (a) A pair of coils in an anti-Helmholtz (A-H) configu-
ration generates a magnetic field gradient and 3 pairs of counter-propagating beams with
orthogonal circular polarizations (σ+ and σ−) cool and trap atoms at the center of the
system. (b) Mechanism of the MOT for an atom with a J = 0 to J = 1 transition. The
spatially-dependent Zeeman splitting and the selection rules for dipole transitions cause
atoms to absorb more photons from a beam propagating in a direction opposite to that
of their motion.

can be achieved by using three retro-reflected beams instead, placing a quarter-wave plate
(QWP) just before reflection to ensure that the reflected beam is also circularly polarized
but with opposite handedness.

The active mechanism for trapping an atom in a MOT for a J = 0 to J = 1 transition
is sketched in Fig. 3.3(b). We consider a one-dimensional model for simplicity, assuming
the atom can only propagate along the z-axis. In this case, the quadrupole magnetic
field generated by the anti-Helmholtz coils induces a Zeeman shift of the atom’s energy
levels of the form κz, where z is the position of the atom (taken to be 0 at the center of
the trap) and κ is the magnetic field gradient. In the region where z > 0, the mJ = 1
level is shifted up, while the mJ = −1 is shifted down. For values of z < 0, the opposite
situation occurs. Selection rules in a dipole-allowed transition impose that absorption of
a σ+-polarized photon excites the transition |J = 0,mJ = 0〉 → |J ′ = 1,mJ = 1〉 whereas
a σ−-polarized photon excites |J = 0,MJ = 0〉 → |J ′ = 1,mJ = −1〉. By detuning the
laser frequency appropriately, such that its frequency corresponds to that of a shifted
level, atoms preferentially absorb photons from beams opposing their motion; an atom
leaving the center of the trap will more likely absorb photons from the σ−-beam if moving
towards the z > 0 region, and vice-versa, thereby pushing it back to the center in either
case.

Mathematically, this situation is analogous to that of a damped harmonic oscillator,
which is similar to Eq. (3.8) aside from the incorporation of a restoring term. Explicitly,
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we have:
FMOT = −αv− ακ

k
z, (3.9)

with the same α as in Eq. (3.8), and κ = (µB~)/(dB/dz), with µB being the Bohr
magneton, and B the magnetic field.

3.2 Experimental Setup for the MOT
The formalism adopted in the previous section was intentionally kept simple in order
to make the theoretical description straightforward. Creating a MOT experimentally
requires further considerations than what was presented here. For example, an additional
beam, the so-called repump beam, is in general used to ensure atoms remain in the cooling
cycle. Beam intensities, quality of the vacuum, and the magnetic field gradient have to
be carefully adjusted in order to create a cloud of atoms as cold and dense as possible.
It is these parameters that shall be discussed in this section. We provide details about
the experimental apparatus used to achieve laser cooling and trapping of 87Rb atoms in
a MOT. The cloud of atoms was overlapped with an HOM-ONF to carry out some of the
experiments described in Chapter 6. Note that a similar experimental setup involving a
fundamental mode ONF is also located on the optical table. This latter setup was used
for some of the experiments presented in Chapter 5, but is not described in what follows,
as the system was assembled by other members of the group and is very similar to what
is described here.

3.2.1 Choice of atom

Alkali metals are in general favored for cold atom experiments for several reasons. First,
these atoms have all of their electronic shells completely filled, except for the outermost
one which contains a single valence electron. As such, the atom behaves as if it were
made of a positive nucleus and a single electron. This makes predictions on its behavior
when placed in an EM field much easier. Second, laser diodes addressing the desired
cooling transitions are commercially available. Finally, and most importantly, these atoms
offer cyclic transitions, which allow the implementation of a closed cooling scheme. Our
experiments use 87Rb, for which some physical properties are presented in Table 3.1. In
Fig. 3.4, the energy levels that are used in the projects presented in later chapters of
this thesis are shown: The quadrupole project is described in Chapter 4, the single-color,
two-photon project in Chapter 5, and the HOM project in Chapter 6. The energy levels
relevant to the cooling of 87Rb atoms are described hereafter.

The fine structure of 87Rb has two main spectroscopic lines: The D1-line, addressable
at a wavelength of 795 nm, and the D2-line at 780 nm. We work with the D2-line, which,
using the Russel-Saunders notation, is between the ground state, 5S1/2, and the excited
state, 5P3/2. Table 3.2 shows some relevant optical properties of the transition.

Each level in the fine structure possesses a hyperfine structure, which results from the
interaction between the nuclear spin, I, and the total angular momentum of the valence
electron, J . A hyperfine level is in general labeled F in most atomic physics textbooks,
and its value is dictated by the condition |J − I| ≤ F ≤ J + I. We adopt the same
notation here. The energy levels of the 87Rb D2-line and the transitions involved in the
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Figure 3.4: Energy levels of 87Rb used in the projects presented in this thesis.
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Table 3.1: Physical properties of 87Rb

Atomic number 37
Total nucleons 87
Nuclear spin 3/2
Relative natural abundance 27.83 %
Atomic mass 1.44316065×10−25 kg

cooling process are shown in Fig. 3.5. The ground state possesses two hyperfine levels,
F = 1 and F = 2, while the excited state has four, namely F ′ = 0, 1, 2, 3. The cooling
beam is tuned to a frequency, ωcool, that drives the 5S1/2F = 2→ 5P3/2F

′ = 3 transition.
This transition is a cycling transition; selection rules for a dipole transition only allow
∆F = 0,±1 transitions, allowing a photon from the cooling beam to be absorbed but
preventing the atom excited in the F ′ = 3 hyperfine state from decaying back to any
other state than the F = 2 ground state. Subsequent absorption of a photon from the
cooling beam resets the cycle. However, the cooling beam has a non-zero probability to
drive the F = 2 → F ′ = 2 transition. This pushes all of the atoms in a sample out
of the aforementioned loop after a few thousand cycles. A repumping beam tuned to a
frequency, ωrep, drives the F = 1 → F ′ = 2 transition, thus ensuring atoms are always
brought back to the cooling cycle.

3.2.2 Creation and control of the magnetic fields

The anti-Helmholtz coils are made in-house to fit around the top and bottom viewports
of the science chamber, placing them at a distance of 130 mm from each other. Each
coil is 160 mm in diameter with 200 winds of enameled copper wire. In each coil, the
inductance is measured to be 28 mH and the total resistance is 6 Ω. Two outputs of a
three-channel power supply (GW Instek, PST-Series 3-channel Power Supply) provide the
currents. These can be tuned relative to each other, giving us some leeway in adjusting
the magnetic trap to correct for any misalignment of the coils and other experimental
imperfections. This system gives a field gradient of 9.6 G/cm with 4 A of current in
each coil. In addition, the coils are individually connected to an insulated gate bipolar
transistor (IGBT) switch, which allows the magnetic field to be turned off in 3.4 µs. When

Table 3.2: Optical properties of the D2 line in 87Rb (5S1/2 → 5P3/2).

Frequency 2π × 384.2305 THz
Wavelength (vacuum) 780.2412 nm
Wavelength (air) 780.0320 nm
Lifetime 26.24 ns
Natural linewidth (FWHM) 2π × 6.065 MHz
Atomic mass 1.44316065×10−25 kg
Recoil energy 2π × 3.7710 kHz
Doppler temperature 146 µK
Saturation intensity (σ± polarization) 1.669 mW/cm2
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Figure 3.5: Energy levels of the D2 line of 87Rb showing the cooling transitions. The
cooling laser is tuned to a frequency ωcool, red-detuned by δ from the F = 2 → F ′ = 3
transition. A repump beam, tuned to ωrep, drives the F = 1 → F ′ = 2 transition and
ensures atoms are kept in the cooling cycle.
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Figure 3.6: Picture of the magnetic coils on the experimental setup. The two main
magnetic coils (MC), in an anti-Helmholtz configuration, are positioned around the top
and bottom viewports of the vacuum chamber. Four of the six compensation coils (CC),
in a Helmholtz configuration, can also be seen.

short-circuited, the inductively generated current in the coils is preferentially discharged
into resistors instead of circulating through the coils backwards. A picture of the setup
featuring the positioning of the coils is presented in Fig. 3.6.

Three additional pairs of coils, positioned along the three directions of space, are also
used, each pair set in a Helmholtz configuration. This allows the magnetic center of the
trap to be shifted, and, by extension, provides us with a way to optimize the overlap of the
MOT with the HOM-ONF. This is done by measuring the coupling of fluorescent photons
from atoms into the guided modes of the nanofiber using a single-photon counting module
(SPCM) (Excelitas, SPCM-AQRH).

3.2.3 Cooling and repump laser systems

As mentioned previously, the cooling of 87Rb atoms in a MOT is done by tuning a laser
to a frequency which is slightly red-detuned from that of the 5S1/2F = 2→ 5P3/2F

′ = 3
transition. This detuning, chosen to be δ = 14 MHz, is adjusted using an acousto-optic
modulator (AOM) (IntraAction ATM-602DA2B) with a central frequency of 60 MHz in
a double-pass configuration. In addition to the frequency shift it provides, the AOM
also acts as a fast switch, allowing us to turn off the cooling beams on demand. The
frequency and amplitude modulation of the AOM are controlled by a data acquisition
card (National Instruments, DAQ) using a LabVIEW program. The repump beam is also
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passed through an AOM (IntraAction AOM-802AF3) with a central frequency of 80 MHz,
but its frequency is, in general, not shifted from that of the 5S1/2F = 1 → 5P3/2F

′ = 2
transition.

A schematic of the experimental setup for both the cooling and repump beams is given
in Fig. 3.7. The cooling beam is provided by an external cavity diode laser (ECDL) system
within a commercial tapered amplifier system (Toptica TA Pro). The repump beam is
provided by another ECDL, with no further power amplification component (Toptica
DL100 Pro). Both lasers are tuned to a wavelength of 780.2 nm, with a typical linewidth of
the order of a few 100 kHz. For the cooling beam, two fiber-coupled ports are available for
use. First, a back port provides a small fraction of the total power (∼1 mW) and connects
to a compact saturation spectroscopy system (Toptica CoSy), the output of which is
fed to a computer-controlled, laser-locking module (Toptica DigiLock110). Scanning the
laser frequency provides hyperfine spectroscopic peaks from which the DigiLock110 can
generate error signals and, subsequently, enables us to lock the laser onto a specific peak.
The remaining port is connected via a polarization-maintaining (PM) fiber to a collimating
lens (C1) providing a free-space beam with up to 400 mW of power at its output. The
free-space beam is sent through a half-wave plate (HWP1) and a polarizing beam-splitter
(PBS1), allowing us to control the power ratio between the reflected and transmitted paths
of PBS1 by rotating HWP1. Here, the reflected beam is blocked while the transmitted
beam is allowed to propagate. Since two experiments share the same optical table, we
use HWP2 and PBS2 to divide the power equally among both experiments. A third
such combination is used before the double-pass AOM, again in order to control the total
power used in the experiment. This time the transmitted beam is blocked and the reflected
beam passes through the AOM. This beam and its diffracted orders exit the AOM and
pass through a quarter-wave plate (QWP), a plano-convex lens (PCL) with focal length
f = 100 mm, and an iris that transmits only the first diffracted order. The QWP is tuned
appropriately to ensure total transmission through PBS3 after retro-reflection, and the
PCL is placed one focal length away from the AOM such that the diffracted beams are
parallel, thus facilitating the selection of the first order when using the iris. The resulting
beam is retro-reflected and passed once again through the AOM, after which the first
order is selected, resulting in a beam shifted in frequency by 120 MHz. The beam power
is divided equally and coupled to three PM fibers, giving close to 12 mW per cooling
beam in each direction. We lock the laser to the 5S1/2F = 2 → 5P3/2F

′ = (2, 3)co peak,
which appears at half the frequency difference between the hyperfine levels F ′ = 2 and
F ′ = 3, that is at 133 MHz (see Fig. 3.5). Efficient cooling is, in general, achieved for a
red-detuning of 14 MHz ≈ 2Γ/2π; this requires the locked cooling beam to be frequency
shifted by 119 MHz, which is easily adjusted from the 120 MHz shift mentioned previously.

The repump beam is not shared with the other experiment and, consequently, follows
a less convoluted optical path. Moreover, if locked to the 5S1/2F = 1→ 5P3/2F

′ = (1, 2)co
peak, the laser must be frequency shifted by only 78 MHz and a single-pass through an
AOM with a central frequency of 80 MHz is sufficient. After the AOM, the beam power is
divided equally in three and coupled to the same aforementioned PM fibers, giving close
to 1 mW per MOT beam. Both cooling and repump beams are in all directions to increase
the effect of repumping.

To produce the MOT beams, each PM fiber is connected to a cage-mounted fiber-
collimator, in front of which is placed a QWP adjusted to give the desired circular polar-
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Figure 3.7: Detailed schematic of the optics in the control and frequency tuning of the
cooling and repumping beams. Both beams are utlimately fiber-coupled to generate beams
in each direction of space (Cx, Cy, and Cz). BB: Beam blocker, C1-C2: Collimating lenses,
FS: Fiber-splitter, HWP1-HWP5: Half-wave plates, M1-M10: Mirrors, QWP: Quarter-
wave plate, PBS1-PBS5: Polarizing beam-splitters, PCL: Plano-convex lens, RF: Radio-
frequency modulating signal.
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ization. Beams of 1.5 cm in diameter are produced resulting in a cooling beam intensity of
≈ 6.8 mW/cm2, well above the saturation intensity (see Table. 3.2) and a repump inten-
sity of 0.5 mW/cm2. Each fiber-collimator faces a viewport, sending the beams into the
science chamber. A cage-mounted assembly composed of a mirror and a QWP is placed
in front of a viewport directly opposite to each one of the fiber-collimators such that
the cooling beams are retro-reflected with opposite circular polarization. Irises can be
mounted on the cage system in front of the mirror and the fiber-collimator for alignment
purposes.

3.2.4 Characterization of the cold atom cloud

After alignment of the beams and locking of the laser frequencies to the respective re-
pump and cooling transitions, a first, non-optimal MOT, is generally obtained. Further
optimization requires fine tuning of the magnetic fields and better alignment of the laser
beams. These parameters are adjusted based on the fluorescence emitted by the cold
atomic cloud, while maintaining a pressure in the low 10−9 mbar for an optimal MOT. In
our system, the pressure generally starts from 9.8×10−10 mbar when the dispensers are
off and settles to around 3 ×10−9 mbar when the experiment is running.

Once the MOT is optimal, it has to be fully characterized. For this, we estimate the
average atom temperature via time-of-flight (TOF) measurements and the atom density
by detection of fluorescent photons. Note that, for these measurements, the atom cloud
is moved a short distance away from the HOM-ONF using the compensation coils. The
images taken during one such TOF experiment are shown in Fig. 3.8. A triggerable CMOS
camera (Thorlabs DCC3240N) is placed facing the front viewport of the vacuum chamber
and images the cloud of atoms in the MOT. The main magnetic coils, the repump, and
cooling beams are all turned off at the same time and the cloud is left to expand. After
an arbitrary period of time, typically a few milliseconds, the cooling beams are briefly
turned on to "flash" the cloud and generate fluorescence. The camera is triggered at the
same time and a picture of the expanded cloud is taken. By measuring the cloud diameter
every millisecond, the expansion rate can be determined and directly correlated to the
temperature of the cloud, Tcloud, via the relation

Tcloud =
M∆τ

kB
, (3.10)

where M is the mass of a 87Rb atom, kB is the Boltzmann constant, and ∆τ is the rate
of expansion squared, measured from the slope of the curve obtained when plotting the
diameter of the cloud squared as a function of the expansion time squared. This value
can be compared to the Doppler limited cooling temperature for 87Rb, TD = 146 µK,
calculated from the expression

TD =
~Γ

2kB
, (3.11)

with ~ being the reduced Planck’s constant and Γ being the decay rate of the excited
state. The TOF experiment presented here yielded a temperature of ∼117 µK, showing
that we have achieved sub-Doppler cooling.

In order to estimate the atom density in the MOT, we need to first evaluate the
diameter of the cloud and the number of atoms trapped in it. Determining the diameter
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Figure 3.8: MOT temperature measurement via time-of-flight. The value under each
picture indicates the amount of time for which the cloud was left to expand before taking
the picture.

is straightforward, as it simply requires an image of the MOT that we then compare
with an image of a known object captured with the same optical apparatus (i.e., the
camera and zoom-lens with unchanged focus). Evaluation of the number of trapped
atoms requires collecting fluorescent photons emitted by atoms in the MOT onto an APD
in front of which we place a plano-convex lens. We compare the measured signal with the
background signal when the magnetic coils are switched off. From the obtained voltage
on the APD one can calculate the transmitted power from

Power =
Vmeas

RSPRload
, (3.12)

where Vmeas is the measured voltage, RSP is the detector’s response, or the photon-
electron conversion efficiency at a given wavelength, here 780 nm, and Rload is the 1 MΩ
load resistance for the oscilloscope. The power can be used to get an approximation of
the number of atoms in the trap using

Power = N hωcool
πr2Γ

8πD2
, (3.13)

where N is the number of trapped atoms, h is Planck’s constant, ωcool is the cooling
transition frequency, r = 1.25 cm is the radius of the lens, Γ = 6 MHz is the decay rate
of the excited state, and D = 15 cm is the distance from the MOT center to the lens. We
typically measure close to 107 atoms trapped in our MOT, with an average density in the
range of 1010 to 1011 cm−3.

3.3 Conclusion
In this chapter, we have provided a brief theoretical description of laser-cooling of neutral
atoms and detailed the experimental setup used throughout this thesis work to create,
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control, and characterize a MOT of cold 87Rb atoms. We explained the origin of, and
provided the mathematical expressions for, the forces acting on neutral atoms when they
are cooled via optical molasses or trapped in a MOT. We then described the experimental
setup allowing us to tune the frequency and lock the frequencies of the cooling and repump
beams before they are used to create a MOT. We calculated an average temperature of
∼117 µK for the trapped atoms, which is found to be below the Doppler limited cooling
temperature of 146 µK for 87Rb





Chapter 4

Enhancement of a Quadrupole-Allowed
Transition Mediated by an Optical
Nanofiber1

This chapter outlines some of the results obtained from our theoretical work on optical
nanofiber-mediated quadrupole interactions with a single atom and is based on the work
published in [121]. Here, however, we only present the results that are relevant to an
experimental implementation of this work. The detailed mathematical derivations used
to form the theoretical model, along with some of the plots, which were either not produced
by the author of this thesis or judged irrelevant for experimental work, can be found in
Appendix B.

The chapter starts with an introduction, where the relevance of the work in the context
of high-density quantum information encoding using the orbital angular momentum of
light (OAM) is shown. The theoretical model describing a quadrupole interaction between
a 87Rb atom and fiber-guided light is then briefly described, before presenting the results of
numerical simulations for the example of the 5S1/2 → 4D5/2 quadrupole-allowed transition
in 87Rb at 516.5 nm.

4.1 Introduction

Atoms and photons are excellent building blocks for the realization of quantum networks
[70]. Information can be encoded on the quantum state of a photon, then coherently
mapped onto an atomic excitation, where the information can be either stored or pro-
cessed, before being mapped back to a photonic state. Among the degrees-of-freedom
onto which information can be encoded in a photon, orbital angular momentum (OAM)
states have recently received particular attention [106, 122, 123]. OAM modes form a dis-
crete and orthogonal basis that can be used to define an infinite-dimensional Hilbert space

1This chapter is adapted from the work published in F. Le Kien, T. Ray, T. Nieddu, T. Busch, S. Nic
Chormaic, Phys. Rev. A 97, 013821 (2018) [121]. T. Nieddu participated in the writing of the research
article and was involved in the numerical calculations for quadrupole excitation via the HOMs of the
ONF. These calculations were based on analytic expressions for the quadrupole moment, Rabi frequency,
oscillator strength, and enhancement factors derived analytically by F. Le Kien.

61



62 Enhancement of a Quadrupole-Allowed Transition Mediated by an ONF

[124]. Such modes can be created in free-space using Laguerre-Gaussian (LG) beams, also
called vortex- or donut-beams, which carry l~ of OAM per photon, l being the azimuthal
mode order [125]. This new degree-of-freedom has been used to demonstrate, for example,
entanglement of OAM at the single-photon level [126], the violation of Bell inequalities
in the case of high-dimensional entanglement of photonic states [127], the uncertainty
principle between the angular position and the OAM [128], and high-security quantum
cryptography protocols [129].

Experiments listed above have focused on the first key ingredient in the design of a
quantum network, namely, the photon. However, beyond its importance in the verification
of fundamental principles of quantum physics, the OAM of light also holds the potential
to develop high data capacity for applications such as quantum networks [130]. For this
very purpose, efficient OAM interfaces with matter have to be developed. Cold atomic
ensembles make an excellent storage platform in this context. Storage and retrieval of
OAM-states in such systems have been shown, using coherent population oscillation [131],
high-order wave-mixing [132], and electromagnetically induced transparency (EIT) [133].
In addition to storing information encoded on the OAM degree-of-freedom of photons,
the storage of entangled OAM- states in a cold atomic ensemble has also been recently
demonstrated [134].

Despite the much larger signal-to-noise-ratio provided by cold atomic ensembles, in-
teraction at the single atom level is of particular importance both for the fundamental
understanding of interaction mechanisms and in the framework of quantum information
for establishing reliable and efficient encoding protocols. To directly map high-dimension
qubits encoded on the OAM of a photon onto a single atom state, multipole transitions are
required. This was recently experimentally achieved with trapped ions by Schmiegelow et
al. [135], in which both the SAM and OAM of a tightly focused LG01 beam in free-space
were used to excite a quadrupole-allowed transition in a single 40Ca+ ion. Contrary to
dipole-allowed transitions, quadrupole-allowed transitions do not rely on the electric field
intensity, but instead are more likely to occur in a high field gradient. For example, an
atom positioned at the center of a circularly polarized LG01 beam is in a region of zero
field intensity, but experiences a very high field gradient, thereby increasing the likelihood
of driving a quadrupole-allowed transition.

Given the technological advances promised by OAM in free-space, its development
for fibered systems, such as ONFs, for example, is a natural extension of what has been
achieved so far. In Section 1.6.1, we already hinted that OAM could be carried by specific
HOMs; some of the hybrid modes, specifically the HE and EH modes, can carry more
than ~ of total angular momentum [95]. This feature could be exploited in systems that
interface the guided modes of an ONF with cold atoms to reproduce results obtained in
free-space experiments. Research during this PhD project was largely concerned with
exploiting the HOMs of an ONF as an additional degree-of-freedom to encode quantum
information and, potentially, transfer it to cold atoms. Motivated by the work reported
in [135] on the use of OAM-carrying beams to drive quadrupole-allowed transitions in
a single ion, we developed a theoretical model to establish the capability of an ONF to
drive such transitions in a single atom for both the fundamental mode and the first group
of HOMs [121]. This has, as a perspective, the development of an ONF-based platform
suitable for high-density information encoding.

Techniques to investigate non-dipole transitions have been explored theoretically and
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experimentally for atoms in free-space [19, 135–142], in evanescent fields [143–145], near a
dielectric microsphere [146], near an ideally conducting cylinder [147], and near plasmonic
nanostructures [148, 149]. However, the difficulty in achieving large electric field gradients
over a long distance makes the study of quadrupole transitions in an extended medium a
challenging task. ONFs allow tightly radially confined light to propagate over a relatively
long distance [1, 150, 151], typically a few millimeters. As shown hereafter, despite being
driven by the gradient of the field, a quadrupole transition has a higher probability of
occurring if the field intensity is strong enough. This poses a problem for experiments
using free-space beams. However, for ONFs, in addition to a high field intensity, the
evanescent field also offers a large intensity gradient in the radial direction [152, 153].
Furthermore, the HOMs of an ONF [94, 95, 104] may also offer an azimuthal phase
gradient.

4.2 Theoretical Model: Quadrupole Interaction of an
Atom with Guided Light

The basics of the theoretical model used to study the quadrupole interaction of an alkali-
metal atom with guided light in the fundamental and HOMs of a vacuum-clad ONF
are presented here. The detailed mathematical development leading to the analytical
expressions for the quadrupole Rabi frequency, the quadrupole oscillator strength, and
their enhancement factors for the general case, i.e., interaction with an arbitrary light
field, is contained in Appendix B. Here, we highlight the features needed for a general
understanding of the theory.

We first consider an atom placed in an arbitrary electric field, E . Let |e〉 and |g〉 be
upper and lower states of the atom, with energies ~ωe and ~ωg, respectively. The Rabi
frequency for the quadrupole transition between the two states, Ωge, is given by

Ωge =
1

12~
∑
ij

〈e|Qij|g〉
∂Ej
∂xi

(4.1)

where the Qij are the components of the electric quadrupole moment tensor, calculated
using Eq. (B.31). For an alkali atom, the transition is degenerate due to the presence
of magnetic sublevels, i.e., |g〉 = |nFM〉 and |e〉 = |n′F ′M ′〉, see Fig. B.1(b). Here, n
denotes the principal quantum number and all additional quantum numbers not shown
explicitly, F is the quantum number for the total angular momentum of the atom, and
M is the magnetic quantum number. The expression for the quadrupole Rabi frequency,
ΩFMF ′M ′ , is given by Eq. (B.38) and yields the selection rules |F ′ − F | ≤ 2 ≤ F ′ + F
and |M ′−M | ≤ 2. It can be shown (see Eqs B.36-B.37) that these selection rules can be
expanded to the quantum numbers for the total angular momentum, J , and the orbital
angular momentum, L, of the electron. The selection rules are then |J ′− J | ≤ 2 ≤ J ′+ J
and |L′ − L| = 0, 2.

It is now possible to define the root-mean-square (rms) Rabi frequency, Ω̄FF ′ , which
is given by summing over all M and M ′ values [154]

Ω̄2
FF ′ =

∑
MM ′

|ΩFMF ′M ′|2. (4.2)
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This value is used to get an expression for the oscillator strength, fFF ′ , obtained using
the relation [154]

Ω̄2
FF ′ =

e2|E|2

8~meω0

(2F + 1)fFF ′ , (4.3)

where me is the mass of an electron. The full expression for fFF ′ is given by Eq. (B.43).
It is a measure that characterizes the proportionality of Ω̄FF ′ to the field magnitude, E ,
through Eq. (4.3). This measure depends not only on the quadrupole of the atom, but
also on the normalized gradients of the field components. We note that, for atoms in
free-space, the oscillator strength can be interpreted as the ratio between the quantum
mechanical transition rate and the classical absorption rate of a single electron oscillator
with the same frequency [154, 155]. However, this interpretation may not be valid for
atoms in the vicinity of an object because the modifications of the transition rate are
much more complicated than for the Rabi frequency.

We now define the enhancement factors for the rms Rabi frequency, ηRabi, and for the
oscillator strength, ηosc, in arbitrary light as

ηRabi =
Ω̄FF ′

Ω̄
(0)
FF ′

,

ηosc =
fFF ′

f
(0)
FF ′

,

(4.4)

where Ω̄
(0)
FF ′ and f

(0)
FF ′ are the rms Rabi frequency and oscillator strength of an atom

interacting with a plane wave light field in free-space via an electric quadrupole transition.
Their respective analytical expressions are given by Eq. (B.44) and Eq. (B.45). We find
the relation

ηosc = η2Rabi =
2

k20|E|2
∑
q

∣∣∣∑
ij

u
(q)
ij

∂Ej
∂xi

∣∣∣2, (4.5)

where the matrices u(q)ij with q = −2,−1, 0, 1, 2 are given by Eqs. (B.28). It is clear
from Eq. (4.5) that ηRabi and ηosc are independent of the quantum numbers F and F ′.
Moreover, these factors do not depend on any characteristics of the atomic states except
for the atomic transition frequency, ω0. They are determined by the normalized spatial
variations of the mode profile function, E , at the frequency, ω0.

We consider the electric quadrupole interaction between the atom and a guided light
field of a vacuum-clad ONF (see Fig. B.1(c)). Assume that the fiber is a dielectric cylinder
of radius, a, and refractive index, n1, and is surrounded by an infinite background medium
of refractive index, n2, where n2 < n1. We use Cartesian coordinates {x, y, z}, where z is
the coordinate along the fiber axis, and also cylindrical coordinates {r, ϕ, z}, where r and
ϕ are the polar coordinates in the fiber transverse plane xy. The relations between the
Cartesian-coordinate vector components Ex and Ey and the cylindrical-coordinate vector
components Er and Eϕ are Ex = Er cosϕ − Eϕ sinϕ and Ey = Er sinϕ + Eϕ cosϕ. We
note that our model consists of a fiber and a single atom; though this may not be very
experimentally realistic it will provide us with useful characterization parameters for the
system. When the atom is very close to the surface, the energy levels and the transition
rates of the atom are modified. However, for simplicity, we neglect the effect of the fiber on
the atom. Because of this approximation, the results for the case where the atom is placed
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on the fiber surface is considered as the limiting situation for cases where the atom is close
to, but not exactly on, the fiber surface, thence the approximations are valid. The fiber
supports the fundamental modes, HE11, and the next four HOMs, namely TE01, TM01,
and the two HE21, in a finite bandwidth around the central frequency ω0 = ωe−ωg of the
atom to match experimental conditions. Expressions for the electric field of each of these
modes has already been given in Section 2.2, but we rewrite them here for convenience.

For a quasicircularly polarized, hybrid, HElm, mode with propagation direction, f ,
and phase circulation direction, p, the full mode function is given by

Ecirc = (err̂ + peϕϕ̂ + fezẑ)eifβz+iplϕ, (4.6)

where er, eϕ, and ez are given by Eqs. (2.18), for β > 0 and l > 0.
Quasilinearly polarized, hybrid modes are linear superpositions of counterclockwise

and clockwise quasicircularly polarized, hybrid modes. The full mode function of the
guided field in a quasilinearly polarized, hybrid mode can be written in the form

E lin =
√

2[r̂er cos(lϕ− ϕpol) + iϕ̂eϕ sin(lϕ− ϕpol) + f ẑez cos(lϕ− ϕpol)]eifβz, (4.7)

where the er, eϕ, and ez components are the same as before and the phase angle, ϕpol,
determines the orientation of the symmetry axes of the mode profile in the fiber transverse
plane. In particular, the specific phase angle values, ϕpol = 0 and ϕpol = π/2, define two
orthogonal polarization profiles in the fiber transverse plane, xy.

For a TE0m mode with a propagation direction f , the full mode function is given by

E = eϕϕ̂e
ifβz, (4.8)

where the only nonzero, cylindrical component, eϕ, is given by Eq. (2.27).
Finally, for a TM0m mode with propagation direction, f , the full mode function is

E = (err̂ + fezẑ)eifβz, (4.9)

where the components er and ez are given in Eq. (2.33)
We now derive an analytical expression for the enhancement factor, ηosc, for quasicir-

cularly polarized HE, TE, and TM modes. We assume that the atom is positioned on the
positive side of the x axis, i.e., we set ϕ = z = 0. Then, for quasicircularly polarized HE,
TE, or TM modes, we have

∂E1
∂x1

= e′r,
∂E2
∂x1

= pe′ϕ,
∂E3
∂x1

= fe′z,

∂E1
∂x2

=
p

r
(iler − eϕ),

∂E2
∂x2

=
1

r
(ileϕ + er),

∂E3
∂x2

=
fp

r
ilez,

∂E1
∂x3

= ifβer,
∂E2
∂x3

= ifpβeϕ,
∂E3
∂x3

= iβez, (4.10)

where e′r,ϕ,z = ∂er,ϕ,z/∂r. When we insert Eqs. (4.10) into the expression for the enhance-
ment factor, Eq. (B.47), and use Eqs. (B.28), we find

ηosc =
1

k20|e|2

[∣∣∣e′r − 1

r
(ileϕ + er)

∣∣∣2 +
∣∣∣e′ϕ +

1

r
(iler − eϕ)

∣∣∣2
+ |e′z + iβ0er|2 +

∣∣∣ l
r
ez + β0eϕ

∣∣∣2
+

1

3

∣∣∣e′r − 2iβ0ez +
1

r
(ileϕ + er)

∣∣∣2], (4.11)
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Figure 4.1: Oscillator strength enhancement factor, ηosc, for different guided modes.
(a) Radial dependencies of ηosc for different guided modes. The fiber radius is a = 280
nm and has refractive indices of n1 = 1.4615 and n2 = 1 for the fiber core and vacuum
cladding, respectively. (b) ηosc as a function of a for different guided modes. The atom is
positioned on the fiber surface. The hybrid modes are quasicircularly polarized and the
quantization axis is arbitrary. The 516.5 nm guided light is simulated at a power of 10
nW. These figures were reproduced from [121] and made by Dr. Le Kien.

where β0 = β(ω0). In Eq. (4.11), the mode functions and their spatial derivatives must be
evaluated at the atomic transition frequency, ω0, before inserting them into the expression
for ηosc.

4.3 Numerical results

Here, we present some of the results obtained for the oscillator strength enhancement
factor, as this quantity is of particular interest for experiments. The numerical calculations
have been done for the electric quadrupole transition between the ground state, 5S1/2,
and the excited state, 4D5/2, of a 87Rb atom. This transition occurs at 516.5 nm and
is accessible by the commercial Ti:Saphire laser system (Msquared, SolsTiS), equipped
with a frequency doubler (Msquared ECD-X), recently acquired by the group. For this
transition, we have L′ = 2, J ′ = 5/2, L = 0, J = 1/2, S = 1/2, and I = 3/2. The
experimentally measured oscillator strength of the transition 5S1/2 → 4D5/2 in free-space
is 8.06 × 10−7 [137]. In our numerical calculations, we assume that the field is at exact
resonance with the atom i.e., ω = ω0. We note that, despite the choice of a specific
quadrupole transition in a specific atom, our numerical results are relatively general,
as ηosc does not depend on any intrinsic properties of the atom except for the atomic
transition frequency (see Appendix B for details).

In Fig. 4.1(a), we plot the radial dependencies of ηosc for different guided modes. We
see that ηosc achieves its largest values at r/a = 1, that is when the atom is close to the
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Figure 4.2: Oscillator-strength enhancement factors, ηosc, for the quasilinear, HE11 and
HE21, modes. (a) Dependence on the radial distance, r, at different azimuthal angles, ϕ.
The orientation angle of the quasilinear polarization axis is ϕpol = 0 and the quantization
axis is arbitrary. Other parameters are as for Fig. 4.1. For comparison, the results for
the corresponding quasicircular, hybrid modes are shown by the dotted black curves. (b)
Dependence on the fiber radius, a. The atom is positioned on the fiber surface at different
azimuthal angles, ϕ. The orientation angle of the quasilinear polarization axis is ϕpol = 0
and the quantization axis is arbitrary. Other parameters are as for Fig. 4.1. The vertical
dotted line indicates the position of the cutoff for the HE21 mode. For comparison, the
results for the corresponding quasicircularly polarized, hybrid modes are shown by the
dotted black curves.

fiber surface and that it reduces slowly with increasing radial distance, r. This means
that, despite the evanescent field behavior, ηosc can be significant even when the atom is
far from the fiber, since the oscillator strength, fFF ′ , and, hence, ηosc are determined not
by the field amplitude but the ratio between the field gradient and the field amplitude.
In Fig. 4.1(b) we study the dependence of ηosc on the fiber radius, a, for different guided
modes. As for the oscillator strength, fFF ′ , (see Fig. B.11), ηosc has a local minimum
at a fiber radius a ' 107 nm for the fundamental mode, HE11, and is larger for higher
order modes in the region a < 498.2 nm. ONFs fabricated for cold atom experiments
have a typical fiber radius ranging from 200 to 400 nm, which is within this region. The
fundamental mode has, therefore, always a higher probability to drive the quadrupole-
allowed transition compared to other modes if the atom is close to the fiber surface.

Due to the summation over transitions with different magnetic quantum numbers and
the cylindrical symmetry of the field in a quasicircularly polarized hybrid mode, the fFF ′

and the ηosc do not depend on ϕ. For the field in a quasilinearly polarized, hybrid mode
the cylindrical symmetry is broken and fFF ′ and ηosc vary with varying ϕ. In Figs. 4.2(a)
and 4.2(b), we plot the dependencies of ηosc for the quasilinearly polarized, HE11 and
HE21, modes on r and a for different ϕ. We observe that, depending on ϕ, the factor ηosc



68 Enhancement of a Quadrupole-Allowed Transition Mediated by an ONF

ϕ

η
o
sc

(a)lin HE11

(b)lin HE21

π 2π3π/2π/20

r/a = 1
r/a = 1.5

Figure 4.3: Oscillator-strength enhancement factors, ηosc, for the quasilinearly polarized,
HE11 and HE21, modes as functions of the azimuthal angle, ϕ, for the position of the atom
in the fiber cross-sectional plane. The orientation angle of the quasilinear polarization axis
is ϕpol = 0 and the quantization axis is arbitrary. Other parameters are as for Fig. 4.1.

may decrease or increase with increasing r, may be larger or smaller than that for the
corresponding quasicircular hybrid mode, and may have a minimum in the dependence on
a. Figure 4.2(a) shows that ηosc varies slowly in the radial direction. Comparison between
the curves for different azimuthal angles in Figs. 4.2(a) and 4.2(b) indicates that ηosc for
quasilinear modes varies significantly in the azimuthal direction.

In order to get a better view of the spatial profiles of the enhancement factor, ηosc,
for quasilinearly polarized, hybrid modes, in Figs. 4.3 and 4.4 we plot this factor as a
function of the azimuthal angle, ϕ, and the Cartesian coordinates, x and y, of the position
of the atom in the fiber cross-sectional plane. The figures show that ηosc for quasilinearly
polarized, hybrid modes varies significantly in the azimuthal direction, but only slightly
in the radial direction, and is relatively large or small along the major or minor symmetry
axes of the modes, respectively.

Our results on the enhancement factor of the oscillator strength can be compared with
the work of S. Tojo et al., in which an evanescent field was generated via total internal
reflection in a prism and made to interact with a Cs vapor [144, 145]. Although our re-
sults match their theoretical findings [145], both qualitatively and quantitatively, optical
nanofibers offer several advantages compared to prisms. For example, a nanofiber can
directly be embedded in an atomic vapor, essentially non-destructively, allowing interac-
tions between the guided-light and the atoms in all three directions of space. In contrast,
prisms only allow interactions in the vicinity of their reflecting surface. Moreover, in [145],
a maximum enhancement factor of 6 is predicted for a p-wave with incidence angle of π/2.
These conditions are challenging to meet experimentally, as clear from their experimental
work [144], in which the maximum enhancement factor obtained was 2.5 for a p-wave
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Figure 4.4: Oscillator-strength enhancement factors, ηosc, for the quasilinearly polarized,
HE11 and HE21, modes as functions of the position of the atom in the fiber cross-sectional
plane. The orientation angle of the quasilinear polarization axis is ϕpol = 0 and the
quantization axis is arbitrary. Other parameters are as for Fig. 4.1.
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with incident angle close to π/4. This constraint does not apply to nanofibers for which
a maximum enhancement factor of 6 is also predicted when the atom is positioned close
to the fiber surface. This condition can be reproduced experimentally, in particular when
working with cold atom ensembles for which the highest density of atoms can be created
in the vicinity of the ONF’s surface [17].

4.4 Conclusion
In this chapter, we have motivated the use of HOMs as a way to encode high-density
information on their total angular momentum. Furthermore, we have theoretically studied
the electric quadrupole interaction of a 87Rb atom with guided light in the fundamental
and HOMs of an ONF, in order to demonstrate the potential of such a platform for the
storage of information carried by the guided modes. This is illustrated by the fact that
the quadrupole oscillator strength2 is enhanced by the effect of the fiber on the gradient of
the field amplitude, thus increasing the chances to drive a quadrupole-allowed transition
compared to what could be achieved with free-space beams. The enhancement factors of
the rms Rabi frequency and the oscillator strength do not depend on any characteristics
of the internal atomic states except for the atomic transition frequency. These factors
are determined by the normalized spatial variations of the mode profile function at the
atomic transition frequency. Like the oscillator strength, its enhancement factor, ηosc,
varies slowly with increasing distance from the atom to the fiber surface. Hence, ηosc can
be significant even when the atom is far away from the fiber.

2The rms Rabi frequency is also enhanced in this system. This is shown in Appendix B.



Chapter 5

Single-Color Two-Photon Excitation1

Following the theoretical results on the ONF-mediated enhancement of quadrupole-allowed
transitions that were presented in Chapter 4, we decided to address experimentally the
relevant 5S1/2 → 4D5/2 transition in Rb atoms at a 516.5 nm wavelength via a single-
color two-photon excitation at 1033 nm. This wavelength is within the specified range
of a Ti:Sapphire laser (Coherent MBR10), acquired by the group a few years ago. The
two-photon transition facilitates the access to spectroscopic peaks that can later be used
as frequency references for laser-locking. Unfortunately, the laser being close to its wave-
length limit yielded insufficient power at 1033 nm to run the experiment. We decided
nonetheless to carry on with our original plan to perform ONF-mediated two-photon ex-
periments with cold atoms, albeit by exploiting the 5S1/2 → 6S1/2 transition at 993 nm,
in order to gain valuable knowledge on such an experiment. This could be later used once
a laser at 1033 nm would become available.

This chapter first gives an introduction to two-photon processes. Next, the spectro-
scopic study carried out exploiting the 5S1/2 → 6S1/2 two-photon transition in a hot Rb
atom vapor, using a single-frequency laser beam is described. The preliminary results
obtained when a similar experiment was performed using a fundamental mode ONF em-
bedded in a cold atom cloud are then presented. In this system, we observed an energy
level splitting from the two-photon excitation mediated by the tapered fiber, suggesting
that the atoms are strongly-coupled to its guided-modes. We also exploited the specific
selection rules associated with the transition to show that polarization tomography at the
waist of the ONF may be achievable. This latter feature acts as a stepping-stone towards
selective optical mode excitation at the waist of a HOM-ONF. We emphasize, however,
that the results obtained with the cold atom experiments are ongoing, preventing us from
giving a complete theoretical description of the physics involved. The chapter ends with a
summary and provides perspectives on future experiments to be done within the research
group.

1This chapter was adapted from the work published by T. Nieddu, T. Ray, K.S. Rajasree, R. Roy,
S. Nic Chormaic, Opt. Express 27, 6528-6535 (2019) [156]. T. Nieddu did the experiments and drafted
most of the paper.
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5.1 Introduction

The 5S1/2 → 6S1/2 two-photon transition is dipole-forbidden in the single-photon regime,
but dipole-allowed in the two-photon regime [157]. Two-photon processes in atomic sys-
tems have several distinct advantages over single-photon processes. When the two photons
are derived from two counter-propagating beams, a judicious choice of the polarizations
can yield background-less, Doppler-free spectra [158, 159]. Two-photon transition fre-
quencies for S → S transitions are insensitive to magnetic fields below the Pacshen-Back
domain [160], while two-photon transitions to metastable states have extremely narrow
linewidths compared to those for single-photon processes [161, 162]. These unique features
make two-photon spectroscopy a powerful tool for precision measurements. Following the
first observation of a two-photon transition in an atomic system containing caesium [163],
numerous different atomic transitions have been investigated [164–170]. The technique
has been extensively used for metrology and the accurate determination of fundamental
constants [171, 172], as a frequency reference [173], and in quantum telecommunications
[174].

5.2 Two-Photon Spectroscopy in Rubidium Vapor

The spectroscopy experiment reported in this section was initially designed as a stepping-
stone towards more elaborate experiments employing the ONF and cold atoms. It turned
out, however, that the excitation of the 5S1/2 → 6S1/2 transition using a one-color, two-
photon excitation had never been observed before. We, therefore, decided to explore the
dependency of the spectroscopy signal on (i) the intensity and (ii) the polarization of the
pump beam to confirm the two-photon character of the transition. As shall be seen, we
observed a quadratic dependency on the intensity of the pump laser which is a signature of
the two-photon transition. We also show that the pump laser frequency can be stabilized
to the observed spectroscopic peaks, thereby illustrating that the transition could be
used as a frequency reference. This section also discusses some possible applications for
precision measurements and quantum telecommunications.

5.2.1 Energy levels of the 5S1/2 → 6S1/2 transition

The energy level diagram for the Rb 5S1/2 → 6S1/2 transition is shown in Fig. 5.1. Atoms
are excited from the 5S1/2 ground state, via a virtual state, to the 6S1/2 state using a
two-photon process at 993 nm. The atoms can decay back to the ground state via two
possible channels characterized by an intermediate state; this can either be (i) the 5P1/2

level on emission of a pair of photons with wavelengths 1324 nm and 795 nm (i.e., the
D1 transition), or (ii) the 5P3/2 level on emission of a pair of photons with wavelengths
1367 nm and 780 nm (i.e., the D2 transition). The photons at 1324 nm and 1367 nm
fall beyond the range of the detectors available for this experiment. Hence, for the work
reported hereafter, we only detect the 780 nm and 795 nm light.
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Figure 5.1: (a) Energy level diagram for Rb. A beam at 993 nm excites atoms from
5S1/2 to 6S1/2 via single-color, two-photon excitation. The intermediate virtual state is
represented as a dashed line. The atoms decay back to 5S1/2 via 5P1/2 or 5P3/2, with
photons emitted at 795 nm and 780 nm (orange arrows in the figure); (b) Hyperfine level
diagrams for the two Rb isotopes. Two-photon transitions allowed by the selection rule,
∆F = 0, ∆mF = 0, are shown, along with the frequencies of the hyperfine splittings.
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5.2.2 Doppler-free spectroscopy

Two-photon spectroscopy in a counter-propagating configuration can yield a Doppler-free
spectrum, which stems from the very nature of the two-photon process itself. In order to
understand this feature, let us consider the case of a sample of two-level atoms in a gas.
Each atom in the sample travels in space with a velocity v = (vx, vy, vz). Two counter-
propagating beams traveling along the x−direction with identical frequency, ω, are shone
onto the sample and absorbed by the moving atoms. In the frame of reference of a single
atom, the two beams are seen as Doppler-shifted in frequency such that [175]

ωLB = ω
(

1− vx
c

)
, (5.1)

ωRB = ω
(

1 +
vx
c

)
, (5.2)

where c denotes the speed of light in vacuum, and ωLB and ωRB are the frequencies of the
beam as seen from the atom’s perspective, for the left and right beams, respectively. The
resonance condition to excite the atom from its ground state energy, Eg, to its excited
state energy, Ee, is given by

Ee − Eg = ~(ωLB + ωRB) = ~ω
(

1− vx
c

)
+ ~ω

(
1 +

vx
c

)
, (5.3)

which simplifies to
Ee − Eg = 2~ω. (5.4)

This final expression is devoid of any velocity term. This implies that each atom in
the sample interacting with the counter-propagating beams, and for which the resonance
condition Eq. (5.4) is satisfied, contributes to the spectroscopic signal, regardless of its
velocity. This contrasts with usual spectroscopy methods, such as saturated absorption
spectroscopy, for example, since only atoms with velocity classes close to vx = 0 contribute
to the spectroscopic signal.

Due to the fact that the transition takes place between two S -levels (i.e., L = 0),
conservation of the total angular momentum in the electric dipole-allowed, two-photon
transitions imposes ∆F = 0 and ∆mF = 0 [176]. On the one hand, these selection rules
lead to a reduced number of allowed transitions, i.e., only two transitions per isotope:
87Rb F = 2 ↔ F ′ = 2, 85Rb F = 3 ↔ F ′ = 3, 85Rb F = 2 ↔ F ′ = 2, and 87Rb
F = 1 ↔ F ′ = 1. On the other hand, this also restricts the possible combinations
of polarizations for the laser beams which excite the transition, since the net angular
momentum transfer to the atom has to be null. As we will see in Section 5.3.2, this may
be used for the development of polarization tomography at the waist of an ONF.

The absorption probability of two photons from a single beam is equal to that of
absorbing a single photon from each of the two counter-propagating beams [175]. This
generally leads to a single-color, two-photon spectroscopic signal featuring an intense, nar-
row, and Doppler-free peak at resonance, superimposed on a Doppler-broadened baseline.
However, for the particular case of S to S transitions, this baseline can be completely
removed via appropriate choice of the polarizations of the counter-propagating beams.
If the counter-propagating beams have orthogonal circular polarizations, absorption of
two photons from a single beam is forbidden as the net angular momentum transfer to
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the atomic state would be nonzero. Thus, one photon from each beam has to be ab-
sorbed, yielding a background-less, Doppler-free spectroscopic signal. The experimental
verification of this claim is presented in Section 5.2.4.

5.2.3 Spectroscopy setup

The experimental setup is illustrated in Fig. 5.2. The experiment takes place in a glass cell
filled with Rb in its natural isotopic abundances, maintained at a temperature of 130◦C.
The 993 nm beam used to drive the two-photon transition is provided by a continuous
wave (CW) Ti:Sapphire laser (Coherent MBR 110), locked to a scanning reference cavity
yielding a spectral linewidth of 100 kHz. The laser frequency can be scanned by changing
the length of the reference cavity. The combination of a half-wave plate (HWP) and a
polarizing beam-splitter (PBS) at the output of the laser allows us to control the powers
in the reflected (R) and transmitted (T) beams from the PBS. Most of the optical power,
typically >90%, is in T and passes through the vapor cell for the two-photon spectroscopy
studies. The remaining light, in R, is fiber-coupled and further split so that 99% goes to a
Fabry-Pérot cavity (Toptica FPI-100) and 1% to a wavemeter (HighFinesse WS-6). The
wavemeter has two purposes; it allows us to tune the laser to the desired wavelength and
to monitor the frequency scanning. The Fabry-Pérot cavity has a free-spectral range of 1
GHz and is used to monitor the linearity of the frequency scan.

An optical isolator is placed in front of the vapor cell to avoid reflections back into the
laser. A plano-convex lens (L1), with focal length f1 = 150 mm, is placed after the optical
isolator to focus the beam in the cell. The 1/e2 beam diameter is measured to be 128 µm
using a beam profiler (Thorlabs BC106VIS). A concave mirror (CM), with focal length
fCM = 75 mm, and placed 2fCM = 150 mm away from the focal plane of L1 ensures
retro-reflection of the beam back to the focal point. Quarter-wave plates (QWP) can be
inserted in the beam path before L1 and CM to generate a circularly polarized beam. We
detect both the 795 nm and 780 nm decay photons using a photomultiplier tube (PMT)
(Hamamatsu R636-10). A short-pass filter with a cut-off wavelength of 800 nm is placed
in front of the PMT to prevent any scattered light from the 993 nm pump from being
detected. We use a pair of lenses, L2 and L3, with focal lengths of f2 = f3 = 50 mm,
in front of the PMT in a telescope configuration for efficient collection of the light. The
quantum efficiencies of the PMT at 780 nm and 795 nm are 9% and 8%, respectively. The
obtained current is amplified by a pre-amplifier with a gain of 105 and dropped across a
50 Ω resistor on an oscilloscope.

5.2.4 Results

A typical spectrum is shown in Fig. 5.3(a). Here, excitation to the 6S1/2 level is obtained
by scanning the frequency of the 993 nm laser and using the same linear polarization for
the forward and retro-reflected beams. Note that the simple setup presented here does
not measure the absolute frequency of the transition. The hyperfine splitting of the 6S1/2

level is 717.54 Mhz for 85Rb and 1615.32 MHz for 87Rb, using a resonant intermediate
level [177]. The relative frequency difference is obtained by setting the frequency of the
first peak, i.e., the 87Rb 5S1/2, F = 2 → 6S1/2, F

′ = 2 transition, to zero. A linear
frequency scaling obtained by using fringe interpolation of the Fabry-Pérot peaks, which
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Figure 5.2: Schematic of the experimental setup. Light from a tunable 993 nm laser is
used for two-photon excitation in a Rb vapor cell using a retro-reflected configuration. The
resulting atomic fluorescence is detected by a PMT. The polarizations of the forward and
retro-reflected beams are controlled using QWPs. A small amount (<10%) of the 993 nm
beam is coupled to a Fabry-Pérot cavity and a wavemeter to monitor the laser frequency.
M1-M5: Mirrors, L1-L3 Plano-convex lens, HWP: Half-wave plate, QWP: Quarter-wave
plate, PBS: Polarizing beam-splitter, CM: Concave mirror, PMT: Photomultiplier tube,
FL: Short-pass optical filter, PD: Photodiode.
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are 1 GHz apart, yields a similar result. Due to the two-photon process, the relative
frequency differences of the peaks are half the actual energy differences of the atomic
levels.

Power variation

The relative height and width of each peak in Fig. 5.3(a) is shown in Fig. 5.3(b). For a
particular Rb isotope, the intensities of the transitions from the ground hyperfine levels are
proportional to the statistical weights of the atomic population in those hyperfine levels
[178]. However, since the difference in energy between the hyperfine levels is negligible
compared to the transition energy, the weight factor is equivalent to the degeneracy
(2F + 1) of the hyperfine levels. These values are 5 : 3 and 7 : 5 for 87Rb and 85Rb,
respectively. The variation of peak height as a function of the square of the laser power is
shown in Fig. 5.3(c). The peak heights show a quadratic dependence on the total beam
power, P (i.e., the sum of the powers in the forward and retro-reflected beams); this is a
signature of the two-photon process [179]. The ratios of the slopes of the fitted straight
lines are 1.667 for 87Rb and 1.387 for 85Rb, i.e., close to the expected ratios of 5 : 3
and 7 : 5, respectively. The width of the peaks does not change as a function of power,
at least within the standard deviation of the measurements. We measure a Lorentzian
full-width-at-half-maximum (FWHM) of 2.60± 0.07 MHz, 2.44± 0.09 MHz, 2.49± 0.04
MHz and 2.43 ± 0.04 MHz for the 87Rb F = 2 − F ′ = 2,87Rb F = 1 − F ′ = 1, 85Rb
F = 3− F ′ = 3 and 85Rb F = 2− F ′ = 2 peaks, respectively.

Laser frequency stabilization to spectroscopic peaks

To establish the viability of the transition as a frequency reference, we demonstrate fre-
quency locking of the pump laser to the spectroscopic peaks. This is implemented by
integrating a TEM LaseLock R© module with the Ti:Sapphire laser. First, the reference
cavity is bypassed and the laser frequency is scanned by directly varying its cavity length.
A 10 kHz modulation is applied to one of the piezo-driven mirrors to generate frequency
sidebands. The modulated spectroscopic signal is fed into a lock-in amplifier and an error
signal is generated. An example of a modulated signal and a derived error signal are
shown in Fig. 5.3(d). The laser cavity and, hence, the frequency can be stabilized to each
of these error signals.

Polarization variation

We next explore the effect of changing the polarization of the counter-propagating beams
on the spectroscopic signal. As shown in Fig. 5.2, a quarter-wave plate at either end
of the vapor cell can be used to generate identical, or orthogonal, circularly polarized
forward and retro-reflected beams. Let us denote linear and circular polarizations as π
and σ, respectively, and their orthogonal polarizations as π′ and σ′, respectively. As
mentioned, the two-photon transition selection rules between the S levels are ∆F = 0
and ∆mF = 0, hence the total angular momentum of two photons absorbed by an atom
during the excitation process must be zero.

First we study the case of linear polarizations. By blocking the retro-reflected beam,
a π configuration is created, see Fig. 5.4(a). We observe a Doppler-broadened signal since
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Figure 5.3: (a) Typical spectroscopic signal obtained by scanning the frequency of the
993 nm pump beam and recording the signal on the PMT. Each peak indicates a hyperfine
transition as labeled. (b) Comparison of the individual peak intensities and linewidths
from (a). (c) Linear dependence of the peak height as a function of the total pump power,
P , squared. (d) Modulated signals and the generated error signals for each peak to which
the laser can be locked. For clarity, a 1 V offset is added to the modulated signal.
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both photons are derived from the forward beam. Next, by introducing a retro-reflected
beam, a π − π configuration is created, see Fig. 5.4(b). Here, we obtain a narrow,
Doppler-free spectrum on top of a small Doppler-broadened baseline. The Doppler-free
spectrum arises when the two photons are absorbed from counter-propagating beams,
whereas the Doppler-broadened signal results from the two photons being absorbed from
the same (forward or retro-reflected) beam. Next, the addition of a QWP after the vapor
cell, aligned at 45◦ with respect to the forward beam’s polarization axis, creates a retro-
reflected beam, with orthogonal linear polarization to the forward beam, resulting in a
π − π′ configuration, see Fig. 5.4(c). The two photons can only be absorbed from either
the forward or the retro-reflected beam, i.e., they cannot be absorbed simultaneously from
both beams. The signal on the PMT results in the sum of two Doppler-broadened spectra,
one from each beam, yielding double the amplitude of the π configuration. One can note
an increase in the noise level between Figs. 5.4(a) and (c). This is likely attributed to
the PMT being positioned such that it collects more scattered photons from the retro-
reflected beam than from the forward beam. Note that a similar observation can also be
made when comparing the next two figures (i.e., Figs. 5.4(d) and (e)).

We next move to the case where the beams have circular polarizations. By inserting a
QWP at 45◦ before the vapor cell and blocking the retro-reflected beam, a σ configuration
is created, see Fig. 5.4(d). In this case, the transition is forbidden (the sum of the
angular momenta of two photons in the forward beam is non-zero), hence there is no
signal recorded on the PMT. The σ − σ configuration is created by allowing the retro-
reflected beam to propagate inside the vapor cell, see Fig. 5.4(e). This transition is also
forbidden as, once more, the sum of the angular momenta of the two photons from the
counter-propagating beams (2~) is non-zero. However, due to experimental imperfections,
a weak signal can be observed. This is likely explained by the fact that the QWP’s
retardance is not exactly 0.25 at 993 nm (it is designed for 980 nm) and because the
incident beams’ polarizations can be slightly elliptical if they do not enter the vapor
cell orthogonally. Finally, inserting a QWP before the retro-reflecting mirror forms a
σ − σ′ configuration. The orientation of the waveplate’s axis is irrelevant. The two
photons that drive the transition can only be absorbed from the counter-propagating
beams. As a result, a background-less, Doppler-free spectrum is obtained, shown in
Fig. 5.4(f). The peak heights are half those obtained for the π − π configuration as
the probability to absorb two-photons with opposite spin angular momentum is less in
this case. For completeness, we show in Fig. 5.4(g) that the other orthogonal circular
polarization configuration yields a similar result.

5.2.5 Discussion

Ab-initio calculations of the electronic wavefunction close to the nucleus rely on an accu-
rate measurement of the hyperfine splitting of the atomic energy level [180]. To date, the
6S1/2 level in Rb has been accessed via a two-color, two-photon excitation scheme at 795
nm and 1324 nm for measuring its lifetime [177] and hyperfine splitting [181]. Accessing
the 6S1/2 level via the one-color, two-photon method presented here should enhance the
accuracy and precision of such measurements since only a single laser is necessary for the
excitation. Additionally, the two-photon transition could be used for the measurement of
parity nonconservation [182, 183] in alkali atoms.
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Figure 5.4: Effect of beam polarization on the two-photon excitation as recorded by the
PMT. As in Fig. 5.3(a), the relative frequency is obtained by setting the frequency of the
5S1/2, F = 2 - 6S1/2, F

′ = 2 peak to zero. The power of the 993 nm beam is fixed at 250 mW
and its frequency is scanned. The polarization of the beam is changed using QWPs. (a)
Doppler-broadened spectrum with a single, linearly polarized beam. (b) Linearly polarized
counter-propagating beams reveal the Doppler-free peaks and a small Doppler-broadened
base. (c) Counter-propagating beams with orthogonal linear polarizations yield a Doppler-
broadened spectrum of twice the amplitude of that in (a). (d) A single, circularly polarized
beam does not yield a signal. This configuration is forbidden, according to the selection
rules. (e) Due to experimental imperfections, counter-propagating beams with identical
circular polarizations yield a signal with intensity comparable to that of the noise. This
transition is forbidden for the same reason as in (d). (f) Counter-propagating beams with
orthogonal circular polarizations yield a background-less Doppler-free spectrum. Here, the
total angular momentum for the transition is zero. (g) Same polarization combination as
in (f) but inverted, showing a similar signal.
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The excitation scheme presented herein enables the conversion of two near-infrared
photons at 993 nm into a telecommunication O-band photon, at either 1324 nm or 1367
nm, and another near-infrared photon, at 795 nm or 780 nm, respectively. Chanelière
et al. [174] proposed a method for building quantum repeaters using cascaded atomic
transitions, whereas Willis et al. [184] generated time-correlated photon-pairs between
a near-infrared photon and an O-band photon using a four-wave mixing (4WM) process
in a Rb vapor. The 4WM scheme made use of the 6S1/2 level, accessed via a two-color,
two-photon excitation. Our scheme is compatible with these results, as driving the 5S1/2

to 6S1/2 two-photon transition would permit us to exploit both O-band photons as signal
photons, and the corresponding NIR photons as idlers mapped onto an atomic quantum
memory. In particular, the 993 nm photons could be coupled to atoms interacting with the
evanescent field at the waist of an optical nanofiber embedded in a cold atomic ensemble
[1] to make the process more efficient [185].

The first order Zeeman shifts experienced by the same hyperfine states of the 5S1/2 and
6S1/2 levels are identical since they have the same hyperfine Landé g-factors. This feature
renders the frequency of the 5S1/2 to 6S1/2 transition insensitive to stray magnetic fields.
The transition frequency is also less sensitive to electric fields compared to transitions to
nonzero angular momentum states (where l > 0). These features make the transition an
attractive choice for a frequency reference.

5.3 Nanofiber-Mediated Two-Photon Excitation in Cold
Atoms

After successfully establishing a spectroscopy setup on which the 993 nm beam could be
locked, we decided to proceed with the cold atom experiment. Approximately 20 mW
of power are taken directly from the output of the Ti:Sapphire laser and coupled to a
single-mode patch cable at 993 nm (Thorlabs SM980-5.8-125) to deliver light to the cold
atom setup, while the rest is used in the spectroscopy setup. The beam at the output of
the patch cable is further divided into two paths, sending one half of the power towards
either end of an ONF embedded in a MOT. The cold atom experimental setup is identical
to that described in Chapter 3, except for the ONF itself, which was fabricated using an
exponential taper. In addition, the diameter at the waist of this ONF is 400 nm, making
it single-mode for 780 nm. Both pigtails of the ONF are spliced to patch-cables (Thorlabs
SM 800-125), which are single-mode at all the wavelengths used.

A schematic of the relevant components in the experiment is given in Fig. 5.5. The
excitation scheme and energy levels are identical to those in Fig. 5.1. Any photon emitted
by atoms decaying back to their ground state can couple to the guided modes of the
ONF, irrespective of the decay channel chosen, and are detected by single photon count-
ing modules (SPCM) (Excelitas, SPCM-AQRH-FC) after the patch-cable. By contrast
with the vapor experiment, in which we detected both the 780 nm and 795 nm photons
simultaneously, here we detect 795 nm and 780 nm photons separately, at either end of
the ONF. Experimental data are analyzed based on signals collected from photons at
795 nm, whereas signals at 780 nm are used for completeness and to confirm the two-
photon excitation. This choice is motivated by two main practical factors, namely, (i)
the 6S1/2 → 5P1/2 decay channel has a higher occurrence probability compared with the
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Figure 5.5: Schematic of the experimental setup used for the cold atom experiments.
Two counter-propagating beams at 993 nm are injected into either end of an ONF whose
waist is embedded in a MOT. Fluorescent photons at 780 nm and 795 nm couple to the
guided modes of the fiber and are detected at both outputs of the ONF by two SPCMs.
P: Linear polarizer, HWP: Half-wave plate, DM: Dichroic mirror, SPCM: Single photon
counting module, OF: Optical bandpass filter.

6S1/2 → 5P3/2 channel, resulting in a larger number of detectable photons, and (ii) this
wavelength can be isolated from the fluorescent photons at 780 nm emitted by the MOT.
On one end of the patch-cable, a dichroic mirror (DM) (Thorlabs DMLP900) transmits
the 993 nm seed light which is injected into the ONF, and reflects 780 nm and 795 nm
photons towards a fiber coupler connected to an SPCM. A similar optical setup is used
on the other side of the patch-cable. The polarization of the 993 nm beam is kept linear
and is adjusted by rotation of a linear polarizer (P) and a half-wave plate (HWP) through
which the beam is passed prior to its injection into the patch-cable. We choose to work
with linear polarization as this maximizes the chances of driving the two-photon transition
and, thus, leads to a better signal (see Fig. 5.4 for the polarization analysis in a vapor).
Narrow-band filters ( Alluxa 794.9-1 OD4, and Thorlabs FB780-10) placed in front of the
fiber-couplers selectively allow one of the wavelengths of interest to be transmitted to the
SPCM. Here, we label SPCM1 the detector for 795 nm photons and SPCM2 the detector
for 780 nm photons.

After loading and overlapping a MOT of 87Rb atoms with the waist of the ONF, we
scan the frequency of the 993 nm laser in a ±100 MHz range around resonance with the
87Rb F = 2 ↔ F ′ = 2 transition, over the course of 1 s. The atomic population in
the MOT cycles mainly between the 5S1/2 (F = 2) and 5P3/2 (F ′ = 3) levels, leaving the
5S1/2 (F = 1) ground state largely depleted of its population. Consequently, a two-photon
excitation between the 5S1/2 (F = 1) and 6S1/2 (F ′ = 1) levels leads to a weak signal
which we are unable to detect in our experiments. The results reported here are obtained
by driving the 5S1/2 (F = 2)→ 6S1/2 (F ′ = 2) two-photon transition.

In Fig. 5.6, we show a typical set of signals observed when scanning the 993 nm laser
frequency. The input power in each beam is 400 µW, and each signal results from an
average of data collected over 20 scans. Signals at 795 nm and 780 nm are detected by
SPCM1 and SPCM2, respectively, with a gate time of 10 ms. The vapor cell spectroscopic
signal is simultaneously recorded as a reference. Detection of a peak close to resonance
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Figure 5.6: Evidence of ONF-mediated, two-photon excitation in cold atoms. The seed
laser at 993 nm is scanned in frequency and launched into the ONF with 400 µW of power
in each beam. Data are normalized to the baseline of the 780 nm signal.

at 795 nm indicates that the two-photon transition was successfully mediated by the
evanescent field at the ONF waist. This is further confirmed by the dip in the 780 nm
signal, occurring at the same frequency as the 795 nm peak. This dip likely results from a
transfer of atomic population from the MOT cooling-cycle to the two-photon transition.
Both peaks are frequency-shifted compared to the vapor cell signal. This shift has been
observed in other experiments involving nanofibers embedded in cold atom clouds and can
be attributed to either van der Waals interactions between atoms and the ONF surface
[3, 186], or light-shifts induced by the intense field of the 993 nm beams at the nanofiber
waist [6, 64].

5.3.1 Evidence of strong-coupling

Using the setup described above, we studied the influence of the 993 nm beam power
on the single-color, two-photon transition, see Fig. 5.7 (a). Individual plots show the
fluorescence signal at 795 nm detected by SPCM1 as a function of the frequency detuning
from resonance with the 5S1/2 (F = 2)→ 6S1/2 (F ′ = 2) transition, for a given power of
a single 993 nm beam. For powers between 0.2 to 0.8 mW per beam (i.e., 0.4 to 1.6 mW
of total power), the signal broadens with increasing power. Beyond this range of power,
two peaks can be distinguished, their separation increasing with the power. This splitting
is a likely signature of strong-coupling2 between the guided-modes of the ONF and atoms
surrounding it. Our group previously demonstrated Autler-Townes splitting in cold atoms

2Interaction between an atom and a field is said to take place in the strong-coupling regime when the
atom-field coupling, characterized by the Rabi frequency, Ω, is much larger than the excited state decay
rate, Γ, i.e., Ω� Γ.
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surrounding an ONF [11], but a third level had to be used in a ladder excitation scheme to
probe the splitting of the intermediate level. To the best of our knowledge, this is the first
time strong-coupling is experimentally observed in a two-level system. Further evidence of
the occurrence of strong-coupling in our system can be concluded from Fig. 5.7 (b), where
we plot the peak separation as a function of the power per pump beam, Ppump. The peak
splitting is found to be linearly dependent on Ppump. This contrasts with the usual square-
root signature of a strong-coupling regime in single-photon transitions, but is consistent
with a single-color, two-photon excitation. This phenomenon has already been highlighted
in Fig. 5.3 when we plotted the peak height as a function of the pump beam power squared
in the vapor experiment to see the linear relationship. A full picture of the physics behind
our observations has yet to be developed before drawing any definite conclusion. We are
currently developing a theoretical model of the system under consideration, which will
help us determine the specific nature of the strong-coupling behavior (e.g. Autler-Townes
splitting, Mollow triplet, ...).

5.3.2 Polarization tomography at the ONF waist

Polarization at the waist of a tapered fiber is a valuable, yet difficult to access, piece of
information for the design of ONF-atom interfaces. In most experiments involving ONFs
and cold atoms, the polarization at the waist is either adjusted by direct imaging of the
waist via Rayleigh scattering [7, 14], or simply by modifying the polarization of the input
beam until the interaction between the evanescent field and the cold atoms is deemed
optimal [64]. Taking advantage of the polarization restrictions imposed on the pump
beams by the two-photon selection rules between two S -levels, we decided to test the
capability of atoms to act as probes of the polarization at the waist. As the ONF used
here supports only the fundamental mode, probing the polarization at the waist using
atoms provides a good test-bed before moving to more complex experiments involving
the HOMs.

We slightly modify the experimental setup in Section 5.3 (see Fig. 5.5) in order to
control the input beam polarization and measure the polarization state of both the in-
put and output beams. A schematic of the modified experimental setup is provided in
Fig. 5.8. The two-photon transition is driven by a single beam at 993 nm, passed through
a QWP, allowing us to modify its polarization state continuously from linear to circular
polarization. The beam is then launched into the ONF, the waist of which can be over-
lapped with the MOT as desired. At the output pigtail, the 993 nm beam is transmitted
through a DM and its polarization state characterized by a polarization analyzer (Schäfter
+ Kirchhoff SK010PA). The isotropic nature of the fluorescence at 795 nm allows us to
collect these photons from either side of the ONF and we choose SPCM1.

We want to study the change in the polarization of light, whether guided by the ONF
or propagating in free-space. A convenient way to describe a light beam’s polarization
is using the Stokes vectors, S = (S0, S1, S2, S3). For a monochromatic plane-wave with
electric field, E(x, t), described as E(x, t) = (ε1E1 + ε2E2)e

i(k.x−ωt), where the εi are
orthogonal unit vectors in the cartesian frame of reference, E1 = a1e

iδ1 and E2 = a2e
iδ2 ,
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Figure 5.7: Experimental observation of strong-coupling. (a) Cascaded plot showing
the increase in splitting of the 6S1/2 (F ′ = 2) level as the power per 993 nm beam
is increased. Each signal is observed through collection of fluorescent photons at 795
nm when the frequency of the 993 nm beam is scanned around resonance. (b) Linear
dependence of the separation between the split peaks on the power per beam. The red
line represents a linear fit. Data obtained for powers below 1 mW per beam do not show
any peak splitting.
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Figure 5.8: Modified experimental setup used in the polarization tomography experi-
ment. Here, a single beam at 993 nm is launched into the ONF after passing through
a quarter-wave plate (QWP) that allows us to continuously vary the polarization of the
input beam from linear to circular. A polarization analyzer (PA) can either be placed in
front of the input beam or in front of the output beams in order to measure the Stokes
components.

the components of the Stokes vectors are defined as follows [155]:

S0 = |ε1.E|2 + |ε2.E|2 = a21 + a22,
S1 = |ε1.E|2 − |ε2.E|2 = a21 − a22,
S2 = 2 Re[(ε1.E)∗(ε2.E)] = 2a1a2 cos(δ2 − δ1),
S3 = 2 Im[(ε1.E)∗(ε2.E)] = 2a1a2 sin(δ2 − δ1).

(5.5)

The S0 component gives the intensity of the field, S1 indicates the degree of linear
polarization, i.e., whether the field has a horizontal (S1 > 0) or a vertical (S1 < 0) linear
polarization component, while S2 and S3 give information about the relative phases of
the field along the directions ε1 and ε2. After normalizing S to S0, the other three
components can be used to define a point on the surface of a unit sphere, called the
Poincaré sphere, whose axes are formed by (S1, S2, S3). Specific polarization states
can be distinguished on this sphere. We have H = (1, 1, 0, 0), V = (1,−1, 0, 0), D =
(1, 0, 1, 0), A = (1, 0,−1, 0), R = (1, 0, 0, 1), L = (1, 0, 0,−1), respectively denoting
linear-horizontal, linear-vertical, linear-diagonal, linear-antidiagonal, circular-right, and
circular-left polarization.

As schematized in Fig. 5.9(a), light traveling through the ONF undergoes a transfor-
mation, Ttot. This transformation is the result of a combination of two other transforma-
tions; one between the input of the ONF and its waist, T1, and one between the waist and
the output of the ONF, T2. These transformations can be expressed as matrices using
the Mueller-formalism [187], and we can write the relations

Swaist = T1Sin (5.6)

Sout = T2Swaist (5.7)

Sout = T2T1Sin = TtotSin (5.8)
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Figure 5.9: Characterization of the ONF-induced transformation of the input light’s
Stokes components. (a) System under consideration and associated transformations. The
input light can be characterized by a Stokes vector, Sin, which undergoes two transfor-
mations, T1 and T2, while traveling from the ONF input to the waist and from the waist
to the output, respectively. We label the Stokes vectors at the waist and output of the
ONF Swaist and Sout, respectively. The combination of T1 and T2 form the overall trans-
formation Ttot. (b) Experimental data obtained by measuring the Stokes components of
the input, Sin, and output beams, Sout, represented on the Poincaré sphere. The vector
SMOT denotes data obtained from measuring Sout while the MOT was overlapping the
ONF waist. (c) Same as (b) but with principal axes S1 and S2 rotated by 90◦ around the
S3 axis for clarity.

We measure the Stokes components of the 993 nm input beam, both before and after
launching it into the ONF. The polarization of the input beam is incrementally changed
from linear to circular by rotation of the QWP in front of the ONF. The data for 22
orientations of the QWP are presented in Fig. 5.9(b) and Fig. 5.9(c) for polarization
measurements at the input (Sin) and the output (Sout) with no atoms around the waist.
It appears that the overall transformation, Ttot, has as effect a rotation of the input
beam trajectory on the Poincaré sphere twice, with respect to two different axes. We
additionally evaluate the influence of the MOT atoms on the overall polarization state
transformation. For this, we repeat the measurements for Sout while overlapping the
MOT with the ONF waist. This corresponds to the magenta trajectory in Fig. 5.9(b)
and Fig. 5.9(c), labeled SMOT, which does not seem to deviate much from the measured
trajectory of Sout. We thus conclude that atoms in the MOT have no significant effect
on the change of polarization observed between Sin and Sout.

We now need to evaluate Swaist by overlapping the cold atoms with the waist of
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the ONF and measuring the evolution of the absorption at 993 nm for different input
polarization states. The emission of 795 nm photons should be directly proportional to
the absorption of the 993 nm pump beam. In the ideal case of pure circular polarization,
the pump beam cannot drive the two-photon transition, yielding no emission at 795 nm
(i.e., no absorption at 993 nm, see Section 5.2.4 for details). In contrast, for the ideal case
of pure linear polarization, a maximum emission at 795 nm (i.e., maximum absorption at
993 nm) should be observed. Due to the presence of a nonzero longitudinal component
of the electric field in an ONF [93, 95], we do not expect to observe zero absorption,
regardless of the QWP angle chosen. However, a minimum absorption should indicate
that the polarization state at the waist is close to circular polarization in the transverse
plane of the ONF3.

We present the polarization tomography results in Fig. 5.10. The 22 measured Stokes
vectors, presented in two groups of 11, are plotted in terms of their horizontal and vertical
electric field components, Ex and Ey, respectively, for both the input and output beams
(see Fig. 5.9). This representation helps to clearly visualize the ellipticity, orientation,
and helicity of the measured beams. The first row for both groups of data shows the
evolution of the polarization state of the input beam as the QWP is rotated from 0◦ to
180◦. The direction of the arrow indicates the direction of rotation of the polarization
vector, namely denoting left-handed polarization for a counter-clockwise rotation, and
right-handed polarization for a clockwise rotation. The second row displays a series of bar
charts representing the amplitude of the 795 nm fluorescence signal detected at SPCM1
for each polarization state of the input beam presented in the first row. Finally, the third
row presents data for the output beam in a similar fashion to that of the first row.

The evolution of the peak height appears consistent with the changes made to the in-
put beam polarization, though our input beam polarization control is not optimized. We
note that the 795 nm emission is maximal when the input beam is linearly polarized and
minimal when the input beam is close to circular polarization. However, the difference
between these extremum should be more pronounced. While the peak height is never
observed to be null, the relation between the input beam polarization and the observed
emission signal has similarities with what was observed in the free-space experiment de-
scribed in Section 5.2.4. In contrast, the output beam polarization appears to be almost
always opposite to what would be expected from observing the 795 nm emission. Our
results suggest that a large asymmetry exists between the two transformations T1 and
T2, and that the effect of T1 on the final polarization state is much weaker compared to
that of T2. Note that this is completely opposite to what our research unit has observed
for nanofibers in air, where the down taper affects the polarization of the mode far more
significantly than the up taper [116, 188], a phenomenon that was observed for numerous
different fibers. Here, we are limited to a single ONF within the UHV system and it
is likely that the feed-throughs have imposed a strain on the fiber causing this effect.
This should be investigated further by combining the crossed-fiber polarization detection
method with a fiber that passes through ferrules and Swagelock c© to see if they affect the
polarization changes. With only the single fiber at our disposal, an extensive description
of the system is not possible. We will repeat this experiment in the future, using a HWP

3In fact, many laboratories report non-constant polarization along the entire length of the nanofiber.
Here, we are effectively integrating along the interaction region to get an "average" polarization.
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Figure 5.10: Polarization tomography results. The QWP is rotated from 0◦ to 180◦

over 22 steps. The results are presented in two groups of 11 for clarity. For each group,
the first row shows the evolution of the input beam polarization state in terms of Ex and
Ey, the second row shows the magnitude of the fluorescent peak at 795 nm collected at
SPCM1 for a gate time of 10 ms, and the third row presents data similarly to the first
row, but for the output beam.
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in addition to the QWP in order to fully probe the Poincaré sphere, and thus completely
characterize the system. This should allow us to find if local extrema exist for specific
input polarization states, and establish a clear correlation between the input and waist,
and between the waist and output. Accurate evaluation of the Mueller matrices associated
with each transformation should then become possible.

5.4 Conclusion
We have demonstrated the 5S1/2 → 6S1/2 one-color, two-photon transition in a hot Rb
vapor at 993 nm. The effects of excitation laser power and beam polarization on the
observed spectroscopy signals were investigated. The transition could be used as a refer-
ence at 993 nm as we have demonstrated frequency stabilization of the excitation laser
to the spectroscopic peaks. The simple optical setup is easy to miniaturize and can be
readily integrated into more complex experiments. The transition frequency is insensitive
to stray magnetic fields and is, therefore, suitable for precision measurements and exper-
imental setups where magnetic fields cannot be completely eliminated, e.g. in a MOT or
a magnetically trapped Bose-Einstein condensate.

Driving the two-photon excitation using the evanescent field of a fundamental-mode
ONF embedded in a cold atomic cloud led to evidence of strong-coupling between the
atoms and guided modes of the ONF. A full theoretical description of the system is
currently being developed in collaboration with Prof. J. Mompart (Universitat Autònoma
de Barcelona) and should allow us to discover the nature of the strong-coupling effect
reported.

Finally, we have exploited the selection rules associated with a two-photon transition
between two S levels in order to evaluate the polarization state at the waist of the ONF.
We have demonstrated that, even with a relatively small number of measurements, a
link between input polarization state and polarization at the waist can be established.
This method is of particular interest for improving ONF-based atom-trapping techniques,
which have yet to be demonstrated for quasi-circularly polarized light. The 993 nm light
could provide polarization calibration before being detuned by a few nm to create the
red-detuned trapping beams required in a two-color ONF-based trapping scheme. Our
technique relies solely on atoms trapped in a MOT and does not require extra imaging
elements as is the case for Rayleigh scattering [7, 14, 32]. Further analysis of the presented
data should also allow us to get insight on the transformations the guided light undergoes
as it propagates through the ONF, an area in which our group has recently made some
progress [189]. This is particularly valuable for the characterization of more complex
experiments involving, for example, the HOMs of an ONF and their interaction with atoms
in a MOT. Similar experiments will be repeated in the future, focusing on fully probing
the system and evaluating the Mueller matrices associated with each transformation.



Chapter 6

Characterization of the Mode
Excitation at a Nanofiber Waist

The work done on ONFs interfaced with atoms has been reviewed in previous chapters.
The latest developments in the field include the probing of long-range dipole interactions
via super-radiance [17], and the observation of large Bragg reflections [15] and heralded
collective excitations [73] in ONF-based atom traps. Such fibers have also been engineered
to form cavities, either by etching Bragg-gratings on either end of the waist [90, 190], or
looping the fiber on itself to form a ring cavity [91]. Most of the work on nanofibers with
atoms has exploited the fundamental mode, overlooking the higher order fiber-guided
modes (HOMs) despite their potential [95, 98, 99, 102, 104]. To give but a few of the
proposed applications, HOMs interfaced with cold atoms could be used for ONF-based
atom traps [98, 99] with higher degrees of control than for the fundamental mode, to create
tractor beams [102], and to drive quadrupole-allowed transitions [121]. In addition, the
hybrid modes, namely the HE and EH modes, carry orbital angular momentum (OAM)
[95], which could be tailored to exhibit superchiral properties [104]. To date, the only
experiment that has ever reported on the interaction between the HOMs and cold atoms
has been performed by our group [94].

This chapter is structured as follows. First, we give a brief introduction, motivating the
project presented here, and highlighting the challenges and potential solutions associated
with it. We then present the results obtained with initial designs of the experiment,
illustrating the thought process and the modifications that led to the current experimental
setup. We dedicate an entire section to some of the most important technical challenges
when designing the experiment and the solutions we found. Finally, we present the latest
design of the HOM experiment along with results obtained when attempting to precisely
determine the mode excitation (i.e., for both the fundamental mode and the HOMs) at
the waist of an HOM-ONF. Despite overcoming most of the earlier technical hurdles, we
emphasize that the project reported here is still a work in progress. More work is needed
to determine if our technique can be applied to accurately determine the modes excited
at the waist of an HOM-ONF.

91
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6.1 Introduction

One of the main challenges needing to be tackled before being able to exploit the HOMs
for applications with atoms is to develop a way to reliably and controllably excite these
modes at the waist of an ONF. Even when tailoring the ONF such that it only supports
the first six modes, i.e., HE11,e, HE11,o, TE01, TM01, HE21,e, and HE21,o, cross-talk between
them is unavoidable. In relation to potential applications, this poses a serious issue as, for
example, only the hybrid modes carry OAM [95], and only a specific pair of modes should
be excited to create an efficient atom trap using HOMs [99]. Aside from applications with
atoms, HOMs have received much more interest, specifically for the creation of cylindrical
vector beams (CVBs). These beams can be seen as the free-space equivalent of HOMs
and have found a broad range of applications (for a review see, for example, [191]). In
free-space, CVBs can be generated by combining two coaxial LG beams with orthogonal
circular polarization [110], or by using a Q-plate [192]. Given their similarity to the
HOMs, fibers have also been used to create CVBs at their output [112–114]. Volpe and
Petrov demonstrated that, for a given input polarization, it was possible to selectively
excite a pair of modes at the output of a straight, multimode fiber shielded from any
external perturbation [112]. Later, experiments showed that the mode at the output of
such fibers could be precisely controlled once a transfer matrix (TRM) of the system
could be determined, thereby yielding a target mode at the output. Among the methods
developed to evaluate the TRM of such a system, two were considered for the work in this
chapter. In the first, the mode decomposition relied on interference between a reference
plane wave and the output of a multimode fiber [114], whereas, in the second method,
two SLMs placed at the input and output of a multimode fiber were used to calculate the
coupling coefficients for each mode in the TRM of the whole system [113].

Unlike the aforementioned studies considering the output of a fiber, we are primarily
interested in the mode at the waist of an ONF. Fatemi et al. [115] recently demonstrated
that mode beating at the waist of a HOM-ONF could be detected by probing the evanes-
cent field with a single-mode ONF. These results have significantly improved the precision
of mode analysis via Rayleigh scattering reported by the same group [32]. However, these
techniques are somewhat difficult to integrate within a cold atom setup. Therefore, we
decided to test whether the cold atoms themselves could be used to probe the mode exci-
tation at the waist, in a manner similar to the polarization tomography we presented in
Section 5.3.2.

6.2 Initial Experiments

To achieve selective mode excitation at the waist of an HOM-ONF we first needed to
answer two questions: (i) Since free-space generation of CVBs is achievable by exciting
the HOMs of a multimode fiber [112, 113], is it possible to shape a CVB to look like a
specific HOM and inject it into an HOM-ONF such that it excites the targeted mode? and
(ii) Knowing that light injected into the HOM-ONF undergoes a series of transformations
on propagation, is it possible to establish a correlation between the observed output profile
and the mode at the waist? We aimed to answer these questions by designing the first
generation of experiments, which, as will be detailed in Section 6.2.3, led to a partial
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answer to question (ii).

6.2.1 Generation of cylindrical vector beams using a straight few-
mode fiber

Our first attempt at creating CVBs in free-space followed the methods developed by
Volpe and Petrov [112]. The selective excitation of pairs of HOMs cccurs when a circularly
polarized LG01 beam is launched into a few-mode fiber (FMF). If the beam is σ+-polarized,
that is, the rotation of both the phase front and the polarization coincide, the expected
output is a combination of TE01 and TM01. Passing the output beam through a HWP
allows one to generate either a TM01-like or a TE01-like free-space beam.

For the case of a σ−-polarized LG01 beam, the rotation of the phase and the polariza-
tion are opposite to each other, and the expected output should be a combination of a
HE21,e and a HE21,o mode. Note that the HE21 modes are degenerate in their propagation
constant, β, and thus should always combine to form a circularly polarized donut-shaped
beam at the fiber output. Stress- or strain-induced birefringence can lift the degeneracy
in β for these modes, allowing only one of them to be excited at a time.

Figure 6.1 shows the experimental setup used to reproduce the results reported in [112],
and launch the resulting CVBs into the HOM-ONF installed in the UHV chamber (setup
identical to that described in Chapter 3). A fiber-coupled ECDL (Toptica DL100 Pro)
produces a 780 nm Gaussian beam that is incident on an SLM on which is displayed a fork
hologram resulting from the superposition of a phase grating and a 2π phase dislocation.
The resulting LG01 beam is passed through a QWP, before being injected into a ∼ 20 cm
long FMF (FiberCore, SM1250 9/80) kept straight and shielded from air and vibrations
by a Plexiglas cover. Note this fiber is identical to the FMF used to fabricate the HOM-
ONF and supports up to the HE12 modes at 780 nm. The injection efficiency for the FMF
is higher than 75% and no cross-talk with modes beyond the LP11 family is observed. The
output beam is then passed through a HWP and a 90:10 BS (i.e., 90% of the power is
transmitted and 10% is reflected). The transmitted beam is coupled into the HOM-ONF,
while the reflected beam is passed through a linear polarizer before hitting a beam profiler
(Thorlabs, BC106N-VIS). The output pigtail is kept as straight as possible to avoid any
further transformation of the modes between the waist and the output. The beam coming
out of the HOM-ONF is divided using another 90:10 BS, with 90% of the power being
sent to a single photon counting module (SPCM) (Excelitas, SPCM-AQRH-FC), which is
fiber-coupled to a FMF. The remaining 10% is passed through a rotating linear polarizer
before being imaged by an actively cooled sCMOS camera (Andor, Zyla CMOS 4.2) for
the polarization analysis necessary to identify the modes.

The CVBs, as imaged by the beam profiler, are displayed in Fig. 6.2. Without the
linear polarizer, the resulting output beam is always donut-shaped, irrespective of the
circular polarization chosen for the input beam. To determine the type of CVB produced,
we rotate the linear polarizer (P1) placed in front of the beam profiler and observe the
resulting profile. This produces a two-lobed pattern that either rotates in the same
direction as the polarizer’s axis in the case of TE01-TM01 excitation, or opposite to it
for HE21 excitation. Using a σ+-polarized input beam, we rotate the fast-axis of the
HWP in order to produce the expected TE01-TM01 pair. This serves as a reference to
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Figure 6.1: Schematic of the experimental setup for the CVB generation via an in-
termediate fiber. M1-M7: Mirrors, QWP: Quarter-wave plate, HWP: Half-wave plate,
BS: Beam-splitter, P1-P2: Linear polarizers, C1-C5: Fiber collimators, FMF: Few-mode
fiber, SPCM: Single-photon counting module, MMF: Multimode fiber, sCMOS: Scientific
complementary metal oxyde semi-conductor camera, BP: Beam profiler.
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Figure 6.2: CVBs generated using the intermediate fiber method. A σ+-polarized input
beam leads to excitation of the TE01-TM01 pair, which can be separated when the HWP
is rotated by ± 45◦. The evolution of the two-lobed pattern is plotted as the polarizer is
rotated. The polarizer’s axis is represented by the arrows at the top of the figure. Blue
represents a low beam intensity and red a high beam intensity. The last column shows a
diagram of the expected polarization profile.

subsequently produce the TE01-like and TM01-like CVBs by rotating the HWP by +45◦

and -45◦, respectively. Due to imperfections in the coupling and probable asymmetries
in the fiber, excitation of both HE21 modes at the same time was found to be very
challenging, with only one of them being observed at a time. Adjusting the QWP to
produce a σ−-polarized input beam would lead to a profile resembling that of a HE21

mode, but adjusting the coupling of the input beam using a pair of mirrors allowed us to
get the desired output profiles. Here, the HWP is never rotated.

Injection of these CVBs into the HOM-ONF led to high power losses and output
profiles showing evidence of cross-talk between modes of the LP01 and LP11 families.
Bypassing the intermediate fiber and injecting LG01 or LG0−1 beams directly into the
HOM-ONF was found to be easier and more efficient. We, therefore, abandoned this line
of experiment and decided to change strategy to create HOM-like beams in free-space,
the details of which are given in Section 6.4.1.
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Figure 6.3: Identifiable combinations of HOMs. The first row shows the polarization
distribution of individual, linearly polarized HOMs. The second row shows a list of in-
phase combinations of pairs of modes that are distinguishable after polarization analysis.
The third row shows how the pattern changes if the modes are π out-of-phase. In each
case, the dashed pattern represents the beam shape as would be observed in free-space.

6.2.2 Twisting-induced nanofiber modes excitation

We had already developed a method to selectively excite specific HOMs at the output of
a FMF during the fabrication of the HOM-ONF (see Section 2.4.1). As a reminder, we
used stress-induced birefringence while launching an LG01 beam into a FMF to observe
one of the HE21 modes at its output, so that its transmission during the pulling process
could be monitored. In order to establish a link between the observed output and the
mode at the waist, we decided to use the twisting technique once more. This time, the
goal was to create not only the HE21 modes, but all of the modes in the LP11 family
at the output of the nanofiber. As such, the earlier setup was adapted to lengthen the
pigtail of the HOM-ONF and to accommodate the required polarization paddles (PP).
The intermediate FMF used in the previous experiment was discarded and a ∼ 50 cm
long FMF was spliced to the input pigtail of the ONF. Note that the FMF had identical
specifications to that of the fiber used to fabricate the HOM-ONF (FiberCore SM1250
9/80) and was identical to the pigtail. The now elongated pigtail was then coiled around
three PPs and its free end connected to a fiber collimator with an NA of 0.25 to maximize
coupling of the free-space LG beam. We measured a coupling efficiency up to 85% in the
fundamental mode (LG00 beam) at the output of the HOM-ONF and up to 60% for the
LG01 beam. The experimental setup after the HOM-ONF was unchanged.

In most cases, this method produces output profiles that indicate significant mode
mixing; simple polarization analysis does not provide enough information to accurately
determine which modes have been mixed or in which proportion. In some cases, however,
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an output profile can directly be identified as a specific combination of modes. These
special cases are sketched in Fig. 6.3. The dashed lines indicate the pattern these modes,
or combinations of modes, would produce at the output the HOM-ONF and the arrows
represent polarization vectors. In the first row, we have sketched the polarization patterns
of linearly polarized HOMs. We have already described how, in this case, the observation
of a donut-shaped beam, along with the position and rotation of the two-lobed pattern
produced after the beam is passed through a rotating linear polarizer, allows one to
identify, with certainty, which mode was excited. In the second row, we show the six
possible polarization profiles obtained when two in-phase HOMs are combined, each mode
containing 50% of the total coupled beam power. This leads to characteristic patterns
which, after polarization analysis, can be unequivocally identified1. For example, a donut-
shaped beam either results from a single HOM excitation or an in-phase combination of
either TE01 and TM01 or HE21,o and HE21,e. Passing the beam through a linear polarizer,
which rotates clockwise, will give a two-lobed pattern rotating with the linear polarizer in
the case of a TE01+TM01 combination, and opposite to the linear polarizer in the case of
a HE21,o+HE21,e combination. Furthermore, the initial position of these lobes when the
linear polarizer’s axis is, e.g., kept vertical, determines if the observed pattern is a pure
mode or a combination of modes, as the lobes will be either vertical or horizontal in the
case of a pure mode, or angled at± 45◦ in the case of a combination. If a two-lobed pattern
is observed before the beam is passed through the linear polarizer, polarization analysis
reveals whether the combination involves either the TE01 mode or the TM01 mode with
one of the two HE21 modes; Any TE01+HE21 combination yields a polarization pattern
parallel to the dark line between the two-lobes, and any TM01+HE21 combination yields
a polarization pattern orthogonal to the dark line between the two-lobes. As seen in the
third row, these observations remain true even if the combined modes are π out-of-phase
with respect to each other. The only difference is that the output profile is simply rotated
by 90◦. If the phase difference between the two modes is not an integer multiple of π, the
polarization pattern becomes elliptical and the modal decomposition is no longer unique.

By adjusting the orientation of the PPs somewhat randomly, we were able to create
beam profiles at the output of the HOM-ONF closely matching those of the specific mode
combinations listed previously. These are presented in Fig. 6.4. It can be seen that the
purity of the mode excitation is far from perfect; the resulting profiles are neither perfectly
linearly polarized, nor are they resulting from the sole combination of two of the HOMs,
each sharing half the total power.

6.2.3 Probing the waist using cold atoms

We created a cloud of cold 87Rb atoms in a MOT, using the setup and methods described
in Chapter 3. The center of the MOT was superimposed with the center of the nanofiber’s
waist and its position monitored using a pair of cameras imaging the top and side of the
fiber. Although the cooling beams were aligned such that the center of the MOT coincided
with the center of the waist, the atom cloud was initially formed at a small distance from
the fiber. To do so, a pair of compensation coils (CC) in a Helmholtz configuration

1We emphasize that this approach is only valid if the mode mixing is the result of a combination of
pure, linearly polarized modes. We only recently became aware of a more comprehensive polarization
analysis method involving circular polarizers [193].
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Figure 6.4: Experimentally obtained output profiles closely matching identifiable com-
binations of HOMs. The first column shows the beam profile when the polarizer was
removed. Columns 2-5 show the evolution of the profile when the polarizer is rotated
clockwise. The last column provides a sketch of the expected mode along with its descrip-
tion. The color-coding from black to white represents low to high intensity, respectively.
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Figure 6.5: Diagram of the timing sequence for the absorption experiment.

shifted the magnetic center of the trap by a few millimeters in the horizontal plane and
perpendicularly to the HOM-ONF’s axis. The CCs were then quickly switched off using
an insulated-gate bipolar transistor (IGBT) circuit, bringing the MOT back to the center
of the fiber. This produced up to a 3-fold increase in the fluorescence signal collected at
the HOM-ONF’s output, likely translating to an increase in the number of atoms trapped
in the MOT before its position was shifted. However, once overlapped with the fiber, the
fluorescence signal decayed to a much lower value over the course of 1.5 s. We typically
measured a maximum fluorescence signal of 32,000 counts/10 ms, decaying to 10,000
counts/10 ms. When optimized, the background signal from the cooling beams coupling
into the HOM-ONF was ≈ 4,000 counts/10 ms.

A diagram of the experiment’s timing sequence is given in Fig. 6.5. For the first
1,000 ms, the MOT coils were switched off so that a background measurement could be
taken. The coils were then switched ON for the next 6,000 ms, allowing the cloud of
atoms to form. The CCs, which initially shifted the MOT away from the fiber, were
then switched off so that the center of the atom trap overlapped with the waist. The
MOT coils were, once more, switched off, and the frequency of the cooling beams was
ramped down to -45 MHz from the cooling transition over 50 ms, producing an optical
molasses. The repump beam is always kept ON throughout the experiments. The probe
beam was provided by a fiber-coupled ECDL (Toptica DL100 Pro) tuned to 780 nm.
Prior to its injection in the HOM-ONF, the beam was double-passed through an AOM
with a central frequency of 110 MHz (IntraAction ATM-1102DA2B). The frequency shift
induced by the AOM was tuned such that the probe beam could be locked to the 5S1/2F =
2 → 5P3/2F

′ = (1, 3)co crossover peak provided by a commercial saturation absorption
spectroscopy system (Toptica, CoSy). During the experiment, the laser frequency was
scanned from -20 MHz to +20 MHz in 2 ms by varying the voltage to the AOM. This
frequency scan was repeated twice in one experimental cycle: once during the first 1,000
ms when the MOT coils were off to get a background signal, and once more as soon as the
optical molasses regime was reached. The resulting signals were recorded by an SPCM
set to record a signal every 20 µs.

The experimental cycle is repeated 100 times for each mode profile. The standard devi-
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ation and average signal are evaluated for each point recorded by the SPCM. We present,
in Fig. 6.6, the results obtained for each identifiable mode at the HOM-ONF’s output.
Figure 6.6(a) shows the polarization analysis of an output profile closely matching that of
a circularly polarized HE11 mode which we choose as a reference. In the hypothetical case
in which the output profile exactly matches that of the mode at the waist, the evanescent
field would uniformly interact with atoms in the vicinity of the waist irrespective of the
azimuthal angle around the fiber. Figures 6.6(b)-(f) show the results obtained for each
output profile of interest. The inset shows the maximum absorption, evaluated after fit-
ting the experimental data with a Lorentzian. The number in parentheses indicates the
value of the ratio between the maximum absorption for the mode considered and that of
the HE11 reference2.

Using a finite element method (FEM) physics solver (COMSOL Multiphysics, RF
module), we simulated the experiment to calculate the power in the evanescent field for the
combinations of modes previously mentioned. In principle, the integrated power over the
length of the waist should be directly correlated to the absorption in a specific combination
of modes. More specifically, the absorption is directly proportional to the intensity of the
guided field when operating below the saturation regime [186]. To minimize computational
needs, we simulate a 100λ long waist, i.e., 78 µm, although the actual waist is 2 mm. The
system is composed of two concentric, homogeneous, cylinders with refractive indices
n1 = 1.455 and n2 = 1, representing the waist and vacuum. Although atoms in the
vicinity would, in reality, lead to n2 > 1, we assume the atomic gas is so dilute that the
change in refractive index can be neglected. The radius of the waist is 350 nm and the
vacuum cylinder’s radius is chosen to be 10 times larger.

We first ran the mode solver to determine the effective refractive indices of the allowed
modes. Once these were obtained, a full FEM simulation was run to evaluate the mode
propagation and to calculate the power in the evanescent field integrated over the length
of the simulated waist. For each simulation, we selected two modes at the input, both
sharing 50% of the total input power, i.e., 1 nW for each case. The integrated power for
each combination of modes was then compared to that of the reference circularly polarized
HE11 mode. The results of these simulations are shown in Fig. 6.7. We note that the
simulated profiles match those in Fig. 6.3, but are all rotated by 22.5◦ counter-clockwise.
Another anomaly can also be seen: The TM01-HE21,o pair yields a much larger ratio
value than its TM01-HE21,e counterpart for no apparent reason. The reasons for these two
anomalies are not yet fully understood and currently under investigation. Nevertheless, a
relative agreement between experimental and numerical ratios was observed.

In light of the reasonable match, we made the hypothesis that mode scrambling was
taking place between the input pigtail of the HOM-ONF and its waist, probably in the
down-taper. This contrasts with the results in Section 5.3.2, but matches what other
researchers in our unit have observed for nanofibers in air [116]. This could be explained
by the fact that the HOM-experiment was designed to minimize torsion on the tapered
fiber during its installation in the UHV chamber, for example by precisely drilling the
holes in the Teflon feed-throughs (see details in Section 2.5.3). As such, light propagating
through the waist and the up-taper, assuming the latter to be fabricated adiabatically,

2The absorption of the fundamental mode was relatively low at the time. The current version of the
HOM-experiment can yield typically ∼ 10% absorption in the fundamental mode.
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Figure 6.6: Results of the absorption experiment with identifiable modes at the output
of the HOM-ONF. The framed inset indicates the maximum absorption along with its
ratio to the reference beam absorption (number in parentheses).
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Figure 6.7: FEM simulations of the relative power in the evanescent field for each
combination of modes and single modes in the HOMs. For each case, the input power is
distributed equally among the two modes. The color-coding from blue to red represents
low to high intensity, respectively. The black arrows represent polarization vectors. There
are anomalies in the highlighted values.
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would remain mostly unaffected, thus resulting in an output mode profile that gives
a relatively faithful representation of the modes at the waist. In practice, the mode
cross-talk heavily depends on the fiber installed in the vacuum chamber. For every new
nanofiber, this cross-talk needs to be characterized via, for example, calculation of a
transfer matrix (TRM) of the system. To do so, we needed to be able to excite all the
combinations of modes presented in Fig. 6.7, both reliably and efficiently. This led to an
upgrade of the experiment in which we tackled several issues discussed in the next section.

6.3 Stability Issues

The first generation experiments had clear limitations. For example, an experiment could
not be run for more than a few hours at a time as the anti-Helmholtz coils for the MOT
would heat up the entire vacuum system and affect the modal excitation in the nanofiber.
Adjusting mirrors or the polarization paddles to retain the desired mode profile caused
the HOM-ONF to vibrate in the vacuum chamber, once more affecting the modes. In
addition, randomly orienting the PPs to get the desired output profile made the acquisition
of repeatable data challenging.

6.3.1 Heat-induced stretching of the optical nanofiber

One of the first issues encountered was caused by the anti-Helmholtz coils, which were
heating by the Joule effect, and, by extension, were also heating the vacuum chamber3.
As explained in Chapter 3, the coils are placed around the top and bottom viewports,
in direct contact with the vacuum chamber. This also affects the U-mount supporting
the HOM-ONF, as it directly connects to one of the science chamber’s flanges. The
aluminium mount thermally expands over time, i.e., an expansion of the order of 0.1 mm
for a 25◦C increase in temperature, whereas the nanofiber remains relatively unaffected
by the change of temperature, i.e., an expansion of the order of 10−3 mm. This, in
turn, causes the HOM-ONF to stretch, changing the mode excitation in the process and
preventing us from running experiments over long periods of time. The drastic changes
in the output modes caused by this heating issue were monitored over the course of an
hour and are depicted in Fig. 6.8.

The heat-induced fiber stretching also caused several HOM-ONFs to break after their
installation in the UHV chamber, even after passing the initial robustness test (see Sec-
tion 2.5.4); a few mW of power coupled into the fiber combined with the thermal changes
were enough to stretch the fiber beyond its limit and break it.

To control and, eventually, address this heating issue, we monitored the tempera-
ture of the flange on which the U-mount was attached, using a thermocouple wire (RS
Components, RS PRO type-K) that was connected to a data acquisition card (National
Instrument, DAQ). The change in temperature of the flange as it cooled naturally is
shown in Fig. 6.9. Temperature was measured every second and the data stored over
an arbitrary period of time. It can be seen that, in addition to the obvious threat this
heating issue presented for reliably reproducing experimental results, the system has to

3Although not mentioned explicitly, the preliminary results presented in the previous section were
obtained after adding cooling fans to tackle the heating issue described here.
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Figure 6.8: Time-lapse evolution of the output profile as the anti-Helmholtz coils heat
up the chamber. An image of the output profile is taken every 4 minutes over the course
of an hour. Blue represents a low beam intensity and red a high beam intensity.
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Figure 6.9: Temperature of the flange decreasing over time in the absence of external
cooling mechansim.

be switched completely off for times ranging from 400 to 600 min before reaching room
temperature in the absence of any active cooling method.

A simple and straightforward solution was to cool the coils using fans. The first
attempt using fans designed to cool a CO2 laser was a limited success; the coils and the
flange were kept at temperatures below 30◦C during the entire experiment, but vibrations
in the HOM-ONF were observable even though the fans were mechanically decoupled from
the optical table. In the current experimental setup, these large fans have been replaced by
two smaller fans, also mechanically decoupled from the optical table. These are from the
CPUs of two discarded computers. After all the components of the experiment have been
switched on for a few hours, the vacuum chamber reaches a steady-state temperature of
∼35◦C and no more vibrations of the HOM-ONF are observed. Although initially meant
to be temporary, this simple and cheap solution was kept for the rest of the HOM-project.
In the next upgrade of the experimental setup, however, the MOT coils should be removed
from the vacuum chamber and cooled using a combination of heat sinks and water-cooling.

6.3.2 Transmission loss from Rubidium adsorption

Shortly after its installation, the transmission of the HOM-ONF was measured to be 90%
in the fundamental mode. This transmission progressively degraded over time, although
never to a detrimental level (i.e., from 90% to 85%). Changing the dispensers amplified
this trend and the transmission in the fundamental mode dropped to 65%. We attribute
this change in transmission to adsorption of Rb atoms onto the HOM-ONF’s surface, as
has been reported for ONFs embedded in hot atomic vapors [41, 44]. To prevent coating,
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and even desorb most of the Rb atoms, we inject 500 µW of 1064 nm light into the
HOM-ONF. This serves two purposes: (i) it heats up the fiber and prevents Rb atoms
from adsorbing on the surface, preventing the loss of transmittance and (ii) it provides a
red-detuned evanescent field which exerts an attractive force onto atoms in the vicinity
of the HOM-ONF’s waist, thus increasing the number of atoms interacting with a given
guided mode. The transmission in the fundamental mode now reaches 80% after leaving
the 1064 nm beam on for a few hours.

6.3.3 Fiber vibrations

Another issue encountered in early experimental designs was that of vibration. Inside
the vacuum chamber, the U-mount that supports the nanofiber behaves as a cantilever.
Since the whole vacuum chamber structure is fixed onto the optical table, any vibration
of the optical table can, unfortunately, propagate to the U-mount and to the fiber itself,
resulting in unwanted perturbations of the mode excitation. Although we could clearly
observe the HOM-ONF vibrate on the front camera, the perturbations on the output
profile were not as dramatic as those caused by heat-induced stretching. Nevertheless,
this issue had to be addressed to establish a decent correlation between modes at the
waist and the observed output profile. Aside from the large fans, adjusting optics on
the optical table was found to be the main source of vibrations of the nanofiber. The
transverse oscillatory motion would eventually dissipate after ∼20 min if the optical ta-
ble was not touched. It was therefore crucial to avoid any further modifications to the
optics prior to running an experiment. This was clearly an inconvenience when working
with the twisted-input method of Section 6.2.2. This oversight in the U-mount design
would have forced us to discard a perfectly good HOM-ONF if we were to rectify it. We
circumvented the problem by redesigning the experiment to be computer-interfaced, with
each of the essential components being remotely addressable. This led to the following
considerations: (i) Discarding the polarization paddles and redesigning the experiment
so that the mode excitation was controlled by the shape of the probe beam in free-space
prior to its injection into the HOM-ONF, (ii) controlling the injection of the said probe
beam without mechanically adjusting any of the optical components, (iii) switching the
probe beam and the MOT on or off, on-demand, and (iv) doing a detailed analysis of the
output profile without manually rotating a polarizer.

6.4 Mode Demultiplexing at the ONF Output

The experimental setup for the HOM-project in its current configuration is designed to
be computer-controlled and remotely operable. Each essential element is interfaced via a
home-written program coded in LabVIEW (2017-version, 64bit edition)4. A schematic of
the general experimental setup is provided in Fig. 6.10. Three important areas, delimited
by dashed lines, can be distinguished. Area A regroups all the optical components for
the generation of HOM-like beams in free-space. The central element is a dual-hologram

4From this point onward, Simon P. Mekhail, another PhD student in the group, joined the project
and wrote most of the LabVIEW code to control the experiment and to demultiplex the modes at the
output of the nanofiber.
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SLM (Meadowlark, 512× 512 pixels, nematic liquid crystal, Analog SLM), connected to
a computer and interfaced via the LabVIEW program. Fine-tuning of the probe beam
injection is also possible using the SLM5. In Area B, the generated HOM-like beams are
analyzed before being coupled to the HOM-ONF. Finally, in Area C, the beams produced
at the output of the nanofiber are thoroughly analyzed via mode demultiplexing. The
transmission of the probe beam is also monitored using a fiber-coupled SPCM (Excelitas,
SPCM-AQRH-FC).

The HOM-ONF and the MOT are identical to what were described in previous chap-
ters. The only modification is that the AOM of the repump beams is now connected
to a data acquisition board (National Instrument X-series DAQ), for which the voltage
delivered by each analog output port is computer-controllable. This allows us to switch
the MOT on and off, on-demand, without affecting experimental parameters that could
influence the modes at the waist. For example, doing the same procedure by turning off
the magnetic coils would cool the vacuum-chamber, leading to a weakening of the initial
stretch induced to the nanofiber.

6.4.1 Dual-hologram method for mode generation

To increase the chances of selectively exciting a single HOM in the fiber, we first generated
CVBs in free space, the polarization profile of which were shaped to look like the fiber
eigenmodes. This was done following a method similar to that developed by Maurer et al.
[110], albeit with some minor modifications that make our setup more power efficient. This
is the purpose of Area A in Fig. 6.10, which we now reproduce along with an annotated
image of the experimental setup in Fig. 6.11.

As stated previously, the 780 nm probe beam is provided by a fiber-coupled ECDL
(Toptica DL100 Pro) and its output is double-passed through an AOM, shifting the beam
frequency by 220 MHz. The beam, which is now linearly polarized, is then injected into
a polarization maintaining (PM) fiber, bringing it to the CVB-generation setup. A BS
splits the power in half, sending the beam along two different paths. The reflected beam
is further split with an adjustable ratio, using a combination of a HWP and a polarizing
beam-splitter (PBS). Each of these beams is then injected into a PM fiber that eventually
provides a reference beam when demultiplexing the probe beam, either before entering or
after exiting the HOM-ONF. The beam in the transmitted path of the first BS is passed
through a HWP with its fast-axis oriented such that the probe beam is now diagonally
polarized. A D-shaped mirror (DSM) reflects the beam towards a beam displacer (BD1),
which creates two orthogonal, linearly polarized beams at its output. After BD1, both
beams propagate parallel to each other, before being incident on an SLM.

Given the preference in polarization imposed by the SLM (i.e., vertical polarization
in this case), a half-inch HWP (HWP2) is inserted in the path of the horizontally polar-
ized split beam to rotate it to the appropriate polarization. To generate the CVBs, we
create two independently controllable holograms on the SLM display, with each hologram
occupying one half of the display. Using a combination of a phase-dislocation pattern
and a phase grating, we generate LG beams with an arbitrary topological charge. The

5This will be briefly described in Section 6.4.2. The interested reader will find more information in
the PhD thesis of S.P. Mekhail, as he developed the gradient descent algorithm that led to a major
improvement of the probe beam injection into the HOM-ONF.
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Figure 6.10: Schematic of the current experimental setup used for the HOM-project.
The three major areas, central to the new experimental setup, are labeled A, B, and
C, and are marked by dashed lines. Each of these are explained in detail in later sec-
tions. BB: Beam blocker, BD1-BD3: Beam displacers, BS: Beam-splitter (preceded by
the transmission:reflection ratio, 50:50 if not explicitely stated), C1-C9:, Fiber collima-
tors, CCD: Charge-coupled device camera, DM1-DM2: Dichroic mirror, DSM: D-shaped
mirror, HWP1-HWP5: Half-wave plates, M1-M9: Mirrors, MMF: Multimode fiber, PBS:
Polarizing beam-splitter, PCL1-PCL2: Plano-convex lenses, QWP: Quarter-wave plate,
Sh: Shutter, SLM: Spatial light modulator, SPCM: Single-photon counting module, sC-
MOS: Scientific complementary metal-oxide semiconductor camera.
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Figure 6.11: (a) Schematic and (b) image of the experimental setup used to generate
HOM-like beams in free-space. Optical components are labeled as in Fig. 6.10.
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first diffracted order produced by each hologram is reflected to almost retrace the original
beam path and the two reflected, orthogonally polarized, beams recombine at the output
of BD1. A small vertical tilt on the computer-controlled grating allows the recombined
beam to propagate above the DSM and through a QWP with its fast-axis oriented at 45◦

with respect to the plane of the optical table, in order to convert the linear polarization
of the beam’s components into circular ones with opposite handedness [110]. To mimic
the HOM-ONF’s eigenmodes, the topological charge of the beam needs only be -1, 0, or
+1. The combinations are summarized in Table 6.1. The beam is then sent to a second
stage where two plano-convex lenses (PCL1 and PCL2) are positioned in a 4f -telescope
configuration to map the SLM holograms onto the focal plane of a coupling lens placed in
front of the HOM-ONF. Both lenses have a focal length f = 200 mm and are positioned
400 mm apart, with the first lens positioned such that the SLM is at its focal point. The
relay telescope prevents the beam from diffracting too much before it is injected into the
nanofiber and allows us to finely tune the beam position, down to the nm-level, using the
computer-controlled grating.

As shown in Fig. 6.11(b), the whole system is cage-mounted to prevent individual
components from vibrating and inducing phase changes in the split beams. Area A is
also modular, so that it can be removed and put back together quickly, without further
adjustments, in the eventuality that the HOM-ONF would need to be replaced. As stated
previously, our method for generating the CVBs in free-space differs slightly from that in
[110], as we use a DSM where Maurer et al. used a BS. This provides a lot of power in the
probe beam6, but forces the retro-reflected LG beams to enter BD1 at a small angle (i.e.,
under 5◦). However, in spite of this deviation, our setup produced high-quality CVBs.

The power in the probe beam can be further improved by finding the optimal grey-
level offset and amplitude of the SLM for the 780 nm operating wavelength. To do so,
we place an avalanche photodiode (APD) directly after M4 to monitor the power of the
probe beam as both the offset and amplitude of the SLM are swept. The results of this
optimization process are presented in Fig. 6.12, showing that an optimal value, marked by
the white "X", was found for an offset of 52 and an amplitude of 32 on an 8-bit grey-scale.

6The HOM experiment was initially designed to trap atoms using specific combinations of modes in a
two-color scheme. Conservation of optical power was crucial.

Table 6.1: Topological charges of the Laguerre-Gauss beams and phase difference re-
quired for the creation of the HOM-ONF’s eigenmodes in free-space. L: Topological charge
on the left hologram, R: Topological charge on the right hologram, ∆ϕ: Phase difference
between the beams.

L R ∆ϕ Mode produced
0 0 0 HE11,v

0 0 π HE11,h

+1 -1 0 TE01

+1 -1 π TM01

-1 +1 0 HE21,o

-1 +1 π HE21,e
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Figure 6.12: Optimization of the SLM at the 780 nm operating wavelength.

6.4.2 Fiber injection optimization

After generating the CVBs in free-space, their injection into the HOM-ONF is optimized.
We first roughly adjust the injection of the beam via parallel transport, by mechanically
adjusting the two mirrors before the fiber collimator at the input pigtail (i.e., M7 and DM1
in Fig. 6.10). Fine-tuning of the coupling is then performed by running an optimization
algorithm that finds the best values of the vertical and horizontal tilt for both the left
and right side of the SLM-generated gratings. The 4f -telescope ensures that any change
on the SLM is directly mapped onto the input end face of the HOM-ONF.

6.4.3 Input beam calibration

Small discrepancies between the optimal horizontal and vertical tilt values of the two
beams are frequently found, leading to a change in the relative phase between the two
recombined beams as their respective optical paths within BD1 are altered. Analysis
and calibration of the probe beam after its optimization is the purpose of Area B. In
Fig. 6.13(a), we have isolated the optical components depicted in Fig. 6.10 that were
inside Area B, whereas Fig. 6.13(b) shows an image of the optics involved. The CVB
to be analyzed is generated in Area A and split into two paths after entering a 90:10
BS. Most of the power is sent along the transmitted path to be injected into the HOM-
ONF. The reflected beam first enters a BS whose only purpose is to combine the probe
beam with a reference beam, also created in Area A. After passing through BD2, the



112 Characterization of the Mode Excitation at an ONF Waist

components of the shaped beam are split with respect to their polarization, yielding
two well-separated polarization profiles on a CCD camera (Thorlabs, DCC3240N). The
reference beam, exiting from C4 in the figure, passes through a HWP that rotates its
linear polarization to 45◦. This ensures the reference beam power is divided evenly after
traveling through BD2, before impinging onto the camera.

To completely analyze, and eventually calibrate, the generated CVB, we use the so-
called interferometric decomposition into optical mode (IDIOM) method, first developed
by Fatemi and Beadie [114]. This method gives access to the phase and amplitude of
an arbitrary electric field by interfering the flat phase-front of an off-axis homogeneous
Gaussian reference beam with the beam to be analyzed. The complex coefficients of the
generated CVBs can then be obtained from least-square fitting in the basis formed by the
HOM-ONF’s eigenmodes. Three measurements are necessary in order to unequivocally
determine the phase and amplitude of the field: (i) the signal beam’s intensity, Isig, (ii)
the reference beam’s intensity, Iref , and (iii) the combined intensities with the associated
interference pattern, Itot. An example of beam profiles obtained during such measurements
is shown in Fig. 6.14.

We now mathematically demonstrate that the three aforementioned measurements are
sufficient to determine the field of the probe beam in a manner similar to that in [114].
First, we know that Itot is related to the signal and reference beams via the relation

Itot = |Esig(r) + Eref (r)|2
= Isig + Iref + 2 Re

[
E∗sig(r)Eref (r)

]
,

(6.1)

where Eref and Esig denote the electric fields of the reference and signal beams, and
the star symbol represents the complex conjugate of the field. One can now isolate the
intensity terms on one side of the equation to get the new relation:

Itot − Isig − Iref = 2 Re
[
E∗sig(r)Eref (r)

]
. (6.2)

The reference beam having a flat phase front can be expressed as the product of the
field amplitude, E0,ref and a phase term relative to its tilt with the signal beam so that
Eref (r) = E0,refe

iktilt·r. To determine ktilt, we take the Fourier transform of Eq.(6.2), for
which two values7 arise in k-space

F
(
2 Re

[
E∗sig(r)E0,refe

i(ktilt·r)
])

= g∗(k− ktilt) + g(k + ktilt), (6.3)

with g(k) = F [E∗sig(r)E0,ref ]. The two components are redundant of each other, allowing
us to discard one by applying a digital mask in k-space. We experimentally measure ktilt
for both the horizontal and vertical polarization components, by calculating the center-
of-mass of the beam in the Fourier-space. With ktilt determined, we now take the inverse
Fourier transform of the selected k-space component, which gives

F−1[g(k + ktilt)] = E∗sig(r)Eref (r)ei(ktilt·r). (6.4)

This unequivocally determines Esig, since ktilt has been evaluated, and we know Eref from
the measurement of Iref , as the reference beam is assumed to have a flat, homogeneous
phase front and a positive amplitude everywhere.

7Three values experimentally as a DC component is always present at the center of the k-space.
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Figure 6.13: (a) Schematic and (b) photograph of the experimental setup used for the
calibration of the input beam. Optical components are labeled as in Fig. 6.10.
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Figure 6.14: Intensity measurements necessary for the characterization of a generated
CVB. The intensities of the signal and reference beams are first recorded, for both their
horizontal and vertical polarization components. Their overlap leads to an interference
pattern that helps determine the phase and amplitude of the signal beam.
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Figure 6.15: Effect of phase discrepancy correction (PDC) on the detected beam profile
and associated transfer matrix (TRM). The left side of the figure shows the phase and
amplitude of each mode of interest (top), and the computed TRM (bottom) without PDC.
The right side of the figure shows the same items after PDC was applied.

As seen in the example presented in Fig. 6.14, CVBs are expected to display lobed
profiles when split in polarization. These lobe profiles should always be perpendicular to
each other and oriented vertically or horizontally if both the recombined LG beams are
propagating in phase. We mentioned previously that a small difference in their relative
phase could arise after optimizing the injection of the probe beam into the HOM-ONF. In
this case, we observe lobes that are no longer aligned with the horizontal or vertical axes
of the camera. This is easily corrected by adjusting the phase difference between the two
holograms displayed on the SLM until the two lobes return to their expected positions.
These ideal profiles can be used to evaluate the quality of the CVBs by proceeding with
the mode decomposition and calculation of the transfer matrix (TRM) of the system.

Browsing through the available CVBs created by the SLM, we first align the imaged
profile with a mode-dependent region of interest (ROI) on the camera, shaped to look
like the target mode. This, essentially, tells the computer what to look for and where to
look for it. In addition to the mode-dependent ROI, the mode-dependent phase profile
is also encoded in the computer. This allows us to compute the coefficients in the TRM
of the system for each CVB generated. We show the measured phases and amplitudes,
along with the associated TRMs in Fig. 6.15. One can clearly see that the TRM on
the left contrasts drastically with the expected diagonal matrix. This is due to a phase
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discrepancy between the horizontal and vertical polarization components induced when
beams are traveling through the BD, leading to a biased analysis of the CVB, which needs
to be compensated for. A phase discrepancy compensation (PDC) algorithm developed
by S.P. Mekhail8 and integrated with the main LabVIEW program allows us to correct
for this bias and compute the fields and TRM accurately. Moreover, the PDC algorithm
was developed to be independent of the beam profile, meaning that it can also be applied
when decomposing the modes excited at the output of the HOM-ONF.

6.4.4 Mode decomposition of the output profile and transfer ma-
trix calculation

With the CVBs generated and calibrated, and after optimizing the injection of the probe
beam into the HOM-ONF, we are now ready to decompose the mode excitation at the
output of the fiber. This is the purpose of Area C, the optical components of which
are schematized and pictured in Fig. 6.16. The setup can be subdivided into two parts:
the top part is practically identical to the mode decomposition setup of Area B with
the exception of the sCMOS camera (Andor, Zyla sCMOS 4.2), whereas the bottom part
shows the coupling to an SPCM (Excelitas, SPCM-AQRH-FC), which allows us to monitor
the transmission during experiments. The use of the sCMOS camera can be justified as
experiments where atoms are involved require no more than a few nW of power. It was
therefore crucial to make sure we could integrate the sCMOS camera within our setup and
interface it with the LabVIEW program. A 1064 nm beam is also injected through the
HOM-ONF to prevent adsorption of Rb atoms and to maintain the fiber at a controllable
temperature.

To decompose the output profile in terms of the HOM-ONF eigenmodes, we used a
similar approach to that presented in the previous section, measuring the signal, reference,
and combined intensities, namely Isig, Iref , and Itot. An example of such a measurement
for an output profile is shown in Fig. 6.17. The reference beam is Gaussian, with a
diameter exceeding that of the collimated output of the HOM-ONF.

These measurements are repeated 100 times for each of the six modes and an average
TRM is calculated along with its standard deviation. We present a typical output profile
decomposition and associated average TRM calculation in Fig. 6.18. The output fields’
phases and amplitudes were reconstructed in each case, showing a Gaussian-looking out-
put when the CVB mimics a fundamental mode and two-lobed profiles when the CVB
mimics a HOM. The calculated transfer matrix is mostly block-diagonal, which indicates
that cross-talk among the LP-families is minimal. Within each LP family, however, the
mode coupling is found to be asymmetric. This asymmetry is generally expected with
optical fibers [194], and stems from defects in the fiber, or twists and bends between in-
put and output. For optical nanofibers, imperfect tapering might also play a role. It can
also be seen that some of the HOMs (i.e., HE21,e, and HE21,o) couple to the fundamental
modes. This is likely the result of either imperfect beam-shaping of these modes in free-
space or imperfect coupling into the nanofiber and shall be corrected in future runs of the
experiment. The associated standard deviation matrix shows that the system is relatively
stable over the duration of the experiment. The data were acquired for an input probe

8The details of this algorithm can be found in S.P. Mekhail’s PhD thesis.
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Figure 6.16: (a) Schematic and (b) image of the experimental setup used to decompose
and monitor the transmission of the output beam. Optical components are labeled as in
Fig. 6.10.
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Figure 6.17: A typical intensity measurements for the characterization of the output
profile.
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beam power of 7.2 nW in the fundamental mode and for an exposure time of the sCMOS
camera of 75 ms. We also injected 500 µW of 1064 nm light into the HOM-ONF.

6.5 Conclusion
Selective mode excitation at the waist of an HOM-ONF is desired for any HOM-based
application and could serve as a powerful tool for nanofiber-based experiments with cold
atoms, which have so far almost entirely relied on the fundamental mode alone. We pre-
sented a first generation of experiments aiming at measuring the correlation between the
modes excited at the waist and the observed output profile. For these experiments, identi-
fiable combinations of modes at the output of the HOM-ONF were selectively excited via
twisting of the input pigtail. In each case, the absorption by atoms in a MOT overlapped
with the waist was compared to results from FEM simulations of the system. This hinted
that a direct correlation between mode excitation at the waist and the observed output
profile may exist, leading to the hypothesis that mode mixing mainly occurs in the down-
taper, whereas the up-taper does not affect the modes significantly. An overhaul of the
experimental setup, in which every essential component could be remotely accessed and
controlled, allowed us to perform mode demultiplexing on the beam profile produced at
the output of a nanofiber after injecting it with shaped beams from free-space mimicking
the HOMs. This, in turn, allowed us to precisely evaluate the transfer matrix of the
system, constituting a major step forward for any future higher order mode experiments
given the degree of precision required for such a project. The experimental setup now
allows us to identify, both qualitatively and quantitatively, the mix of modes that forms
any output profile. In the future, the transfer matrices of the system with and without
atoms interacting with the evanescent field of the different modes in the nanofiber shall
be compared in order to infer the modes at the waist. Moreover, inverting the transfer
matrix of the system should allow us to correct for any mode scrambling in the down-
taper of the fiber and to reconstruct any desired mode at the output of the HOM-ONF.
This project will determine the validity of our hypothesis that mode scrambling does not
occur to a detrimental level in the up-taper.
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Figure 6.18: Field analysis of the output profile (top row) and associated average TRM
with standard deviation (bottom row). The relevant experimental parameters are given
in the text.



Chapter 7

Conclusion

The work carried out during this PhD project, and presented in this thesis, has been
largely motivated by the development of methods to harness the full potential of HOMs
in ONFs interfaced with cold atomic systems. This is valuable for fields of research aimed
at creating atom-photon hybrid quantum systems, in particular for the development of
new tools in nanofiber-based experiments, which have, so far, relied on exploiting the
fundamental mode. The state-of-the-art of the ONF-cold atoms field of research was
presented, showing the theoretical promises offered if one were to exploit HOMs in such
systems, while also highlighting the lack of experimental work in this area of research.

The theory of HOM propagation in tapered fibers was provided, along with a detailed
explanation of the fabrication methods employed to produce a high-transmission HOM-
ONF, tailored to support up to the LP11 family of modes at 780 nm. A simple and
cheap method to shield the fiber during installation inside an ultrahigh vacuum chamber
was also described, with emphasis on the importance of cleanliness. The theory of atom
cooling was also briefly presented before showing its experimental implementation in the
cold atom setup used throughout this PhD project.

Chapter 4 summarized the results of our theoretical investigation into the quadrupole
interaction between the evanescent field of a HOM-ONF and a single atom. These showed
that nanofibers are excellent platforms to drive quadrupole-allowed transitions, in partic-
ular when compared to free-space beams. These results may find applications in future
research on probing electric quadrupole transitions of atoms, molecules, and particles
using the fundamental mode and HOMs of ONFs. Direct access to electric quadrupole
transitions might be beneficial for fiber-based optical clocks [195]. Although the transition
probability of such a transition is at its highest when driven by one of the fundamental
modes, it remains significant when driven by a HE21 mode. This is of interest for the
development of high-density information transfer protocols in atomic systems, as a pho-
ton in a combination of HE21 modes may carry OAM in addition to SAM [95, 135]. The
theoretical study was done in the context of an experimentally addressable system: the
dipole-forbidden, quadrupole-allowed 5S1/2 → 4D5/2 transition in 87Rb atoms. Initial
experimental results obtained by other group members are already promising. The only
dipole-allowed decay of this state to the ground state is via the intermediate level, 5P3/2,
by cascaded emission of two photons at 1530 nm and 780 nm. The emitted photons are
correlated and can be entangled [173, 196]. This could open up the possibility to develop
a fiber-based source of entangled photon pairs at wavelengths relevant to telecommunica-
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tions and atomic references.
Work on a two-photon transition at 993 nm was also discussed in Chapter 5. The first

part of the project was done with a hot vapor of Rb atoms in order to confirm the selection
rules associated with S − S transitions, but also to study the effects of the probing beam
power on the transition. It was found that this transition was well-suited as a frequency
reference, as it is insensitive to stray magnetic fields, and frequency stabilization on the
spectroscopic peaks is feasible. More work with the hot vapor could be envisaged; one
could, for example, study whether the S−S selection rules are modified when the exciting
beams carry OAM in addition to SAM.

Experiments done with an ONF embedded in a cold atom cloud showed evidence of
strong coupling, for which a theoretical model has yet to be developed. Exploiting the
special selection rules associated with the transition, it was shown that cold atoms in a
MOT could potentially be used to perform polarization tomography at the ONF’s waist.
The results are still preliminary, however, and more work is required before being able to
fully characterize the system. Future experiments will be designed to probe a large portion
of polarization states over the whole Poincaré sphere, thereby allowing one to establish a
relationship between the polarization states at the input, waist, and output of an ONF.
Calculation of Mueller matrices at each point of the system will enable a compensation
scheme to be developed, thus leading to full control of the polarization state at the waist
of the ONF. Members of our group have successfully achieved the latter in air, using a
transverse optical fiber as a probe [116]. This is particularly valuable in the framework of
selective mode excitation at the waist when considering HOMs, but also for fundamental
mode based experiments where polarization is crucial.

The main project of this thesis, dedicated to the development of methods to selectively
excite guided modes at the waist of a HOM-ONF, was presented in Chapter 6. Some of
the preliminary results were shown, highlighting the technical challenges associated with
such an experiment, but also hinting that the output profile may reflect the modes excited
at the waist. The system overhaul that allowed us to remotely operate the experiment
was described in detail. Our method for generating and calibrating CVBs that mimic
HOMs in free-space was presented, demonstrating the close match between the gener-
ated polarization profiles and the modes supported by the nanofiber. The output was
decomposed in terms of its components in the HOM-ONF’s eigenmode basis, giving some
interesting preliminary results. All the experiments on the HOM project done during this
PhD have not yet yielded results that allow us to reliably determine the modes excited
at the waist, but certainly provide advances in this area and give us plenty of ideas on
future experiments.

Some experiments in which a MOT was overlapped with the waist of the HOM-ONF
have already been done. A difference in transfer matrices, calculated with and without
atoms near the fiber waist, was observed, potentially indicating a mode-dependent ab-
sorption of the probe beam. However, after careful analysis of the collected data, we
found that the probe beam had been fluctuating between sets of experiments (experi-
ments with the MOT were carried out a few weeks after obtaining the results presented
in Section 6.4), and that the laser diode had to be replaced. This delayed the project and
prevented us from doing additional experiments. In the future, these experiments will be
redone along with the associated transfer matrix calculations. Differences between these
transfer matrices, combined with theoretical simulations of the expected absorption from



123

different combinations of modes, should give us sufficient information to infer the modes
excited at the waist of an HOM-ONF.

Another plan is to invert the transfer matrix of the system, calculated without atoms
present near the waist, so that it can be used to reconstruct any desired mode profile
at the output of the HOM-ONF. We have already performed some preliminary inversion
of experimentally evaluated transfer matrices in MATLAB, using the Gerchberg–Saxton
algorithm [197]. This has shown promising results, from which we were able to simulate the
reconstruction of each mode supported by our fiber. The code has yet to be incorporated
within the LabVIEW program that runs the HOM experiment. With this new tool at
hand, and in addition to probing the waist with cold atoms, we shall be able to test our
hypothesis that the down-taper constitutes the main cause of mode scrambling and that
the up-taper does not affect the mode excitation between waist and output significantly.
If these methods are found to be insufficient for selective mode excitation at the waist, the
comparison of transfer matrices calculated in the presence and absence of atoms near the
waist should still provide valuable information on the interaction between higher order
fiber-guided modes and atoms. This has never been studied to this level of detail before.





Appendix A

HOM eigenvalue equations from
Maxwell’s equations

The results presented in what follows are exact solutions to Maxwell’s equations for the
guided modes. This is only valid in the so-called strongly guiding regime, in which the
refractive index of the core, n1, is much larger than the refractive index of the cladding, n2.
This regime directly applies to ONFs in which n1 ≈ 1.45 and n2 = 1. For standard optical
fibers, generally n1−n2 << 1 and the resulting modal decomposition becomes degenerate
in β to form the linearly polarized (LP) modes. The mathematical development for such
modes has been covered elsewhere (see for example pp 66-73 of [92]) and shall not be
developed here.

A.1 Maxwell’s Equations for a Cylindrical Waveguide

The mathematical development presented in this section is largely based on Chapter 3 of
[92]. Consider a cylindrical waveguide made out of non-magnetic and source free materials,
with core radius, a, and cladding radius, b. This can be modeled by a step-index profile
in a cylindrical coordinate system following

n(r) =

{
n1, if r < a
n2, if r > a

(A.1)

with n1 > n2. Since optical fibers generally have a cladding radius much larger than that
of the core, it can be safely assumed that b =∞ in what follows. Maxwell’s equations for
light propagating in such a waveguide, assumed to be isotropic and source free, are given
by

∇∇∇×H = ε(r)
∂E

∂t
, (A.2)

∇∇∇× E = −µ0
∂H

∂t
, (A.3)

∇∇∇ · (ε(r)E) = 0, (A.4)

∇∇∇ ·H = 0. (A.5)
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Taking the curl of Eq. A.4 and using the relation∇∇∇× (∇∇∇×E) =∇∇∇(∇∇∇·E)−∇∇∇2, and then
using Eq A.3 and Eq. A.5 to simplify the resulting expression, we get the wave equation
for E

∇2∇2∇2E− µ0ε(r)
∂2E

∂t2
= −∇∇∇

(
E

ε(r)
· ∇∇∇ε(r)

)
. (A.6)

Replacing E by H in the previous expression gives a similar equation for the magnetic
field.

A.2 Eigenvalue Equations
Due to the cylindrical symmetry of the waveguide, it is convenient to solve the wave
equation in cylindrical coordinates with the z-axis pointing in the direction of the fiber
axis. This allows one to solve for the field inside the core and the cladding separately.
The full field is later obtained by applying boundary conditions and ensuring continuity
at r = a. When solving Eq. A.6 inside either the core or the cladding, the right side
vanishes as the term ∇∇∇ε(r) becomes 0 since the medium considered is homogeneous.

With the previous choice of z−axis, the wave propagating along the waveguide can be
expressed as [

E(r, t)
H(r, t)

]
=

[
E(r, φ)
H(r, φ)

]
exp(i(ωt− βz)), (A.7)

where β is the propagation constant of the wave, ω = 2πν is the angular frequency and
ν the wave frequency. Before moving further, it is necessary to introduce the expression
for the Laplace operator in cylindrical coordinates given by

∇2
cyl = ∂2r +

1

r
∂r +

1

r2
∂2φ + ∂2z , (A.8)

where the shorthand notation for the partial derivative ∂m = ∂/∂m with m = r, φ, z,
has been used. Introducing the expressions of Eqs. A.8 in their respective wave equation
(Eqs. A.6), it can be shown [92] that each transverse component of a field can be written
in terms of Ez and Hz as follow:

Er =
−iβ

ω2µ0ε− β2

(
∂rEz +

ωµ0

β

∂φ
r
Hz

)
,

Eφ =
−iβ

ω2µ0ε− β2

(
∂φ
r
Ez −

ωµ0

β
∂rHz

)
,

(A.9)

for the components of the electric field in cylindrical coordinates, and similarly

Hr =
−iβ

ω2µ0ε− β2

(
∂rHz −

ωε

β

∂φ
r
Ez

)
,

Hφ =
−iβ

ω2µ0ε− β2

(
∂φ
r
Hz +

ωε

β
∂rEz

)
,

(A.10)

for the components of the magnetic field in cylindrical coordinates. Solving the wave
equation for the axial components Ez and Hz is enough to determine all other components
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of the light wave. Inserting the exponential term of Eq. A.7 into the wave equation A.6
gives (

∇2
T,cyl + (n2k2 − β2)

)
Ψz = 0, (A.11)

where we have introduced ∇2
T,cyl = ∇2 − ∂2/∂z2, which is the transverse Laplace opera-

tor in cylindrical coordinates, Ψz = {Ez, Hz} represents the z−component of either the
electric or magnetic field of the input light, respectively, and k = ω/c is the wave number
defined with c = 1/

√
ε0µ0 the speed of light in vacuum. The solution to this equation can

be expressed as the combination of a radial and an angular part and takes the form

Ψz = Ψ(r) exp(±ilφ), (A.12)

in which l = 0, 1, 2, 3, . . . is a positive integer called the azimuthal mode order [95], and
Ψ(r) is the radial field distribution. The sign inside the exponential term defines the
polarization of the wave, namely, clockwise circular polarization if "+", and counter-
clockwise circular polarization if "-". Inserting this into Eq. A.11 gives

∂2rΨz +
1

r
∂rΨz +

(
n2k2 − β2 − l2

r2

)
Ψz = 0. (A.13)

This equation is the Bessel differential equation, for which the solutions are Bessel func-
tions of order l. For either field in Ψz, the general solution to Eq. A.13 can take a different
form depending on the sign of n2k2 − β2. When n2k2 − β2 > 0, the general solution to
Eq. A.13 takes the form

Ψ(r) = c1Jl(hr) + c2Yl(hr), (A.14)

in which Ψ(r) = {ez(r), hz(r)}, h2 = n2k2−β2, c1 and c2 are complex constants determined
by the boundary conditions, and Jl, Yl are Bessel functions of the first and second kind,
respectively, of order l. When n2k2 − β2 < 0, the general solution to Eq. A.13 takes the
form

Ψ(r) = c3Il(qr) + c4Kl(qr), (A.15)

where q2 = β2 − n2k2, c3 and c4 are again complex constants determined by the bound-
ary conditions, and Il, Kl are modified Bessel functions of the first and second kind,
respectively, of order l.

Application of the boundary conditions at the core-cladding transition to the solutions
obtained above enables one to get the expression of the fields in the guided modes. For a
guided mode to be transversely confined inside the waveguide, we have the condition

n1k0 > β > n2k0, (A.16)

with k0 the wave number in vacuum. This means that the mode in the core fulfills
h2 = n2

1k
2
0 − β2 > 0. Applying the condition to Eq. A.14 gives

r < a : ez(r) = AJl(hr), and hz(r) = BJl(hr), (A.17)

where A and B are complex coefficients, and the coefficients in front of the Yl functions
have been set to c2 = 0 because Yl diverges for r → 0. In the cladding, we have q2 =
β2 − n2

2k
2
0 > 0 which applied to Eq. A.15 gives

r > a : ez(r) = CKl(hr), and hz(r) = DKl(hr), (A.18)
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where C and D are complex coefficients, and the coefficients in front of the Il functions
have been set to c1 = 0 because the function diverges for r →∞. Inserting these results in
Eq. A.12 and subsequently in Eqs A.11 gives expressions for the guided fields in cylindrical
coordinates.

For r < a (core)

Er(r) =
−iβ
h2

[
AhJ ′l (hr) +

iωµ0l

βr
BJl(hr)

]
exp[i(ωt+ lφ− βz)]

Eφ(r) =
−iβ
h2

[
il

r
AJl(hr)−

ωµ0

β
BhJ ′l (hr)

]
exp[i(ωt+ lφ− βz)]

Ez(r) = AJl(hr) exp[i(ωt+ lφ− βz)]

(A.19)

and

Hr(r) =
−iβ
h2

[
BhJ ′l (hr)−

iωε0n
2
1l

βr
AJl(hr)

]
exp[i(ωt+ lφ− βz)]

Hφ(r) =
−iβ
h2

[
il

r
BJl(hr) +

ωε0n
2
1

β
AhJ ′l (hr)

]
exp[i(ωt+ lφ− βz)]

Hz(r) = BJl(hr) exp[i(ωt+ lφ− βz)]

(A.20)

where J ′l = dJl(hr)/d(hr), and for r > a (cladding),

Er(r) =
iβ

q2

[
CqK ′l(qr) +

iωµ0l

βr
DKl(qr)

]
exp[i(ωt+ lφ− βz)]

Eφ(r) =
iβ

q2

[
il

r
CKl(qr)−

ωµ0

β
DqK ′l(qr)

]
exp[i(ωt+ lφ− βz)]

Ez(r) = CKl(qr) exp[i(ωt+ lφ− βz)]

(A.21)

and

Hr(r) =
iβ

q2

[
DqK ′l(qr)−

iωε0n
2
2l

βr
CKl(qr)

]
exp[i(ωt+ lφ− βz)]

Hφ(r) =
iβ

q2

[
il

r
DKl(qr) +

ωε0n
2
2

β
CqK ′l(qr)

]
exp[i(ωt+ lφ− βz)]

Hz(r) = DKl(qr) exp[i(ωt+ lφ− βz)]

(A.22)

where K ′l = dKl(qr)/d(qr). The fields have to be continuous at the boundary between
the core and the cladding, that is, at r = a. This leads to conditions on the constants
A,B,C, andD

AJl(ha)− CKl(qa) = 0,

A

[
il

h2a
Jl(ha)

]
+B

[
−ωµ0

hβ
J ′l (ha)

]
+ C

[
il

q2a
Kl(qa)

]
+D

[
−ωµ0

qβ
K ′l(qa)

]
= 0

BJl(ha)−DKl(qa) = 0,

A

[
−ωε0n2

1

hβ
J ′l (ha)

]
+B

[
il

h2a
Jl(ha)

]
+ C

[
−ωε0n2

2

qβ
K ′l(qa)

]
+D

[
il

q2a
Kl(qa)

]
= 0

(A.23)
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with the same use of the "prime" notation as in previous expressions. This leads to a
nontrivial solution for the values of each constant, provided that the determinant of their
coefficients in Eq. A.23 vanishes. This condition gives the eigenvalue equation(

J ′l (ha)

haJl(ha)
+

K ′l(qa)

qaKl(qa)

)(
n2
1J
′
l (ha)

haJl(ha)
+
n2
2K
′
l(qa)

qaKl(qa)

)
= l2

[(
1

qa

)2

+

(
1

ha

)2
]2(

β

k0

)2

(A.24)
which allows to determine the value of the propagation constant β for each l. Noting that
Eq. A.24 is quadratic in J ′l (ha)/haJl(ha), and solving for this value yields two solutions,
corresponding to two of the modes allowed to propagate in an ONF,

the EH-modes,

Jl+1(ha)

haJl(ha)
=
n2
1 + n2

2

2n2
1

K ′l(qa)

qaKl(qa)
+

(
l

(ha)2
−R

)
(A.25)

and the HE-modes,

Jl−1(ha)

haJl(ha)
= −

(
n2
1 + n2

2

2n2
1

)
K ′l(qa)

qaKl(qa)
+

(
l

(ha)2
−R

)
(A.26)

with

R =

[(
n2
1 − n2

2

2n2
1

)2(
K ′l(qa)

qaKl(qa)

)2

+

(
lβ

n1k0

)2(
1

q2a2
+

1

h2a2

)2
]1/2

. (A.27)

These modes are usually defined for l 6= 0. One can use their characterizing conditions to
obtain expressions for the constants A,B,C, andD in order to find the full expression of
each component of their corresponding guided fields.

In the special case where l = 0, two new families of solutions emerge. In the first case,
setting l = 0 in Eq. A.25 yields

J1(ha)

haJ0(ha)
= − K1(qa)

qaK0(qa)
(A.28)

and in the second case, setting l = 0 in Eq. A.26 yields

J1(ha)

haJ0(ha)
= − n2

2K1(qa)

qan2
1K0(qa)

(A.29)

where special relation between Bessel functions and their derivatives have been used in
both equations. With condition A.28 inserted in A.23, the constants A and C vanish.
Substituting A = C = l = 0 in Eqs. A.19 to A.22, shows that the only non-zero field
components areHr,Hz, and Eφ. Similarly, condition A.29 yields, B = D = 0 which in turn
gives the non-zero field components Er,Ez, and Hφ. These modes are called transverse
electric (TE) and transverse magnetic (TM), respectively.





Appendix B

Development of the Mathematical
Expressions Relevant to a Quadrupole
Interaction

B.1 Multipole Expansion and Associated Electric In-
teraction Energy

B.1.1 Multipole expansion

Let us assume a charge q is placed at a point defined by the vector r′ within an appropriate
frame of reference. We are interested in finding Φ(r), the Coulomb potential generated
by this charge at a point r. From electrostatic we know that we can write

Φ(r) =
1

4πε0

q

|r− r′|
, (B.1)

in which ε0 is the vacuum permittivity, and |r− r′| is the norm of the r− r′ vector. We
are particularly interested in expanding the 1/|r− r′| term. We can expand the norm of
the vector subtraction as follow:

|r− r′| =
√
r2 − 2 r · r′ + r′2

= r

√
1− 2

r̂ · r′
r

+

(
r′

r

)2 (B.2)

in which r̂ = r/r, and we have assumed the frame of reference to be chosen such that
r 6= 0 and is positive. We can now write the factor 1/|r− r′| as

1

|r− r′|
=

1

r

1√
1− 2 r̂·r′

r
+
(
r′

r

)2
=

1

r

1√
1 + t

=
1

r
(1 + t)−1/2

(B.3)
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Interaction

where we have defined t = −2 r̂·r′
r

+
(
r′

r

)2
. The last expression in Eq. B.3 can now be

expanded in an infinite series of polynomials using the binomial theorem.
The binomial theorem states that any polynomial of the form (1+x)n can be expanded

into an infinite series of powers of x following [198]

(1 + x)m =
∞∑
m=0

m!

n!(m− n)!
xn (B.4)

Its application to the last result of Eq.B.3 gives

1

|r− r′|
=

1

r

(
1− t

2
+

3t2

8
−O(t3)

)
. (B.5)

Inserting Eq. B.5 into Eq. B.1 and replacing t, we get the final expression

Φ(r) =
q

4πε0r

[
1− r̂ · r′

r
+

1

2r2
(3(r̂ · r′)2 − r′2) +O

(
1

r3

)]
. (B.6)

Looking at each individual part of Eq. B.6, it is possible to identify several moments. The
first term,

Φmon(r) =
q

4πε0r
(B.7)

is the monopole potential, in which the scalar q is the monopole moment. The second
term,

Φdip(r) =
r̂

4πε0r2
(qr′) (B.8)

is the dipole potential, in which the vector D = qr′ is the electric dipole moment.
To analyze the third term of Eq. B.6, it is essential to express r̂ and r′ in Cartesian

coordinates, as (r1, r2, r3) and (x1, x2, x3), respectively. Then, the term (r̂·r′)2 = (rixi)
2 =

rirjxixj. The dyad tensor r̂r̂ is thus given by

(r̂r̂)ij = rirj (B.9)

which helps define the quadrupole moment tensor

Q = q(3r′r′ − r′2) (B.10)

and thus obtain the expression for the quadrupole electrical potential.

Φquad = − r̂r̂

4πε0r3
Q (B.11)

This easily links to Eq.B.31 presented in Ch. 3.

B.1.2 Quadrupole interaction energy

The expression for the quadrupole interaction energy shown in Eq. B.32 is derived in what
follows, based on the expansion presented in [155].
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Let us consider a localized charge q which is arbitrarily chosen to be positioned at the
origin of a Cartesian frame of reference, under the influence of an external field E. The
field generates a potential Φ(r′). Then, the electrostatic energy of the system is given by

W = qΦ(r′) (B.12)

If the potential around q can be considered homogeneous, then it can be expanded in a
Taylor series around the origin:

Φ(r′) = Φ(0) + r′ · ∇∇∇Φ(0) +
1

2

∑
i

∑
j

xixj
∂2Φ

∂xi∂xj
(0) + . . . (B.13)

in which the same notations as in the previous section for the Cartesian components of r′
have been used. Since the external field E = −∇∇∇Φ, Eq. B.13 can be rewritten

Φ(r′) = Φ(0)− r′ · E(0)− 1

2

∑
i

∑
j

xixj
∂Ej
∂xi

(0) + . . . (B.14)

From Gauss’ Law for the external field, we now that∇∇∇·E = 0. Therefore, we can subtract
1
6
r′2∇ · E(0) from the last term of Eq. B.14, without any loss of generality to obtain the

expression

Φ(r′) = Φ(0)− r′ · E(0)− 1

6

∑
i

∑
j

(3xixj − r′2δij)
∂Ej
∂xi

(0) + . . . (B.15)

Inserting Eq. B.15into Eq. B.12 and remembering the definitions of the electric monopole,
dipole, and quadrupole moments defined in the previous section, the final expression reads

W = qΦ(0)− p · E(0)− 1

6

∑
i

∑
j

Qij
∂Ej
∂xi

(0) + . . . (B.16)

where we clearly see appear the expression given in Eq.B.32 for the electric quadrupole
interaction energy.

B.2 Matrix Elements of the Quadrupole Tensor Oper-
ators

We introduce the notations

x
(1)
−1 =

x1 − ix2√
2

,

x
(1)
0 = x3,

x
(1)
1 = −x1 + ix2√

2

(B.17)
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for the spherical tensor components of the position vector x = (x1, x2, x3). In terms of
these components, we have

x1 =
x
(1)
−1 − x

(1)
1√

2
,

x2 = i
x
(1)
−1 + x

(1)
1√

2
,

x3 = x
(1)
0 .

(B.18)

We can write
xi =

∑
q

u
(q)
i x(1)q , (B.19)

where u(q)i with i = 1, 2, 3 are the components of the spherical basis vectors u(q) in the
Cartesian coordinate system {x1, x2, x3}. The expressions for the vectors u(q) are

u(−1) =
1√
2

(1, i, 0),

u(0) = (0, 0, 1),

u(1) = − 1√
2

(1,−i, 0).

(B.20)

We note that u(q)∗ = (−1)qu(−q), u(q) · u(q′)∗ = δqq′ , and
∑

q u
(q)
i u

(q)∗
j = δij.

It follows from Eq. (B.19) that

xixj =
∑
M1M2

u
(M1)
i u

(M2)
j x

(1)
M1
x
(1)
M2
. (B.21)

In order to calculate the direct product x(1)M1
x
(1)
M2

, we use the formula [199]

x
(1)
M1
x
(1)
M2

=
∑
Kq

T (K)
q (−1)q

√
2K + 1

(
1 1 K
M1 M2 −q

)
, (B.22)

where T (K)
q with q = −K, . . . ,K are the tensor elements of the irreducible tensor products

T (K) = [x(1) ⊗ x(1)](K) of rank K = 0, 1, 2. The expression for T (K)
q is

T (K)
q = (−1)q

√
2K + 1

∑
q1q2

(
1 1 K
q1 q2 −q

)
x(1)q1 x

(1)
q2
. (B.23)

We can show that

T
(0)
0 = −x

2
1 + x22 + x23√

3
,

T (1)
q = 0,

(B.24)
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and

T
(2)
0 =

2x23 − x21 − x22√
6

,

T
(2)
1 = −x3(x1 + ix2),

T
(2)
−1 = x3(x1 − ix2),

T
(2)
2 =

1

2
(x1 + ix2)

2,

T
(2)
−2 =

1

2
(x1 − ix2)2. (B.25)

Note that T (0)
0 = −R2/

√
3 and T (2)

q = 2(2π/15)1/2R2Y2q(θ, ϕ), where Ylq(θ, ϕ) are spherical
harmonics with θ and ϕ being spherical angles.

We insert Eq. (B.22) into Eq. (B.21) and use Eq. (B.31). Then, we obtain

Qij ≡ e(3xixj −R2δij) = 3e
∑
q

u
(q)
ij T

(2)
q , (B.26)

where
u
(q)
ij = (−1)q

√
5
∑
M1M2

u
(M1)
i u

(M2)
j

(
1 1 2
M1 M2 −q

)
. (B.27)

The explicit expressions for the tensors u(q)ij are

u
(2)
ij =

1

2

 1 −i 0
−i −1 0
0 0 0

 ,

u
(1)
ij =

1

2

 0 0 −1
0 0 i
−1 i 0

 ,

u
(0)
ij =

1√
6

−1 0 0
0 −1 0
0 0 2

 ,

u
(−1)
ij =

1

2

0 0 1
0 0 i
1 i 0

 ,

u
(−2)
ij =

1

2

1 i 0
i −1 0
0 0 0

 .

(B.28)

Note that u(q)ij = u
(q)
ji , u

(q)∗
ij = (−1)qu

(−q)
ij ,

∑
ij u

(q)
ij u

(q′)∗
ij = δqq′ , and

∑
i u

(q)
ii = 0.

The matrix elements of the tensor T (2)
q can be calculated using the Wigner-Eckart

theorem [199]

〈n′F ′M ′|T (2)
q |nFM〉 =

(−1)F
′−M ′

(
F ′ 2 F
−M ′ q M

)
〈n′F ′‖T (2)‖nF 〉. (B.29)
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The invariant factor 〈n′F ′‖T (2)‖nF 〉 is a reduced matrix element. The selection rules for
F and F ′ are |F ′−F | ≤ 2 ≤ F ′+F . The selection rules for M and M ′ are |M ′−M | ≤ 2
and M ′ −M = q. When we use Eqs. (B.26) and (B.29), we obtain [139]

〈n′F ′M ′|Qij|nFM〉 = 3eu
(M ′−M)
ij (−1)F

′−M ′

×
(
F ′ 2 F
−M ′ M ′ −M M

)
〈n′F ′‖T (2)‖nF 〉. (B.30)

B.3 Quadrupole Interaction of an Atom with an Arbi-
trary Light Field

Consider an atom with a single valence electron interacting with an external optical field
E through an electric quadrupole transition. We use Cartesian coordinates {x1, x2, x3} to
describe the electric quadrupole and the internal states of the atom (see Fig. B.1(a)). We
assume that the center of mass of the atom is located at the origin x = 0 of this coordinate
system. Following a multipole expansion of the Coulombian potential generated by a
single charge (see details of the multipole expansion in Section B.1.1), we define the
electric quadrupole moment tensor Qij of the atom, with i, j = 1, 2, 3, as

Qij = e(3xixj −R2δij), (B.31)

where xi is the ith coordinate of the valence electron of the atom and R =
√
x21 + x22 + x23

is the distance from the electron to the center of mass of the atom. The electric quadrupole
interaction energy is [155]

W = −1

6

∑
ij

Qij
∂Ej
∂xi

∣∣∣
x=0

, (B.32)

where the spatial derivatives of the field components Ej with respect to the coordinates
xi are evaluated at the position x = 0 of the atom. For simplicity, we neglect the effect
of the surface-induced potential on the atomic energy levels. This approximation is valid
when the atom is not too close to the fiber surface [200].

We represent the field as E = (Ee−iωt + E∗eiωt)/2, where E is the field amplitude and
ω the field frequency. Let |e〉 and |g〉 be upper and lower states of the atom, with energies
~ωe and ~ωg, respectively. In the interaction picture and the rotating wave approximation,
the interaction Hamiltonian of the system can be written as

HI = −~
∑
eg

Ωgee
−i(ω−ωeg)tσeg + H.c., (B.33)

where ωeg = ωe − ωg is the atomic transition frequency, the σeg are the atomic transition
operators and

Ωge =
1

12~
∑
ij

〈e|Qij|g〉
∂Ej
∂xi

(B.34)

is the Rabi frequency for the quadrupole transition between the states |g〉 and |e〉.
Consider the case of an alkali-metal atom with degenerate transitions between the

magnetic sublevels |g〉 = |nFM〉 and |e〉 = |n′F ′M ′〉 (see Fig. B.1(b)). Here, n denotes the
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Figure B.1: (a) Local quantization coordinate system {x1, x2, x3} for an atom. (b)
Schematic of the hyperfine split levels of the 4D5/2 and 5S1/2 states of a rubidium-87
atom. (c) Atom in the vicinity of an ONF with the fiber-based Cartesian coordinate
system {x, y, z} and the corresponding cylindrical coordinate system {r, ϕ, z}.

principal quantum number and also all additional quantum numbers not shown explicitly,
F is the quantum number for the total angular momentum of the atom, and M is the
magnetic quantum number. The matrix elements 〈n′F ′M ′|Qij|nFM〉 of the quadrupole
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tensor operators Qij are, as shown in Appendix B.2, given as [139]

〈n′F ′M ′|Qij|nFM〉 = 3eu
(M ′−M)
ij (−1)F

′−M ′

×
(
F ′ 2 F
−M ′ M ′ −M M

)
〈n′F ′‖T (2)‖nF 〉, (B.35)

where the matrices u(q)ij with q = −2,−1, 0, 1, 2 are given by Eqs. (B.28), the array in the
parentheses is a 3j symbol, and the invariant factor 〈n′F ′‖T (2)‖nF 〉 is the reduced matrix
element of the tensor operators T (2)

q = 2(2π/15)1/2R2Y2q(θ, ϕ). Here, Ylq is a spherical
harmonic function of degree l and order q, and θ and ϕ are spherical angles in the spherical
coordinates {R, θ, ϕ} associated with the Cartesian coordinates {x1, x2, x3}.

It is clear from Eq. (B.35) that the selection rules for F and F ′ are |F ′ − F | ≤ 2 ≤
F ′ +F , and the selection rule for M and M ′ is |M ′−M | ≤ 2. Since the tensor operators
T

(2)
q do not act on the nuclear spin degree of freedom, the dependence of the reduced

matrix element 〈n′F ′‖T (2)‖nF 〉 on F and F ′ may be factored out as [199]

〈n′F ′‖T (2)‖nF 〉 = (−1)J
′+I+F

×
√

(2F + 1)(2F ′ + 1)

{
F ′ 2 F
J I J ′

}
〈n′J ′‖T (2)‖nJ〉, (B.36)

where J is the quantum number for the total angular momentum of the electrons, I is
the nuclear spin quantum number, and the array in the curly braces is a 6j symbol. The
selection rules for J and J ′ are |J ′ − J | ≤ 2 ≤ J ′ + J .

Furthermore, since the tensor operators T (2)
q do not act on the electron spin degree of

freedom, we have [199]

〈n′J ′‖T (2)‖nJ〉 = (−1)L
′+S+J

×
√

(2J + 1)(2J ′ + 1)

{
J ′ 2 J
L S L′

}
〈n′L′‖T (2)‖nL〉, (B.37)

where L is the quantum number for the total orbital angular momentum of the electrons
and S the quantum number for the total spin of the electrons. It follows from the addition
of angular momenta that the quadrupole matrix elements may be nonzero only if |L′−L| ≤
2 ≤ L′ + L. On the other hand, the parity of the tensor T (2)

q ∝ Y2q is even. Therefore,
the quadrupole matrix elements may be nonzero only if L and L′ have the same parity.
Thus, the electric quadrupole transition selection rules for L and L′ are |L′ − L| = 0, 2
and L′ + L ≥ 2. We note that, in the special case where L = 0 and L′ = 2, we have
〈n′, L′ = 2‖T (2)‖n, L = 0〉 =

√
2/3〈n′, L′ = 2|R2|n, L = 0〉.

We now calculate the quadrupole Rabi frequency Ωge = ΩFMF ′M ′ , defined by Eq. (B.34).
When we insert Eq. (B.35) into Eq. (B.34), we obtain

ΩFMF ′M ′ =
e

4~
(−1)F

′−M ′
(
F ′ 2 F
−M ′ M ′ −M M

)
× 〈n′F ′‖T (2)‖nF 〉

∑
ij

u
(M ′−M)
ij

∂Ej
∂xi

.
(B.38)
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In general, the Rabi frequency ΩFMF ′M ′ for the transition between the atomic states
|nFM〉 and |n′F ′M ′〉 depends on the relative orientation of the quantization axis x3 with
respect to the electric field vector E .

The root-mean-square (rms) Rabi frequency Ω̄FF ′ is given by the rule [154]

Ω̄2
FF ′ =

∑
MM ′

|ΩFMF ′M ′|2. (B.39)

We insert Eq. (B.38) into Eq. (B.39) and perform the summations overM andM ′. Then,
we obtain

Ω̄2
FF ′ =

e2

80~2
|〈n′F ′‖T (2)‖nF 〉|2

∑
q

∣∣∣∑
ij

u
(q)
ij

∂Ej
∂xi

∣∣∣2. (B.40)

We note that Eqs. (B.38) and (B.40) can be used for a monochromatic light field with
an arbitrary space-dependent amplitude E . In the particular case of standing-wave laser
fields, Eqs. (B.38) and (B.40) reduce to the results of Ref. [139].

We assume that the field is near to resonance with the atom, that is, ω ' ω0, where
ω0 ≡ ωeg. The oscillator strength fFF ′ can be calculated from the rms Rabi frequency
Ω̄FF ′ by using the relation [154]

Ω̄2
FF ′ =

e2|E|2

8~meω0

(2F + 1)fFF ′ , (B.41)

where me is the mass of an electron. This yields

fFF ′ =
meω0

18~e2(2F + 1)

×
∑
MM ′

∣∣∣∣∑
ij

〈n′F ′M ′|Qij|nFM〉
1

E
∂Ej
∂xi

∣∣∣∣2. (B.42)

Equation (B.42) can be used for a monochromatic light field with an arbitrary space-
dependent amplitude E . In the particular case where E = E0e

iK·x with E0 and K being
constant real or complex vectors, Eq. (B.42) reduces to an expression that is in agreement
with Refs. [143–145].

With the help of Eqs. (B.40) and (B.41), we find

fFF ′ =
meω0

10~
|〈n′F ′‖T (2)‖nF 〉|2

2F + 1

∑
q

∣∣∣∑
ij

u
(q)
ij

1

E
∂Ej
∂xi

∣∣∣2. (B.43)

We emphasize that Eq. (B.43) can be used for an arbitrary monochromatic light field.
Due to the summation over M and M ′ in Eq. (B.39), the rms Rabi frequency Ω̄FF ′

and, consequently, the oscillator strength fFF ′ do not depend on the orientation of the
quantization axis x3. The quadrupole oscillator strength fFF ′ , given by Eq. (B.43), is
a measure that characterizes the proportionality of the rms Rabi frequency Ω̄FF ′ to the
field magnitude E through Eq. (B.41). This measure depends not only on the quadrupole
of the atom but also the normalized gradients of the field components. We note that, for
atoms in free space, the oscillator strength can be interpreted as the ratio between the
quantum-mechanical transition rate and the classical absorption rate of a single-electron
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oscillator with the same frequency [154, 155]. However, this interpretation may not be
valid for atoms in the vicinity of an object because the modifications of the transition
rate are much more complicated than that of the Rabi frequency.

According to expressions (B.40) and (B.43), the dependencies of Ω̄2
FF ′ and fFF ′ on F

and F ′ are included only in the factors |〈n′F ′‖T (2)‖nF 〉|2 and |〈n′F ′‖T (2)‖nF 〉|2/(2F +1).
These factors are determined by the internal atomic states. They do not depend on the
center-of-mass position of the atom and the parameters of the fiber. They act as scaling
factors for the dependencies on different F and F ′. Consequently, the shapes of the
dependencies of Ω̄2

FF ′ and fFF ′ on the position of the atom and the radius of the fiber do
not depend on the quantum numbers F and F ′.

We introduce the notations Ω̄
(0)
FF ′ and f (0)

FF ′ for the rms Rabi frequency and oscillator
strength of an atom interacting with a plane-wave light field in free space via an electric
quadrupole transition. According to [138, 139, 145], we have

Ω̄
(0)2
FF ′ =

e2k2|E|2

160~2
|〈n′F ′‖T (2)‖nF 〉|2 (B.44)

and

f
(0)
FF ′ =

meω
3
0

20~c2
|〈n′F ′‖T (2)‖nF 〉|2

2F + 1
. (B.45)

The enhancements of the rms Rabi frequency and oscillator strength in arbitrary light
are characterized by the factors

ηRabi =
Ω̄FF ′

Ω̄
(0)
FF ′

,

ηosc =
fFF ′

f
(0)
FF ′

.

(B.46)

We find
ηosc = η2Rabi =

2

k20|E|2
∑
q

∣∣∣∑
ij

u
(q)
ij

∂Ej
∂xi

∣∣∣2. (B.47)

It is clear from Eq. (B.47) that ηRabi and ηosc are independent of the quantum numbers F
and F ′. Moreover, these factors do not depend on any characteristics of the atomic states
except for the atomic transition frequency ω0. They are determined by the normalized
spatial variations of the mode profile function E at the frequency ω0.

We note that the oscillator strength fJJ ′ of the transition from a lower fine-structure
level |nJ〉 to an upper fine-structure level |n′J ′〉 of the atom may be obtained by summing
up fFF ′ over all values of F ′. The result is

fJJ ′ =
meω0

10~
|〈n′J ′‖T (2)‖nJ〉|2

2J + 1

∑
q

∣∣∣∑
ij

u
(q)
ij

1

E
∂Ej
∂xi

∣∣∣2. (B.48)

In the case of an atom interacting with a plane-wave in free space, we have [138, 139, 145]

f
(0)
JJ ′ =

meω
3
0

20~c2
|〈n′J ′‖T (2)‖nJ〉|2

2J + 1
. (B.49)

The relation between fFF ′ and fJJ ′ is [143, 144]

fFF ′ = (2F ′ + 1)(2J + 1)

{
F ′ 2 F
J I J ′

}2

fJJ ′ . (B.50)
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B.4 Quadrupole Interaction of an Atom with a Plane-
Wave Light Field in Free Space

Assume that the field is a plane wave E = Eεeik·x in free space, where E is the amplitude,
k is the wave vector, and ε is the polarization vector. In this case, the rms Rabi frequency
Ω̄

(0)
FF ′ is found from Eq. (B.40) to be

Ω̄
(0)2
FF ′ =

e2|E|2

80~2
|〈n′F ′‖T (2)‖nF 〉|2

∑
q

∣∣∣∑
ij

u
(q)
ij kiεj

∣∣∣2. (B.51)

Without loss of generality, we assume that the field propagates along the x3 direction
and is linearly polarized along the x1 direction. Then, we have k = (0, 0, k) and ε =
(1, 0, 0) in the Cartesian coordinate system {x1, x2, x3}. These expressions lead to ki =
kδi,3 and εj = δj,1. Then, Eq. (B.51) gives

Ω̄
(0)2
FF ′ =

e2k2|E|2

80~2
|〈n′F ′‖T (2)‖nF 〉|2

∑
q

|u(q)31 |2. (B.52)

From Eqs. (B.28), we find
∑

q |u
(q)
31 |2 = 1/2. Hence, we obtain

Ω̄
(0)2
FF ′ =

e2k2|E|2

160~2
|〈n′F ′‖T (2)‖nF 〉|2. (B.53)

The oscillator strength f (0)
FF ′ is related to the rms Rabi frequency Ω̄

(0)
FF ′ via the formula

(B.41). With the help of this formula, we find

f
(0)
FF ′ =

meω
3
0

20~c2
|〈n′F ′‖T (2)‖nF 〉|2

2F + 1
. (B.54)

The oscillator strength f (0)
JJ ′ of the transition from a lower fine-structure level |nJ〉 to an

upper fine-structure level |n′J ′〉 of the atom in free space may be obtained by summing
up f (0)

FF ′ over all values of F ′. The result is [138, 139, 145]

f
(0)
JJ ′ =

meω
3
0

20~c2
|〈n′J ′‖T (2)‖nJ〉|2

2J + 1
. (B.55)

The rate γF ′F of quadrupole spontaneous emission from an upper hyperfine-structure
level |n′F ′〉 to a lower hyperfine-structure level |nF 〉 of the atom in free space is related
to the oscillator strength f (0)

FF ′ as

γ
(0)
F ′F =

e2ω2
0

2πε0mec3
2F + 1

2F ′ + 1
f
(0)
FF ′ . (B.56)

Hence, we find

γ
(0)
F ′F =

e2ω5
0

40πε0~c5
|〈n′F ′‖T (2)‖nF 〉|2

2F ′ + 1
. (B.57)
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The rate γ(0)J ′J of quadrupole spontaneous emission from an upper fine-structure level |n′J ′〉
to a lower fine-structure level |nJ〉 of the atom in free space may be obtained by summing
up γ(0)F ′F over all values of F . The result is [138, 139, 145]

γ
(0)
J ′J =

e2ω5
0

40πε0~c5
|〈n′J ′‖T (2)‖nJ〉|2

2J ′ + 1
. (B.58)

We have the relation
γ
(0)
J ′J =

e2ω2
0

2πε0mec3
2J + 1

2J ′ + 1
f
(0)
JJ ′ . (B.59)

It follows from Eq. (B.36) that the relations between γ(0)F ′F and γ(0)J ′J and between f (0)
FF ′

and f (0)
JJ ′ are [143, 144]

γ
(0)
F ′F = (2F + 1)(2J ′ + 1)

{
F ′ 2 F
J I J ′

}2

γ
(0)
J ′J ,

f
(0)
FF ′ = (2F ′ + 1)(2J + 1)

{
F ′ 2 F
J I J ′

}2

f
(0)
JJ ′ .

(B.60)

B.5 Numerical Results (extended)
We plot in Fig. B.2 the absolute value of the Rabi frequency ΩFMF ′M ′ as a function of the
radial distance r for the transitions between a lower sublevel |FM〉 and different upper
sublevels |F ′M ′〉 via the interaction with different guided modes N = HE11, TE01, TM01,
and HE21. For the calculations shown in this figure, we chose the quantization axis to be
x3 = z. We observe that |ΩFMF ′M ′| reduces almost exponentially with increasing r. The
steep slope in the radial dependence of |ΩFMF ′M ′ | is a manifestation of the evanescent-
wave behavior of the guided field outside the fiber. It is clear from Fig. B.2 that |ΩFMF ′M ′|
depends on the magnetic quantum numbers and the guided mode type. The dotted blue
curve in Fig. B.2(b), which stands for the case of the upper sublevel M ′ = 2 and the
TE mode, is zero. This means that the TE mode does not interact with the quadrupole
transition between the sublevels |5S1/2, F = 2,M = 2〉 and |4D5/2, F

′ = 4,M ′ = 2〉 for
the quantization axis x3 = z. The vanishing of this interaction is a consequence of the
properties of the TE mode, the quadrupole operator Qij, and the internal atomic states.

The Rabi frequency ΩFMF ′M ′ for the transition between the sublevels |FM〉 and
|F ′M ′〉 depends on the relative orientation of the quantization axis x3 with respect to
the fiber axis z. In order to illustrate this dependence, we plot in Fig. B.3 the radial
dependencies of the absolute value of the Rabi frequency ΩFMF ′M ′ for the quadrupole
transition between the sublevels |F = 2,M = 2〉 and |F ′ = 4,M ′ = 4〉 for different choices
of the quantization axis, namely x3 = z, x, and y. We observe that ΩFMF ′M ′ strongly
depends on the orientation of x3. In the case of the HE11, TM01, and HE21 modes, the
absolute value |ΩFMF ′M ′| for x3 = y (see the dotted blue curves in Figs. B.3(a), B.3(c),
and B.3(d)) is larger than for x3 = z and x3 = x (see the solid black and dashed red
curves in Figs. B.3(a), B.3(c), and B.3(d)). However, in the case of the TE01 mode, we
have |ΩFMF ′M ′| = 0 for x3 = y (see the dotted blue curve in Fig. B.3(b)). The vanishing
of this interaction is a consequence of the properties of the TE mode, the quadrupole
operator Qij, and the internal atomic states.
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Figure B.2: Absolute value of the Rabi frequency ΩFMF ′M ′ for the quadrupole transition
between the sublevel M = 2 of the level 5S1/2F = 2 and a sublevel M ′ of the level
4D5/2F

′ = 4 as a function of the radial distance r for different magnetic quantum numbers
M ′ = 0, 1, 2, 3, 4 and different guided mode types N = HE11, TE01, TM01, and HE21. The
fiber radius is a = 280 nm. The wavelength of the atomic transition is λ0 = 516.5 nm.
The refractive indices of the fiber and the vacuum cladding are n1 = 1.4615 and n2 = 1,
respectively. The power of the guided light field is 10 nW. The field propagates in the
+z direction. The hybrid modes are counterclockwise quasicircularly polarized. The
quantization axis is x3 = z. The azimuthal angle for the position of the atom in the fiber
cross-sectional xy plane is arbitrary.

We plot in Figs. B.4 and B.5 the radial dependencies of |ΩFMF ′M ′| for opposite phase
circulation directions p = ±1 and opposite propagation directions f = ±1. These plots
show that, given an orientation of the quantization axis, mode type, and transition type,
|ΩFMF ′M ′| may depend on p and f . The dependence of |ΩFMF ′M ′| on f is related to the
spin-orbit coupling of light [201–208]. Due to the spin-orbit coupling of light, spontaneous
emission and scattering from an atom with a circular dipole near a nanofiber can be
asymmetric with respect to the opposite propagation directions along the fiber axis[97,
103, 209–213]. We note that we have |ΩFMF ′M ′| = 0 for both directions f = ±1 in
Figs. B.5(c) and B.5(f). The vanishing of the quadrupole transitions here is a consequence
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Figure B.3: Radial dependencies of the absolute value of the Rabi frequency ΩFMF ′M ′

for the quadrupole transition between the sublevels |F = 2,M = 2〉 and |F ′ = 4,M ′ =
4〉 for different choices of the quantization axis x3 and different guided modes. The
atom is positioned on the positive side of the x axis (ϕ = 0) and the hybrid modes are
counterclockwise quasicircularly polarized. Other parameters are as for Fig. B.2.

of the properties of the guided field, the quadrupole operator, and the internal atomic
states.

We plot in Figs. B.6 and B.7 the radial dependencies of the rms Rabi frequency Ω̄FF ′

and the oscillator strength fFF ′ of the atom. As already pointed out in Sec. ??, due to
the summation over transitions with different magnetic quantum numbers, Ω̄FF ′ and fFF ′

do not depend on the relative orientation of the quantization axis x3 with respect to fiber
axis z. Figs.B.6 and B.7 show that Ω̄FF ′ and fFF ′ achieve their largest values at r/a = 1,
that is when the atom is directly placed on the surface of the ONF. We observe that Ω̄FF ′

reduces quickly and fFF ′ decreases slowly with increasing r. We note that the shapes
of the curves in Figs. B.6(a) and B.7(a), where F = 2 and F ′ = 4, are the same as the
shapes of the corresponding curves in Figs. B.6(b) and B.7(b), where F = 2 and F ′ = 3.
These curves differ by a scaling factor (see Eqs. (B.40) and (B.43)).

Figs. B.6 and B.7 show that the rms Rabi frequency Ω̄FF ′ and the oscillator strength
fFF ′ depend on the mode type. Comparison between the curves for different modes shows
that, for the parameters of the figures, the oscillator strength fFF ′ for the fundamental
mode HE11 (see the solid black curve in Fig. B.7) is the largest, while the corresponding
rms Rabi frequency Ω̄FF ′ (see the solid black curve in Fig. B.6) is the smallest or the
second smallest. The contrast between these relations is due to the fact that the rms
Rabi frequency Ω̄FF ′ is proportional to the product of the oscillator strength fFF ′ and the
electric field intensity |E|2 (see Eq. (B.41)).

We show in Figs. B.8 and B.9 the radial dependencies of the rms Rabi frequency Ω̄FF ′
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Figure B.4: Radial dependencies of the absolute value of the Rabi frequency ΩFMF ′M ′

for the opposite phase circulation directions p = ±1 of the circularly polarized hybrid
modes HE11 and HE21. The lower and upper levels of the transition are |F = 2,M = 2〉
and |F ′ = 4,M ′ = 4〉 and the quantization axis is x3 = z. Other parameters are as for
Fig. B.2.

and the oscillator strength fFF ′ of the atom interacting with the fundamental mode HE11

via the quadrupole transitions between different pairs of hfs levels F and F ′ of the ground
state 5S1/2 and the excited stated 4D5/2. We observe from the figures that the curves for
different pairs of F and F ′ have the same shape, that is, the curves for different pairs of F
and F ′ differ only by a scaling factor (see Eqs. (B.40) and (B.43)). Comparison between
the curves shows that the rms Rabi frequency and the oscillator strength are largest and
smallest for the transitions between levels F = 2 and F ′ = 4 and between levels F = 2 and
F ′ = 1, respectively. We note from Figs. B.8(a) and B.9(a) that the transitions between
levels F = 1 and F ′ = 1 and between levels F = 1 and F ′ = 3 have almost the same Ω̄FF ′

and the same fFF ′ .

We show in Figs. B.10 and B.11 the rms Rabi frequency Ω̄FF ′ and the oscillator
strength fFF ′ as functions of the fiber radius a. We observe from Fig. B.10 that the rms
Rabi frequency Ω̄FF ′ first increases and then decreases with increasing a. It is clear from
this figure that Ω̄FF ′ for different guided modes have different maxima at different values
of a. We observe from Fig. B.11 that, for the fundamental mode HE11, the oscillator
strength fFF ′ has a local minimum at a ' 107 nm. Meanwhile, for the higher-order
modes, fFF ′ increases with increasing a. In the region a < 498.2 nm, fFF ′ for the HE11

mode is larger than that for higher-order modes. When a is in the region from 498.2 nm
to 1000 nm, fFF ′ for the TM01 mode is lager than that for other modes. These regimes,
however, are rarely reached in cold atom experiments where the fiber radius is usually
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Figure B.5: Radial dependencies of the absolute value of the Rabi frequency ΩFMF ′M ′

for the opposite propagation directions f = ±1 of different guided modes. The lower and
upper levels of the transition are |F = 2,M = 2〉 and |F ′ = 4,M ′ = 4〉 (left column)
and |F = 2,M = 2〉 and |F ′ = 4,M ′ = 3〉 (right column). The quantization axis is
x3 = y, the atom is positioned on the positive side of the x axis, and the hybrid modes
are counterclockwise quasicircularly polarized. Other parameters are as for Fig. B.2.

found in the range 200-400 nm.
The increase of fFF ′ for the HE11 and higher-order modes with increasing a in the

region of large a is a consequence of the fact that expression (B.43) for fFF ′ contains
the terms that are proportional to the gradients ∂Ex,y,z/∂z of the field amplitudes Ex,y,z
in the direction of the fiber axis z. These gradients are proportional to the propagation
constant β, which increases with increasing fiber radius a [95, 214]. The decrease of fFF ′

with increasing a in the region of small a for the HE11 mode (see the solid black curve
in Fig. B.11) is a result of the changes in the structure of the field and increase in mode
volume contained outside the ONF. The initial decrease and the subsequent increase lead
to the occurrence of a minimum in the dependence of fFF ′ on a in the case of the HE11

mode (see the solid black curve in Fig. B.11).
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Figure B.7: Radial dependencies of the oscillator strength fFF ′ for different guided
modes. Parameters used are as for Fig. B.6.
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Figure B.9: Radial dependencies of the oscillator strength fFF ′ of the atom interacting
with the fundamental mode HE11 via the quadrupole transitions between different pairs
of hfs levels F and F ′. Parameters used are as for Fig. B.8.
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