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ARTICLE

Cell shape-independent FtsZ dynamics in
synthetically remodeled bacterial cells
Bill Söderström 1, Alexander Badrutdinov2, Helena Chan 1 & Ulf Skoglund1

FtsZ is the main regulator of bacterial cell division. It has been implicated in acting as a

scaffolding protein for other division proteins, a force generator during constriction, and more

recently, as an active regulator of septal cell wall production. FtsZ assembles into a het-

erogeneous structure coined the Z-ring due to its resemblance to a ring confined by the

midcell geometry. Here, to establish a framework for examining geometrical influences on

proper Z-ring assembly and dynamics, we sculpted Escherichia coli cells into unnatural shapes

using division- and cell wall-specific inhibitors in a micro-fabrication scheme. This approach

allowed us to examine FtsZ behavior in engineered Z-squares and Z-hearts. We use sti-

mulated emission depletion (STED) nanoscopy to show that FtsZ clusters in sculpted cells

maintain the same dimensions as their wild-type counterparts. Based on our results, we

propose that the underlying membrane geometry is not a deciding factor for FtsZ cluster

maintenance and dynamics in vivo.
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Most bacterial cells divide by binary fission, whereby one
mother cell splits into two identical daughters1–3. Dec-
ades of study have led to a detailed understanding of

how the cell division machinery, the divisome, carries out this task
during the later stages of the cell cycle4,5. At the heart of this
process is the eukaryotic tubulin homolog, FtsZ6 that, together
with its membrane anchors FtsA and ZipA (in E. coli), forms an
intermediate structure called the proto-ring (Fig. 1a)7. Functioning
as a recruitment base, the proto-ring components then enlist the
remaining essential division proteins to form a mature divisome5.
As soon as it is fully assembled, the divisome starts to constrict the
cell envelope by reshaping the septal geometry, ultimately leading
to sequential closure of the inner and outer membranes8–10.

In rod-shaped model bacteria such as Escherichia coli and Bacillus
subtilis, FtsZ is believed to organize into short bundles of filaments,

roughly 100 nm in length11,12, that treadmill at the septum with a
circumferential velocity in the order of 20–30 nm s−113–15. The
treadmilling filaments guide and regulate septal peptidoglycan
(PG-) production and ingrowth, leading to septation16. This
mode of action may be limited to rod-shaped bacteria that have
two separate PG-machineries, as opposed to cocci, which have
only one PG-machinery that is capable of finalizing division in
cells with inhibited FtsZ dynamics17.

At a late stage of membrane constriction, but prior to inner
membrane fusion, FtsZ disassembles from midcell, indicating the
possible existence of an upper limit of ring curvature6,9. The actin
homolog MreB is responsible for maintaining the rod shape of E.
coli, and interacts directly with FtsZ, thus MreB could potentially
play a role in FtsZ organization at the septum18–20. However,
other purely geometrical constraints that might govern Z-ring
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Fig. 1 Midcell FtsZ-ring assembly is unaffected by increased cell diameter. a Simplified cartoon showing FtsZ treadmilling at the division plane of an E. coli
cell. For clarity, only FtsZ (gray dots), it’s membrane tethers, FtsA and ZipA (blue dots), and the membrane (brown) are shown. b Schematic
representation of cell placement for imaging. Green dotted ring in the cells represents the FtsZ-ring (red arrow). Standing cells were trapped in a vertical
position in micron-sized holes in agarose pads created using micron-sized pillars. Conditions for proper division ring placement are met when width <
length. The left and middle cells represent untreated cells. The cell on the right has increased dimensions due to drug exposure (A22 and cephalexin).
c Time-gated STED (gSTED) image of a typical FtsZ-ring (FtsZ-mNeonGreen) in an untreated standing cell. Scale bar= 1 μm. d, e gSTED images of FtsZ-
mNeonGreen rings in E. coli cells treated with drugs, showing increased ring diameter. Scale bar= 1 μm. Drugs refer to A22 and cephalexin. f Close-up of
representative FtsZ clusters shown in e, from a cell with increased diameter. Scale bar= 0.5 μm. g Quantification of FtsZ cluster lengths in untreated and
drug-treated cells. Mean ± S.D. was 122.8 ± 43.9 nm (n= 77) and 132.4 ± 48.7 nm (n= 172) for untreated and drug-treated cells, respectively. No
statistically significant difference was measured, p > 0.05. Inset shows cluster widths in untreated (mean ± S.D.= 86.1 ± 6.3 nm (n= 77)) and drug-treated
cells (mean ± S.D.= 88.4 ± 9.8 nm (n= 172)). Boxes represent S.D., with red lines indicating mean. Whiskers on the box plots encompass 95.5% of the
distribution. h–k Structured illumination microscopy (SIM) images of FtsZ-GFP in E. coli cells (h) untreated or (i–k) treated with drugs. Scale bars= 1 μm.
l Snapshots of epifluorescence (EPI) images from time-lapse series of FtsZ-GFP dynamics in drug-treated cells. Scale bars= 1 μm. Corresponding
kymographs are shown adjacent to each image. Black arrows point to examples of FtsZ trajectories.m Average treadmilling speed of FtsZ-GFP in untreated
(mean ± S.D.= 26 ± 15 nm s−1, n= 102) and drug-treated cells (mean ± S.D.= 30 ± 18 nm s−1, n= 102). Black dots represent individual data points, bars
represent mean with error bars representing S.D. “d” in c–e, and h–l indicates cell diameter
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maintenance and stability are currently unclear. In vitro data have
shown that FtsZ can self-organize into swirling rings on sup-
ported bilayers when unconfined by geometrical constraints21,
but we were curious as to whether geometrical changes to cell
shape would influence Z-ring formation and dynamics, as this
would result in a better understanding of FtsZ behavior in live
cells. In this study, we systematically examine FtsZ formation,
organization and behavior in E. coli cells that are sculpted into
complex geometrical shapes in micron sized holes. We show that
FtsZ formation and dynamics are independent of cell shape and
membrane curvature.

Results
FtsZ structure and dynamics in Z-rings are not sensitive to
increased ring size. As a reference for unmodified division rings,
we imaged Z-rings in E. coli cells expressing FtsZ-mNeonGreen
as the only source of FtsZ22. Under our experimental conditions,
this strain produced normal-looking, sharp Z-rings (Supple-
mentary Figure 1) and grew and divided similarly to wild-type
(WT) E. coli (MC4100) (Supplementary Figure 2a-e). We then
trapped the cells in a vertical position in micron-sized holes that
were produced in agarose pads using silica micron pillar arrays14

(Fig. 1b, Supplementary Figure 3), and imaged the cells using
super-resolution time-gated STimulated Emission Depletion
(gSTED) nanoscopy. In these standing cells, a heterogeneous Z-
ring with distinct FtsZ-mNeonGreen clusters was clearly seen
traversing the circumference of the cell (Fig. 1c), similar to what
has been observed before12,14.

Previous work has shown that FtsZ clusters generally maintain
the same length throughout envelope constriction12,14. We
wanted to see if this was also true for unnaturally large cells,
i.e., would FtsZ clusters maintain the same dimensions in Z-rings
of cells with increased diameter at midcell? In order to increase
cell diameter, we treated E. coli cells with A22 and cephalexin
(hereafter collectively referred to as “drugs”), in a way similar to
what has previously proven successful for cell shape manipula-
tions23. A22 disrupts MreB dynamics and therefore perturbs the
characteristic rod-shape of E. coli cells19,24, while cephalexin
blocks cell division by inhibiting the transpeptidase activity of
FtsI25. The net effect of this dual drug treatment is the growth of
cells into shapeable blebs that are unable to divide (Supplemen-
tary Figure 4a).

We hypothesized that as long as cell width remains less than
cell length, FtsZ molecules should be directed to midcell by the
Min system23 and other FtsZ placements systems26, such that a
ring-like structure may be observed in the xy-plane of vertically-
oriented, standing cells (Fig. 1b). To test this, we exposed E. coli
cells expressing FtsZ-mNeonGreen to drugs, and then trapped the
cells vertically in holes with a diameter of up to 3.5 μm and a
depth of 4.5–6 μm. It has been shown that reshaped E. coli cells
longer than 6 μm may revert from pole-to-pole oscillations to
high mode oscillations23. Depending on the size of the holes, cells
were incubated between 120 and 240 min prior to imaging; over-
incubation resulted in cells that outgrew the holes (Supplemen-
tary Figure 4b. Allowing cells to grow for longer times (>10 h)
produced giant blobs with internalized FtsZ-mNeonGreen chains,
see Supplementary Note 1, Supplementary Figures 5 and 6).

The resulting Z-rings in drug-treated cells spanned the midcell
circumference for all cell diameters that were imaged (~ 1–3 μm)
(Fig. 1d, e). Fluorescence intensity increased as ring size increased
(Supplementary Figure 7), possibly indicating an upregulation of
cellular FtsZ expression, assuming similar ratios of ring to non-
ring associated FtsZ molecules in all cell sizes (~30% of FtsZ
molecules are in the Z-ring27). Importantly, confocal Z-stacks
showed that each cell contained only one Z-ring (Supplementary

Figure 8 and Supplementary Movie 1). Close inspection of STED
images revealed that the Z-rings in larger cells were composed of
fluorescent clusters (Fig. 1f) with average lengths and radial
widths of 132 ± 48 nm and 88 ± 9 nm (mean ± S.D., n= 172),
respectively, which were similar to Z-ring clusters in untreated
cells (p > 0.05) (Fig. 1g).

After we had established that large Z-rings can form in cells
with increased diameter, we proceeded to calculate FtsZ dynamics
in these larger rings. However, strains expressing FtsZ-FP
(fluorescent protein (FP), e.g., mNeonGreen) as the only source
of FtsZ have been shown to have a phenotype similar to that of
FtsZ mutants deficient in GTPase activity, with severely impaired
treadmilling speed13. Therefore, we chose to image cells that
expressed FtsZ-GFP from an ectopic locus on the chromosome,
in addition to native FtsZ28. Earlier studies showed that FtsZ-
GFP, when expressed at levels below 50% of total cellular FtsZ
levels, caused no observable phenotypic changes9,12,28,29. In our
experimental setup, FtsZ-GFP was expressed at ~ 30% of total
FtsZ levels (Supplementary Figure 2).

SIM of drug-treated E. coli cells expressing FtsZ-GFP showed
large heterogeneous rings that were similar to those of FtsZ-
mNeonGreen (Fig. 1h–k). Time-lapse imaging revealed that FtsZ
clusters moved around the midcell circumference, even in Z-rings
with a diameter up to three times larger than that of a WT cell
(Supplementary Movie 2). There was no difference in the speed of
individual clusters in the rings of untreated cells compared to
those in sculpted cells that had a diameter 50–200% larger than
WT (26 ± 15 nm s−1 (mean ± S.D., n= 102) and 30 ± 18 nm s−1

(mean ± S.D., n= 102), respectively) (Fig. 1l–m), suggesting that
cluster treadmilling speed is not influenced by the length of the
cell circumference. ZipA-GFP, an FtsZ membrane anchor, also
moved at essentially the same speed in both normal-sized and
large-sized rings (26 ± 8 nm s−1, mean ± S.D., n= 10) (Supple-
mentary Figure 9 and Supplementary Movie 3), which is
comparable to previously reported speeds14.

Since treadmilling behavior of FtsZ in large cells was very similar
to that in WT cells, we were curious to see whether FtsZ subunit
exchange in the rings would also be similar. To assess this, we
performed Fluorescence Recovery After Photobleaching (FRAP)
experiments on both untreated and drug-treated cells. We bleached
half of the FtsZ-GFP molecules in the rings of standing cells and
monitored fluorescence recovery over time (Fig. 2a). Z-rings in
untreated cells had a mean t1/2 recovery time of 8.4 ± 1.9 s (mean ±
S.D., n= 23) (Fig. 2b), consistent with previous studies14,30. We
found that the average t1/2 recovery time was the same for Z-rings
with a wide range of diameters (Fig. 2b), indicating that the rate of
FtsZ subunit exchange is independent of cell diameter. This further
suggests that cell size, and hence membrane curvature, might not
be a factor in determining Z-ring dynamics.

The FtsZ-square. Next, we wanted to know if drug-treated cells
placed in deep (5 μm) rectangular volumes would adapt to these
shapes and effectively form Z-rectangles or Z-squares instead of
Z-rings. Previous work has shown that cells can adapt to rec-
tangular shapes in shallow wells, approximately 1 μm deep23.
Here, we produced quadrilateral patterns in agarose pads using
silica micron pillar arrays similar to those previously described14,
with the exception that the pillars were rectangular and 5.5 ±
0.5 μm in height. Sides of the micron chambers were up to 3.5 μm
in length (Supplementary Figure 11), resulting in well volumes up
to 80 μm3, roughly 50-fold larger than the volume of a WT cell
(assuming a WT cell size of 2 μm in length and 1 μm in width)
(Supplementary Figure 12).

Drug-exposed cells expressing FtsZ-mNeonGreen were placed
in rectangular micron holes and incubated at room temperature
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for 300–420min (longer incubation times were needed due to
increased well size). The cells adapted to their new shapes and
formed rectangular cuboids with only one Z-square per cell
(Fig. 3a, Supplementary Movie 4). Notably, FtsZ clusters were
observed both in the sharp corners and along the sides of the
rectangles (Fig. 3b, Supplementary Figure 13). Quantification of
the FtsZ-mNeonGreen clusters showed that they had similar
dimensions to those in untreated cells, with an average length of
105.4 ± 39.6 nm and radial width of 79.6 ± 18.2 nm (n= 147)
(Fig. 3c). This suggests that FtsZ cluster dimensions in vivo are
insensitive to membrane curvature (or lack thereof).

To generate a fluorescent FtsZ fusion protein that could be
used for both super-resolution STED imaging and examination of
cluster dynamics when grown in rich media at 37 °C, we
constructed a plasmid-expressed FtsZ-mCitrine fusion. FtsZ-
mCitrine was expressed from an IPTG-inducible, medium copy-
number plasmid, pTrc99a, at a level approximately equal to 30%
of total cellular FtsZ. Under these conditions, FtsZ-mCitrine
formed normal-looking, sharp Z-rings (Supplementary Figures 1
and 2). Cells expressing FtsZ-mCitrine were then exposed to
drugs, trapped in rectangular micron-sized holes, and incubated
for 180–280 min at room temperature before gSTED imaging. We
found that FtsZ-mCitrine formed clusters that were 118.3 ± 41.3
nm long and 86.3 ± 22.5 nm wide radially (n= 162), similar to
FtsZ-mNeonGreen cluster dimensions (Fig. 3c, Supplementary
Figure 14), indicating that fluorophore choice did not influence
cluster dimensions in the rings. For consistency, we also imaged
rectangular cells expressing FtsZ-GFP from the chromosome
using SIM (Supplementary Figure 14). All three strains tested
adapted to the rectangular shape, producing sharp-cornered Z-
rectangles.

FtsZ dynamics in rectangular-shaped cells. In order to examine
the dynamics of FtsZ in rectangular cells, we performed time-lapse

imaging on cells expressing either FtsZ-mCitrine or FtsZ-GFP.
Although a few fluorescence spots were abnormally bright and
immobile (~ 1 spot/5 cells, with a maximum of 2 spots in one cell)
(Fig. 4b, Supplementary Movie 7, red arrow), the majority of FtsZ
clusters were highly dynamic (Fig. 4a, b, Supplementary
Movies 5–6). Note that the bright, immobile spots were excluded
from treadmilling analyses. Close inspection of time-lapse
sequences suggested that FtsZ clusters in rectangular-shaped
cells could treadmill continuously around the perimeter of the
cells (Fig. 4a), and importantly, even across sharp corners, without
an apparent change in speed (Fig. 4b, c, Supplementary Movie 8).
The average treadmilling speed of FtsZ-mCitrine clusters in rec-
tangular cells with perimeter lengths up to 13 μm (more than four
times the circumference of a WT cell) was 27.6 ± 12.5 nm s−1

(n= 109), which was consistent with the measured treadmilling
speed of FtsZ-GFP in rectangular cells (25.3 ± 11.3 nm s−1,
n= 122) (Fig. 4d), large cylindrical cells (30 ± 18 nm s−1, Fig. 1m)
and untreated cells (~25 nm s−1)13,14.

To determine whether the dynamics of FtsZ subunit exchange
are affected by changes to circumferential length and shape, we
collected FRAP measurements on FtsZ bundles in rectangular-
shaped cells (Fig. 4e, Supplementary Movie 9). The recovery times
of half-bleached rectangles of varying sizes matched those of
rings, with mean t1/2 recovery times of 9.85 ± 2.58 s (n= 24) and
9.15 ± 2.55 s (n= 22) for FtsZ-mCitrine and FtsZ-GFP, respec-
tively (Fig. 4f). This suggests that subunit exchange from the
cytoplasmic FtsZ pool is independent of circumference length
and membrane curvature. The data thus far indicate that the
maintenance and dynamics of FtsZ clusters are preserved in both
large Z-rings and Z-rectangles of varying size.

FtsZ dimensions and dynamics in heart-shaped cells. To
examine whether FtsZ could literally be (at) the heart of
cell division, we engineered micron pillar arrays that were
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heart-shaped (Supplementary Figure 15). Heart shapes were
chosen because they would sculpt cells in such a way that highly
curved, straight, and angled membrane segments would be pre-
sent within a single cell. Drug-treated E. coli cells expressing
cytoplasmic GFP, FtsZ-mNeonGreen or FtsZ-mCitrine were
sculpted into hearts as described above (Fig. 5a). Perhaps not
surprisingly, quantification of 155 individual FtsZ clusters from
the heart-shaped cells revealed dimensions similar to those in
round and rectangular cells (129 ± 44 nm long and 84 ± 9 nm
wide) (Fig. 5b). We also found that the average treadmilling speed
of FtsZ-mCitrine in heart-shaped cells (22 ± 10 nm s−1, n= 44)
was essentially the same as that in untreated cells (Fig. 5c, Sup-
plementary Movie 10).

For about one-third of the heart-shaped cells, we noticed bright
spots of internalized FtsZ-FP signal that accumulated close to the
cell center (Fig. 5c, green arrowhead). Although we couldn’t
distinguish whether these were true FtsZ clusters or aggregated
protein, cytoplasmic clustering of FtsZ in WT cells have
previously been reported12. Furthermore, although most hearts
had FtsZ-FP signal spanning the full perimeter of the cell,
approximately 20% were only half-full (Fig. 5d, lower left). We do
not fully understand the underlying reason for this, however it is
unlikely due to image focus or cell tilt issues, as every cell was
scanned in the z-direction prior to imaging. Nevertheless, when
we subjected the heart-shaped cells to FRAP, fluorescence
recovery rates were equal for both full and half-full hearts
(Fig. 5d), with mean t1/2 recovery times of 7.1 ± 1.1 s (n= 24) and
6.9 ± 0.9 s (n= 9), respectively (Fig. 5e).

FtsZ-rings form in complex cell shapes. To explore if cell geo-
metry plays a role in Z-ring formation, we set out to remodel cells
into other complex shapes. Even though highly complex-shaped
bacteria occur in nature, such as star-shaped bacteria31, we
wanted to test whether rod-shaped E. coli cells would allow
themselves to be drastically remodeled. Using micron pillars of
various shapes, we produced holes in agarose pads such that

drug-exposed cells could be sculpted into complex shapes, such as
pentagons, half-moons, stars, triangles and crosses (Fig. 6a,
middle row. Supplementary Figure 15). The cells conformed
remarkably well to these shapes, forming sharp boundary angles
< 70° (Fig. 6a, star). After we confirmed that cells could adapt to
these complex shapes, we placed cells expressing FtsZ-mCitrine
into the micron holes, allowed for reshaping to occur, and then
imaged the cells using STED nanoscopy. Cells of all tested shapes
produced FtsZ-shapes at midcell (Fig. 6a, bottom row). Sub-
sequent analysis of the lengths and widths of the FtsZ clusters
revealed little difference in dimensions between the different
shapes, suggesting a minimal role of cell shape in determining
FtsZ cluster dimensions in vivo (Fig. 6b). Additionally, time-lapse
imaging of cells expressing FtsZ-mCitrine in various shapes
showed similar dynamics to those measured in untreated cells.
Specifically, FtsZ clusters treadmilled continuously over sharp
corners and severe angles with an average speed of 28.7 ± 11.1
nm s−1 (Supplementary Figure 16 and Supplementary Movie 10),
which is similar to the treadmilling speed in both square-shaped
and WT cells.

Discussion
Cells, both bacterial and eukaryotic, have the ability to adapt to
their local environments32–36, reverting to their original shapes
after stress37,38 and dividing with striking midcell accuracy even
when remodeled into irregular cell shapes32,35. In bacteria, the
tubulin homolog FtsZ assembles into a ring-like structure at
midcell and is responsible for overall maintenance of the cell
division machinery5,6. The general dynamics and organization of
the FtsZ-ring have been shown to be quite similar across many
bacterial species11,13–15,17,39–42. Common to these species is
confinement of the FtsZ-ring to a circular geometry at midcell.
Strikingly, when purified FtsZ is placed on supported lipid
bilayers, it assembles into a dynamic, swirling ring-like assembly
with a diameter resembling that of wild-type E. coli cells
(approximately 1 μm). This phenomenon is observed when FtsZ
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is anchored to the lipid bilayer, either by FtsA or a membrane
targeting sequence, hinting at an intrinsically preferred FtsZ-ring
curvature6,21,43.

In this study, we characterized FtsZ midcell accumulation and
dynamics in cell shape-determining environments by ‘looking
through the Z-ring’ along the long-axis of cells. We observed
normal-looking FtsZ-rings in cells with diameters three times the
size found in WT cells. However, this might not be surprising, as
the total intensity fluorescence increased in large cells (Supple-
mentary Figure 7) and considering only ~30% of the pool of FtsZ
molecules are in the ring of WT cells at any given point in time27.
Quantification of FtsZ cluster dimensions revealed little variation
between different cell shapes, such as squares, pentagons, trian-
gles and stars (on average 123 × 80 nm, length × width, respec-
tively, and summarized in Table 1), suggesting that local
membrane geometry has minimal influence on FtsZ cluster
dimensions. Compared to untreated cells, rectangular and heart-

shaped cells with perimeter lengths more than four times that of a
WT cell exhibited similar FtsZ cluster dynamics, as FtsZ-FP
clusters treadmilled continuously at the same average velocity
throughout the perimeter of the shaped cells (including over
sharp corners and regions with severe angles), and FtsZ subunit
exchange occurred at similar rates, independent of cell shape and
size (Table 2).

In summary, our results from different shaped cells show that
Z-ring formation and dynamics are not limited to cells of a
certain shape or size. This agrees with previous findings, which
show that internal cellular structures are maintained in cells that
have been reshaped into unnatural forms23. Our observation that
FtsZ clusters conform to the geometric shape of the membrane at
midcell suggests that FtsZ-ring formation is not affected by
changes in membrane curvature. Indeed, cell shape and size are
important for proper cellular functions44, however, with the
many naturally-occurring shape variations of bacteria31,45, it is
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perhaps not surprising that FtsZ can adapt to changing envir-
onments without compromising its own ability to maintain
fundamental functionality. Although our data do not explicitly
show that sculpted cells can divide (since downstream division
proteins were inhibited), the fact that the dynamic properties of
FtsZ were conserved in these cells shows that the Z-ring can be
decoupled from the constriction process. Presently, we have
shown in vivo that E. coli FtsZ-ring formation and dynamics are
conserved, irrespective of cell shape and size.

Methods
Bacterial growth. All experiments were performed in E. coli strain MC4100, unless
otherwise stated. Pre-cultures were grown overnight in 20 ml of rich media (LB) at
37 °C or M9 minimal media supplemented with 1 μg ml−1 thiamine, 0.2% (w/v)
glucose and 0.1% (w/v) casamino acids. The following morning, cultures were
back-diluted 1:50 in either LB or M9 (with supplements) and antibiotics (ampicillin
25 μg ml−1) when needed, and incubated at 30 or 37 °C.

Fluorescent protein production. Chromosomally-encoded FtsZ-mNeonGreen
was integrated at the native ftsZ locus and did not require any inducer22.
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Chromosomally-encoded FtsZ-GFP (strain BS001), GFPCYTO (strain BS008) and
ZipA-GFP were induced with 2.5 μM, 5 μM and 50 μM IPTG, respectively9.

The plasmid pHC054 (ftsZ-mCitrine) was constructed using Gibson assembly46

to generate an IPTG-inducible FtsZ-mCitrine fusion expressed from pTrc99a47.
PCR was performed using Q5 High-Fidelity DNA polymerase (New England
Biolabs). A DNA fragment containing ftsZ was amplified from E. coli MC4100
genomic DNA using primers FtsZ(F) (5′-caatttcacacaggaaacagaccatggatgtttgaacc
aatggaac-3′) and FtsZ(R) (5′-gcccttgctcaccatctgcaggttgttgttatcagcttgcttacgcagg-3′).
mCitrine was amplified from mCitrine-N1 plasmid DNA using primers mCitrine
(F) (5′-cgtaagcaagctgataacaacaacctgcagatggtgagcaagggcgaggag-3′) and mCitrine(R)
(5′-ccgccaaaacagccaagcttttacttgtacagctcgtccatgc-3). pTrc99a plasmid DNA was
amplified using primers pTrc99a(F) (5′-ccatggtctgtttcctgtgtg-3′) and pTrc99a(R)
(5′-aagcttggctgttttggcgg-3′). The ftsZ and mCitrine coding regions are separated by
a short linker encoding NNNLQ. The plasmid sequence was verified by DNA
sequencing (Fasmac, Japan). FtsZ-mCitrine expression was induced with 2.5 μM
IPTG. All FtsZ levels were quantified using Western blotting.

Western blot analysis. Cell extracts from a volume corresponding to 0.1 OD600

units were collected for each strain to be analyzed. The extracts were suspended in
loading buffer and resolved by SDS-PAGE gel electrophoresis. Proteins were
transferred to nitrocellulose membranes using a semi-dry Transfer-Blot apparatus
(Bio-Rad). The membranes were blocked with 5% (w/v) milk and probed with
antisera to FtsZ (Agrisera, Sweden) and detected using standard methods.

Nanofabrication of micro arrays. Micron pillars were engineered using two dif-
ferent, but related, approaches. The first approach was used for round and square/
rectangular micron pillars, and was adapted from the refs. 14,15. Using a multi-step
process similar to that described previously48, micron-scale pillars were fabricated
on a silicon (Si) substrate by reactive ion etching. A pattern of hard-baked pho-
toresist was created on a Si surface using UV lithography, to work as a mask for
etching. Subsequent etching was performed using an Oxford Plasmalab100 ICP180
CVD/Etch system, with a mixture of SF6 and O2 plasma as an etchant. For our
process, a SF6:O2 ratio of 1:1 was optimal. After etching, the remaining photoresist
was removed by O2 plasma treatment. Pillar arrays (1 × 1 cm or 2 × 2 cm) with
round pillars were engineered to contain one micron-sized pillar every 5 μm, with
dimensions between 0.9 and 3.5 μm wide and 5.25 ± 0.75 μm high (Supplementary

Figure 3). Pillar arrays (1 × 1 cm) with square pillars contained micron-sized pillars
approximately every 5 μm, with side lengths varying between 1.8 and 3.5 μm, and
heights of 5.5 ± 0.5 μm (Supplementary Figure 11).

To create more complex shapes, a second approach, based on electron beam
lithography was used. For this, the micron-scale structures were fabricated on a Si
substrate by a multi-step process, which was a combination of electron beam
lithography and reactive ion etching techniques. Similar approaches to silicon
patterning have been successfully used in a number of earlier works48–51. First, a
pattern of e-beam resist was created on a Si surface using e-beam lithography. A
50 nm-thick Ti layer was then deposited, and a lift-off process was used to create a
metal mask for etching. The use of a metal mask, instead of a baked e-beam resist
mask, was necessary due to the high selectivity ratio required for generating
structures only a few microns in height. Finally, the etching process was performed
as described above, using an Oxford Plasmalab100 ICP180 CVD/Etch system and a
mixture of SF6 and O2 plasma as an etchant. For our process, a SF6:O2 flow ratio of
3:2 produced the best results, with a Si:Ti etching selectivity ratio of approximately
100:1. Increased concentration of O2 in the mixture has two effects: (i) it improves
etching anisotropy, which is essential for avoiding shape distortion from the
undercut effect, and (ii) it reduces the selectivity ratio, as the Si etch rate gets
slower. After etching, the structures were characterized using a Dektak surface
profiler and SEM imaging. The micron structure arrays, which contained various
shapes (hearts, triangles, pentagons, half-moons and crosses), were fabricated on
1 × 1 cm Si chips with inter-structure distances of approximately 5 μm, and
structure heights of 5.5 ± 0.5 μm (Supplementary Figure 15).

Micron-sized chamber production and cell growth. Liquefied agarose (5% w/v)
in M9 minimal media (supplemented with 0.2%(w/v) glucose, 0.1%(w/v) casamino
acids, 2 μg ml−1 thiamine, 40 μM A22 and 20 μg ml−1 cephalexin) was dispersed
on glass slides and the silica mold (pillar facing downwards) was placed on top. The
molds contained either round or rectangular pillars, or various geometrical shapes,
as described above. Once the agarose solidified, the mold was removed and ~ 5 μl
of live cell culture at OD600 0.4–0.55 (pre-treated with 16 μM A22 for 10–15 min)
was applied on top. To allow the cells to adapt to the different shapes, slides were
incubated at RT or 30 °C in a parafilm-sealed petri dish together with a wet tissue
to prevent drying. After incubation, cells were covered with a pre-cleaned cover
glass (♯1.5) for live cell imaging. For STED imaging, cells were first fixed with ice-
cold methanol for 5 min and carefully rinsed with PBS prior to cover glass
application.

Microscopy. Gated STED (gSTED) images were acquired on a Leica TCS SP8
STED 3× system, using a HC PL Apo 100x oil immersion objective with NA 1.40.
Fluorophores were excited using a white excitation laser operated at 488 nm for
mNeonGreen and 509 nm for mCitrine. A STED depletion laser line was operated
at 592 nm, using a detection time-delay of 0.8–1.6 ns for both fluorophores. The
total depletion laser intensity was in the order of 20–40MW cm−2 for all STED
imaging. The final pixel size was 13 nm and scanning speed was either 400 or 600
Hz. The pinhole size was set to 0.9 AU.

Epi-fluorescence and confocal images were acquired on either a Zeiss LSM780
or Zeiss ELYRA PS1 (both equipped with a 100 × 1.46 NA plan Apo oil immersion
objective) with acquisition times between 0.3 and 2 s. Time-lapse series for
generating kymographs were recorded at 2 s intervals for a time period of at least
118 s.

SIM images were acquired using a Zeiss ELYRA PS1 equipped with a pco.edge
sCMOS camera. The final pixel size in SIM images was 24 nm. Individual images
were acquired using an acquisition time of 200 ms per image (a total of 15 images
were acquired per SIM image reconstruction) and subsequently reconstructed from
the raw data using ZEN2012 software. SIM time-lapse movies (containing at least
14 frames) were recorded without time delays between image stacks.

Confocal Z-stacks (focal plane ± ~3.5 μm) were acquired on a Leica TCS SP8
STED 3× system (operated in confocal mode) using predetermined optimal system
settings (Leica, LAS X), with 0.22 μm steps (resulting in 30–32 images per stack),
and pinhole size 1 AU. All imaging was performed at RT (~ 23–24 °C). In order to

Table 2 Summary of FtsZ dynamics in various cell shapes

Cell shape FP Drugsa Treadmilling speed (nm s-1) t1/2 recovery (s)

FtsZ dynamics

Circle (WT) GFP − 26 ± 15 8 ± 2
Circle (large) GFP + 30 ± 18 8 ± 2
Square mCit + 28 ± 13 10 ± 3
Square GFP + 25 ± 11 9 ± 3
Heart mCit + 23 ± 10 7 ± 1

Numbers represent mean ± S.D. Note that values have been rounded to the nearest integer
FP fluorescent protein, mCit mCitrine
aDrugs; A22 [16 μm] and Cephalexin [20 μm]

Table 1 Summary of FtsZ cluster dimensions at midcell in
various cell shapes

Cell shape FP Drugsa Length (nm) Width (nm)

FtsZ cluster dimensions

Circle (WT) mNG − 123 ± 44 80 ± 2
Circle (large) mNG + 132 ± 48 88 ± 9
Square mNG + 105 ± 40 80 ± 18
Square mCit + 118 ± 41 86 ± 22
Heart mNG + 129 ± 44 84 ± 9
Pentagon mNG + 131 ± 52 74 ± 9
Half-moon mNG + 129 ± 45 80 ± 10
Star mNG + 140 ± 67 76 ± 16
Triangle mNG + 110 ± 35 78 ± 11
Cross mNG + 119 ± 21 71 ± 18

In all cell shapes, the average measured cluster lengths were within 17% of WT, while average
widths were within 13%. Numbers represent mean ± S.D. Note that values have been rounded to
the nearest integer
FP fluorescent protein, mNG mNeonGreen, mCit mCitrine
aDrugs; A22 [16 μm] and Cephalexin [20 μm]
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confirm that the cells were immobile, and that no visible cell movements occurred
in the wells, each cell was initially monitored using brightfield and epi/confocal
fluorescence illumination14. In this way, we could eliminate the contribution of
motion blurring to any observed movements captured during image acquisition.

FRAP measurements. Confocal FRAP measurements were performed on a Zeiss
LSM780 system using a 100 × 1.4 NA plan Apo oil immersion objective and pin-
hole size 60 μm14. Bleaching was performed for 0.5–0.7 s using 100% laser power
applied over the region of interest. Data were collected in time intervals of 1–2 s
until steady state was reached. Following background correction, and to account
for overall successive bleaching, the fluorescence intensity (F) of the bleached
region (half a ring) was normalized to the average ring fluorescence of an
unbleached area of the same size, for each time point (t); FNORM(t)= FBLEACHED(t)
* (FBLEACHED(t)+ UNBLEACHED(t))−1. All data were exported to Origin9 Pro and
data points were fitted to the single exponential function F(t)= Fend – (Fend—Fstart)
* e−kt, where F(t) is the fluorescence intensity at time t, Fend is the fluorescence
intensity at maximum recovery, Fstart is the fluorescence recovery momentarily
after bleaching (at t= 0), and k is a free parameter. The recovery half-time was
then extracted from t1/2= ln 2 * k−1. Importantly, all cells were scanned from top
to bottom in order to find the division plane (in which the rings reside).

Image analysis. Image analysis was performed using Fiji. When necessary, images
were background-corrected using a rolling ball with radius 36. Image stacks were
motion-corrected using the plug-in StackReg. Kymographs were generated from
time-lapse images using the KymoResliceWide plugin (line width 5), from which
treadmilling speeds were calculated using the slope of the fluorescence trace21.

STED images were deconvolved using Huygens Professional deconvolution
software (SVI, the Netherlands). FtsZ-ring diameters were extracted from the
average values of the Gaussian fitted fluorescence profiles drawn from 12 to 6
o’clock and 3 to 9 o’clock. Side lengths of shaped cells were determined by applying
line profiles in ImageJ. The lengths and widths of individual FtsZ clusters were
obtained using line scans (line size 4) over at least five randomly selected individual
fluorescence spots from each deconvolved cell image, whereby a Gaussian was
fitted to the intensity profiles in order to extract the full width at half maximum
(FWHM). Note that the long and short axes of each individual FtsZ cluster were
assigned as length and width, respectively, regardless of orientation relative to the
membrane. FtsZ cluster dimensions are given in mean ± S.D. n indicates number of
cells, unless explicitly specified.

Statistical analysis. For statistical analyses, two-tailed Student’s t-tests were
performed using Origin Pro 9. A p-value of <0.05 was considered as statistically
significant.

Data availability
The data supporting the findings of the study are available in this article and its
Supplementary Information files, or from the corresponding author upon request.
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