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ABSTRACT The positions of host factors required for viral replication within a hu-
man protein-protein interaction (PPI) network can be exploited to identify drug tar-
gets that are robust to drug-mediated selective pressure. Host factors can physically
interact with viral proteins, be a component of virus-regulated pathways (where pro-
teins do not interact with viral proteins), or be required for viral replication but un-
regulated by viruses. Here, we demonstrate a method of combining human PPI net-
works with virus-host PPI data to improve antiviral drug discovery for influenza
viruses by identifying target host proteins. Analysis shows that influenza virus pro-
teins physically interact with host proteins in network positions significant for infor-
mation flow, even after the removal of known abundance-degree bias within PPI
data. We have isolated a subnetwork of the human PPI network that connects virus-
interacting host proteins to host factors that are important for influenza virus replica-
tion without physically interacting with viral proteins. The subnetwork is enriched for
signaling and immune processes distinct from those associated with virus-interacting
proteins. Selecting proteins based on subnetwork topology, we performed an siRNA
screen to determine whether the subnetwork was enriched for virus replication host fac-
tors and whether network position within the subnetwork offers an advantage in priori-
tization of drug targets to control influenza virus replication. We found that the subnet-
work is highly enriched for target host proteins—more so than the set of host factors
that physically interact with viral proteins. Our findings demonstrate that network posi-
tions are a powerful predictor to guide antiviral drug candidate prioritization.

IMPORTANCE Integrating virus-host interactions with host protein-protein interac-
tions, we have created a method using these established network practices to iden-
tify host factors (i.e., proteins) that are likely candidates for antiviral drug targeting.
We demonstrate that interaction cascades between host proteins that directly inter-
act with viral proteins and host factors that are important to influenza virus replica-
tion are enriched for signaling and immune processes. Additionally, we show that
host proteins that interact with viral proteins are in network locations of power. Fi-
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nally, we demonstrate a new network methodology to predict novel host factors
and validate predictions with an siRNA screen. Our results show that integrating
virus-host proteins interactions is useful in the identification of antiviral drug target
candidates.

KEYWORDS drug targets, influenza, protein-protein interactions, virus-host
interactions

Viruses such as influenza virus hijack and reprogram host cellular machinery to
perform virus replication tasks. Influenza outbreaks have a major impact on public

health and the global economy each year (1, 2). While annual vaccinations provide
some protection, vaccination effectiveness is impaired by antigenic drift and availability
issues (3, 4). Recent sporadic human infections with avian viruses of H5N1 and H7N9
subtypes have raised concerns about the pandemic potential of these viruses (5–8).
Antiviral drugs that target influenza viral proteins are available (9, 10), but drug-
resistant strains have emerged (11, 12). Therefore, there is an urgent need to identify
drug targets that are robust to virus mutation and drug-mediated selective pressure.

Understanding virus-host interactions in the context of the human protein-protein
interaction (PPI) network will provide a global perspective into how influenza virus
manipulates host proteins and aid in identifying host factors involved in influenza virus
replication for drug targeting (13–15). The virus-host interactome is visualized in
Fig. 1A. Within a PPI network, a protein’s global significance can be assessed by the
protein’s network centrality, the identification of important components based on
information flow across the network. Common measures include a protein degree
(number of binding partners) and betweenness (the degree to which the protein is a
bottleneck in the network) though several others exist (16, 17). Network centrality has
emerged as a valuable tool for studying proteins associated with cancer (18, 19) and
drug targeting (19–22). PPI network-based approaches have recently been utilized in
influenza virus studies to identify and study potential factors involved in virus replica-
tion (23–27). Network studies have demonstrated that virus-interacting host proteins
tend to have a high network significance based on a variety of network metrics
(including betweenness and degree) for several viruses, including influenza viruses (28)
and hepatitis C virus (29). A comparative analysis of influenza virus protein and host
protein interactomes has identified novel host factors that are common across the
protein interactomes (30). Furthermore, meta-analysis studies have developed statisti-
cal methods to better identify host factors by leveraging data from several virus
replication screens (31). However, how effectively can virus-host protein interaction
data and network topology be leveraged to improve host factor identification (i.e.,
antiviral drug target identification) remains a question.

Here, we demonstrate a method of integrating virus-host protein interaction data
into a human PPI network to prioritize host proteins as antiviral drug target candidates.
First, we analyzed a set of 1,292 human proteins identified previously as having
interactions with influenza virus proteins (32), 299 of which were found to significantly
inhibit influenza virus replication during an siRNA virus replication screen (Fig. 1A).
Consistent with previous studies, we show that virus-interacting human proteins tend
to be in positions essential to PPI network information flow and are closely clustered
within the PPI network. We then isolated the subnetwork of the human PPI network
that connects virus-interacting host proteins to noninteracting host factors (referred to
as “internal”) that were identified to be important for influenza virus replication in a
study and reevaluated in this work (33) (Fig. 1B). Candidate proteins connecting
virus-interacting host proteins to internal host factors were selected based on their
betweenness within this subnetwork and evaluated by viral replication screen. Be-
tweenness was selected under the hypothesis that selecting network bottlenecks (i.e.,
high-betweenness proteins) would limit the opportunity for the virus to engage host
machinery through alternative pathways. The fraction of proteins tested that signifi-
cantly reduced virus replication (i.e., the hit rate) was compared to the hit rate observed
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in a genome-wide screen, the hit rate when screening virus-interacting proteins (the
virus’ nearest neighbors in the network) and the hit rate observed when screening host
factors identified in a previous study (33).

RESULTS
Host proteins that interact with influenza virus proteins are central to the PPI

network. Studies have shown that proteins in network positions that are essential for
information flow within a PPI network (e.g., high degree or high betweenness) are more
likely to be associated with diseases (34, 35) or drugs with known, dangerous side
effects (19, 36). Using a human PPI network, we analyzed the network topology
characteristics of virus-interacting and non-virus-interacting host proteins. In a previous
study, we identified 1,292 host proteins that coprecipitated with at least one of 11
influenza virus proteins (viral PB2, PB1, PA, HA, NP, NA, M1, M2, NS1, NS2, and PB1-F2
proteins) (32). These proteins are referred to as “virus-interacting proteins.” We mapped
the interaction data onto a human PPI network developed from the Human Integrated
Protein-Protein Interaction rEference (HIPPIE) database (37). After constraining the
network to highly confident interactions (see Materials and Methods), the PPI consisted
of one large network (9,969 proteins and 57,615 interactions) which contained 1,213
influenza virus-interacting host proteins and 86 smaller networks that contained 7 or

FIG 1 The virus-interacting network and the virus subnetwork. (A) The virus-interacting network is created from
human host-PPI data combined with virus-host protein interaction data. (B) The virus subnetwork was isolated from
the complete human PPI network by collecting all interactions involved in the shortest paths (red) that connect
influenza virus-interacting proteins (blue) to human proteins essential to virus replication (e.g., the internal-
essential proteins) (orange). The connecting proteins (black) are candidates to be evaluated for their antiviral
properties.
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fewer proteins (the majority containing only 2 proteins) and no influenza virus-
interacting proteins. The smaller networks were removed from further consideration.

Virus proteins were significantly more likely to interact with host proteins that were
in positions of high regulatory importance in the human PPI network. For every protein,
the degree (number of neighbor proteins) and betweenness (38) (measure of the
shortest paths between all other proteins in the network that include the protein in
question) were calculated. On average, the degrees of virus-interacting host proteins
were twice the degrees of all proteins and significantly higher than the degrees of the
non-virus-interacting proteins of the network (Fig. 2A; median degrees of virus-
interacting, non-virus-interacting, and all proteins � 10, 4, and 5, respectively; Student
t test P value for comparing log-scaled non-virus-interacting and virus-interacting
data � 10�16).

Knowing documented bias between protein abundance and protein degree (39), an
analysis of the correlation between the two variables was performed to ensure the high
degree of virus-interacting proteins was not biased by protein abundance. Significant
correlation exists between abundance and degree in the virus-interacting proteins
(Pearson correlation coefficient, 0.23; P value, 1.2 � 10�13), subnetwork (Pearson
correlation coefficient, 0.10; P value, 6.9 � 10�7), and the total network (Pearson
correlation coefficient, 0.25; P value, 2.2 � 10�16). After fitting degree and abundance
to a linear model, the bias due to abundance was removed (see Materials and Methods;
Pearson correlation coefficient after adjustment, �0.07; adjusted degree values can be
found in Table S1 in the supplemental material; Fig. S1 demonstrates the adjusted
degree versus abundance). A comparison of the adjusted degrees of the non-virus-
interacting and virus-interacting proteins reveals that the previous conclusions remain:
the degree of virus-interacting proteins is significantly higher than the degree of
non-virus-interacting proteins in the network (Fig. 2B; median degree of virus-
interacting, non-virus-interacting, and all proteins � 5.4, 3.9, and 4.2, respectively;
Student t test P value for comparing log-scaled non-virus-interacting and virus-
interacting data � 10�16). Therefore, despite known biases ingrained in PPI data,
virus-interacting proteins bind more proteins than non-virus-interacting proteins.

Virus-interacting proteins also had a significantly higher betweenness (Fig. 2C;
median betweenness of virus-interacting and all proteins � 1,625.1 and 32.8, respectively;
Mann-Whitney U test P value for log-scaled data � 10�16). Comparing median between-
ness after the removal of proteins with a betweenness of zero, virus-interacting proteins still
had a significantly higher betweenness though the population medians were closer in
value (median betweenness of virus-interacting and all proteins � 3,981.1 and 1,584.8,
respectively; Mann-Whitney U test P value for the log-scaled data � 8.2 � 10�16). The
tendency for virus proteins to bind host proteins that had a higher degree and between-
ness was consistent when analyzing the interaction partners of each virus protein sepa-
rately (Fig. S1; pairwise t test of the log-scaled data. All P values were �0.01 except for
betweenness of NS2-interacting proteins, which was not significantly distinct from the
betweenness of the full PPI). This indicates that influenza virus proteins selectively interact
with human proteins that can strongly regulate cellular behavior. These results are
consistent with published findings for HCV and dengue virus (40, 41) and with a
previous study which used a yeast two-hybrid approach to identify influenza virus-
interacting host proteins for 10 of the 11 virus proteins (28). Further, these are
characteristics that generalize to each virus protein’s interacting partner; suggesting
that all 11 virus proteins have a role in manipulating cellular machinery.

Influenza virus-interacting host proteins are closely connected in the human
PPI network. Next, we evaluated whether virus-interacting proteins tend to cluster
closely to one another in the PPI network. A previous study suggested that host factors
of viral replication are closely clustered within the network but did not assess the
topological characteristics of virus-interacting host proteins (42). Functionally related
proteins are often observed to be closely clustered in PPI networks (43, 44). Knowing
that influenza virus proteins manipulate multiple host cell functions to promote
replication, these previous studies suggest that the interaction partners of viral proteins
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should be closely clustered by host function. If this is true, neighboring cluster proteins
could serve as possible alternatives for influenza virus to manipulate each host function.

We quantified how close each virus protein’s interacting host proteins are within the
network by calculating the shortest distances required to connect all of the host

FIG 2 The network topological characteristics of virus-interacting host proteins. (A to C) Distributions of
the degree (A), adjusted degree (B), and betweenness (C) of virus-interacting proteins and all proteins in
the human PPI network. An � of 0.01 was added to the betweenness to facilitate log scaling. (D to G) The
cumulative distributions (thick red lines) of the shortest distances connecting host proteins in the PPI
network that interact with viral PB1 (D), HA (E), or NS1 (F) protein or the set of all viral proteins (G). For
a control, the cumulative distribution of distances was iteratively determined (N � 100) by randomly
sampled host proteins in the PPI network (thin black lines). The number of proteins sampled on each
iteration was equal to the number of interacting host proteins of each virus protein (or set of viral
proteins).
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proteins that interact with a viral protein, creating a distribution of distances. The
cumulative distribution details the fraction of host proteins that could be connected to
other host proteins that bind the same viral protein in n or fewer steps. For a control,
we determined the cumulative distribution of distances that result from randomly
sampled proteins in the network. For a single iteration, we created a set of random
proteins. The size of the set was determined by the number of proteins which interact
with the virus protein of interest (e.g., PB1 has 322 interacting host proteins; therefore,
322 proteins were randomly selected from the network; Fig. 2D to G). The distributions
of distances connecting all of the randomly sampled proteins was calculated. This
process was repeated 100 times.

We found that virus-interacting host proteins are very significantly clustered within
the PPI network. The set of proteins that interact with a viral protein are significantly
more closely clustered in the network than expected by chance (Fig. 2D to G, P � 0.01
comparing the median distance of the virus-interacting proteins to the median distance
of randomly sampled proteins). Generally, �25% of the randomly sampled proteins are
connected by two or fewer interactions, while 88.7% of PB1-interacting proteins, 90.0%
of HA-interacting proteins, 98.2% of NS1-interacting proteins, and 79.6% of all host
proteins that interact with any influenza virus protein are connected by two or fewer
interactions. Collectively, these results support that viral proteins are selectively target-
ing closely clustered host proteins.

We next evaluated whether influenza virus-interacting proteins are often compo-
nents of a common protein complex. To do so, we determined the fraction of all
influenza virus-interacting protein pairs (735,078 pairs in total) that appear within a
protein complex and compared that fraction to the fraction of all protein pairs
(49,685,496 total pairs) in the PPI that appear in a protein complex. Mammalian protein
complex information was downloaded from CORUM (a comprehensive resource of
mammalian protein complex data) (45). We found that 1.5% of all virus-interacting
protein pairs are involved in a complex, whereas only 0.066% of all protein pairs in the
PPI are involved in a complex. In sum, influenza virus proteins are closely clustered and
22.4 times more likely to be involved in a protein complex than randomly selected
proteins.

Constructing the influenza virus-host subnetwork. Network analysis of virus-
interacting host proteins demonstrates that viral proteins preferentially interact with
closely connected host proteins that are in positions central to information flow across
the human PPI network, suggesting that it may be possible to exploit network positions
to prioritize potential antiviral drug targets. We hypothesized that there exists a
subnetwork consisting of pathways that connect virus-interacting proteins to key
cellular machinery that is likely to be significantly enriched for host factors. We further
hypothesized that the topology of host factors within this subnetwork may provide an
additional advantage in identifying host factors.

To evaluate these hypotheses, we first performed an siRNA screen of host factors
identified in a previous genome-wide screen for influenza virus host factors to identify
key host factors that do not interact directly with the virus (33). Poor repeatability due
to differences in the experimental conditions and possibly high false-negative rates (42)
often characterizes siRNA screens of influenza virus replication host factors. Here,
HEK293 cells were transfected with siRNAs targeting 264 non-virus-interacting host
factors identified by Karlas et al. (33) (two siRNAs per gene were used, as shown in
Table S2; AllStars Negative Control siRNA [Qiagen] was used as a negative control) and
then infected with influenza virus at 24 h posttransfection. The culture supernatants
were harvested for virus titration at 48 h postinfection. Virus titers were determined by
plaque assay. A protein was defined as a hit if the virus titers decreased by at least two
log units upon transfection with an adjusted P value of �0.01. The viability of siRNA-
transfected cells was assessed using Cell-Titer Glo assay, and downregulation of mRNA
levels for the hit proteins was confirmed by quantitative reverse transcription-PCR
(qRT-PCR). Of the 264 previously identified host factors tested, 71 significantly down-
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regulated virus replication. Of the 71, 21 were identified to directly interact with
influenza virus proteins. In all, 50 of the host factors downregulated virus growth and
do not directly interact with the virus. We labeled these proteins as “internal-essential”
host factors.

Next, we constructed an influenza virus-specific subnetwork (process illustrated in
Fig. 1B) of the shortest paths connecting virus-interacting host proteins to “internal-
essential” host factors (i.e., the host factors reverified in the siRNA screen of host factors
identified in the screen of Karlas et al. [33]). The proteins linking internal-essential
proteins to virus-interacting proteins are “connecting” candidate proteins for evalua-
tion as host factors of virus replication. The resulting subnetwork contained 1,213
virus-interacting proteins, 38 internal-essential proteins (12 proteins were not in the PPI
network), and 1,643 connecting candidate proteins (Table S1 contains the identities
and centrality values for all proteins in the subnetwork). As a result of how the
subnetwork is constructed, the mean degrees of the virus-interacting proteins and the
internal-essential proteins were lower than the mean degree of the connecting proteins
(Fig. S2A; ANOVA followed by Tukey post hoc analysis P � 0.01). While the degree of
connecting proteins does not shift significantly between the total PPI network and the
virus subnetwork (Fig. 3A), some proteins with low betweenness have much lower
betweenness in the virus subnetwork compared to the total PPI network (Fig. 3B).
Higher betweenness nodes in the total PPI network do not demonstrate dramatic shifts
in the virus subnetwork upon comparison. This shift between the total network and
virus subnetwork may reveal proteins that are more or less critical to virus replication
which cannot be identified in a standard PPI network analysis.

Functional enrichment analysis of the influenza virus-host subnetwork. A
functional enrichment analysis was performed using DAVID 6.8’s Functional Annotation
tool (46). Previous work (32) included a per protein analysis of virus-interacting proteins
that identified involvement in several stages of the life cycle of influenza virus,
particularly in viral replication tasks and export of influenza vRNPs from the nucleus.
Here, analysis found that virus-interacting host proteins and connecting (non-internal-
essential) proteins within the virus subnetwork are functionally distinct (see Tables 1
and 2 for abbreviated results; see Table S3 for full results). Analysis of virus-interacting
host proteins replicated the previous finding that virus-interacting host proteins are
primarily associated with housekeeping and viral replication processes (32), whereas
analysis of connecting proteins shows association with protein phosphorylation, his-
tone reconfiguration, and immune responses. Specifically, the immune response path-
ways identified are the stimulatory C-type lectin receptor signaling, T-cell receptor
signaling, and Fc epsilon receptor signaling, all of which regulate NF-�B activity. These

FIG 3 Network characteristics of the virus subnetwork. Panels A and B compare the degree and betweenness, respectively, of the connecting
proteins in the whole PPI network and the virus subnetwork.
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results suggest that the virus subnetwork contains functional information generally
unobserved when considering virus-interacting host proteins or internal-essential pro-
teins in isolation.

Connecting proteins of the influenza virus-host subnetwork are more enriched
for host factors than virus-interacting proteins are. To evaluate the hypothesis that
the “connecting” proteins are likely to be host factors and to simultaneously evaluate
whether network topology can improve host factor identification, we selected 78
proteins of the subnetwork with the highest (n � 39) and lowest betweenness (n � 39)
and conducted another in vitro virus replication assay. HEK293 cells were again trans-
fected with siRNAs targeted to each of the 78 candidate protein’s genes, and the
procedure described previously was performed to determine the proportion of the
connecting proteins tested that are host factors of influenza virus replication. The hit
rate is defined as the proportion of proteins tested that significantly downregulated
virus replication.

To evaluate the significance observed in the virus replication screen of the connect-
ing proteins, we compared the observed hit rate to the hit rate observed in a screen of
the 1,292 virus-interacting host proteins in HEK293 cells (hit rate � 299/1,292 � 0.23)
(32), in the screen of the 264 host factors in the study by Karlas et al. (33) (detailed
above), and in a whole-genome screen for influenza virus host factors in A549 cells
(287/22,843 � 0.013) (33). The whole-genome screen provides the expected hit rate
when randomly sampling the PPI. An alternative approach to network-based dis-
covery is to target the nearest neighbors of the virus, a comparison provided by
screening virus-interacting host proteins. An additional metric is the hit rate
observed in our siRNA screen of the host factors identified by Karlas et al. (33) (71
out of 264; hit rate � 0.27). Differences between hit rates were compared using
Pearson’s chi-squared test when comparing proportions between two binomial groups.

TABLE 1 Functional enrichment analysis of connecting proteins within the virus
subnetworka

Cluster No. of GO terms Enrichment score

Transcription 4 55.4
DNA damage/repair 3 19.2
Protein phosphorylation 19 18.7
Mitosis 5 18.7
Histone reconfiguration 42 14.4

Immune response 3 14.0
C-type lectin receptor signaling pathway
T-cell receptor signaling pathway

Zinc ion binding 4 11.5
aProteins were analyzed using DAVID.

TABLE 2 Functional enrichment analysis of virus-interacting proteins within the virus
subnetworka

Cluster No. of GO terms Enrichment score

Ribonucleoprotein/viral transcription 13 67.2
Cell-cell adhesion 3 45.0
mRNA splicing 9 41.8
Nucleotide binding 10 30.3
Chaperone/UPR 3 22.1
Viral nucleocapsid 3 19.0
mRNA nuclear export 4 17.5
Nucleotide binding/ATP binding 5 17.3
Translation initiation factors 11 13.2
Proteasome/NF-�B MAPK signaling 23 12.1
aProteins were analyzed using DAVID.
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The siRNA screen of the connecting proteins found that connecting proteins were
significantly enriched for host factors, but there was no statistically significant advan-
tage in selecting proteins by betweenness (Fig. 4). Of the 78 proteins targeted in the
siRNA screen of connecting proteins, a total of 27 significantly reduced virus titers by
at least 2 orders of magnitude, corresponding to 15 categorized as connecting high-
betweenness proteins and 12 categorized as connecting low-betweenness proteins.
Note that one of the 39 connecting high-betweenness proteins (PLK1) was eliminated
from the calculation because both respective siRNAs were cytotoxic (Table S4). The hit
rate of connecting proteins (27/77 � 0.35) was significantly higher than the hit rate
observed in the screen of virus-interacting proteins (P � 0.024) and in the whole-
genome screen (P � 2.2 � 10�16) but not significantly distinct from the rate observed
in rescreening the Karlas host factors (P � 0.21). When considering the connecting
proteins based on their betweenness, the high-betweenness connecting proteins had
a hit rate of 0.39 (15/38) which was significantly higher than the hit rates observed in
the virus-interacting and whole-genome screens (P � 0.032 and P � 2.2 � 10�16,
respectively). The high-betweenness protein hit rate was higher than the rate observed
in the screen of host factors by Karlas et al. (33), but not significantly (P � 0.16). The
low-betweenness connecting protein hit rate was lower than that of the high-
betweenness connecting proteins (12/39 � 0.31). The difference in hit rates between
high- and low-betweenness proteins was not significant (P � 0.57). In all, the screening
results suggest that proteins connecting virus-interacting proteins to host factors of
influenza virus replication are highly enriched for host factors themselves—significantly
more so than proteins that directly interact with virus proteins. However, the topolog-
ical information from betweenness does not significantly improve host factor identifi-
cation.

The influenza virus subnetwork is enriched for host factors identified in six
host factor screens. To determine whether host factors identified in previous screens
are enriched within the virus subnetwork, we compiled a list of host factors of influenza
virus replication identified in at least one of six previous screens (33, 47–51) (Table S5).
A Fisher exact test for enrichment was used to determine whether the connecting

FIG 4 Comparison of hit rates. The hit rates are reported for all tested connecting proteins (proteins
linking internal-essential proteins to virus-interacting proteins) and the subset of connecting proteins
with the highest and lowest betweenness in the virus subnetwork. These hit rates are compared to hit
rates observed from a previous screen of virus-interacting host proteins (labeled “Virus-Interacting
Proteins”) (32), from applying our screening methodology to host factors identified in a screen by Karlas
et al. (33) (labeled “Karlas Host Factors”) and from a genome-wide screen (33). Prop.test in R was used
to determine the significance of the difference in hit rates observed for binomial groups. Values that are
significantly different are indicated by bars and asterisks as follows: *, P � 0.05; **, P � 0.01.
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proteins or the set of influenza virus-interacting proteins are enriched with host factors
identified in these studies relative to the abundance of host factors within the PPI
network. Both connecting proteins and the virus-interacting proteins are signifi-
cantly enriched for host factors (P � 7.2 � 10�05 and P � 1.1 � 10�05, respectively;
odds ratio � 1.4 and 1.5, respectively). There is no significant difference in the
enrichment of host factors between connecting proteins and virus-interacting pro-
teins (P � 0.48; odds ratio � 0.92). To ensure the host factors identified in the study of
Karlas et al. (33) were not creating bias in the enrichment result, the enrichment analysis
was repeated using host factors identified in all studies except the Karlas study. Again,
connecting proteins and virus-interacting proteins are significantly enriched for host
factors (P � 1.8 � 10�06 and P � 3.2 � 10�03, respectively; odds ratio � 1.5 and 1.34,
respectively), and no significant difference in the enrichment of host factors between
connecting proteins and virus-interacting proteins was found (P � 0.49).

DISCUSSION

Network approaches have demonstrated their potential impact on health-related
research, including gene/protein characterization and drug design and side effects (14,
18, 19, 22, 36, 52), yet demonstrations that network information can inform drug target
discovery are still limited. Here, we present the first confirmation that virus and host
protein interaction data can be integrated to improve large-scale drug target discovery
(specifically antiviral target discovery) and reveal additional insights into virus-host
interactions. The positions of virus-interacting proteins suggest that the influenza virus
has evolved to interact with proteins that influence network behavior, regardless of
known abundance-degree biases in PPI data generation (which has not previously been
demonstrated). The virus-specific subnetwork reveals that there is a set of proteins with
moderately high betweenness in the total network yet low betweenness in the
subnetwork. While these proteins may be of high importance to the total network, this
result suggests that they may be less important to the progression of influenza
infection than proteins which are of high betweenness to both the total network and
virus-specific subnetwork. In this way, the novel subnetwork construction provides
further insight when determining important host factors of virus replication.

Virus-interacting proteins are closely clustered in the network, which may be a result
of attempts by the virus to manipulate specific biological functions (as proteins with
shared biological functions tend to cluster in PPI networks [53]). This may signify that
influenza virus has parallel available pathways to engage with host biological functions.
Additionally, complex evidence suggests that high degree and high clustering of IAV
proteins may be due to their involvement in protein complexes. From a network
viewpoint, it is likely that high incidence of clustering within the PPI network is a result
of both the high betweenness and degree of the virus-interacting protein group as a
whole. Previous studies have found that host factors of virus replication (not necessarily
virus-interacting host proteins) have been observed to cluster within the PPI network
(42). Further analysis on network clustering host factors of interest is needed to
determine whether these two observations are independent of one another.

Functional enrichment analysis of the subnetwork reinforces that while virus-
interacting proteins are associated with virus replication processes, proteins within the
constructed subnetwork are associated with immune response to viral infection. Results
for virus-interacting proteins largely build on the per protein discussion of virus-host
interactions found in previous work (32), identifying involvement in several stages of
the viral replication cycle. The functional enrichment analysis of connecting proteins
reveals high levels of involvement in the immune response to viral infection, specifically
in NF-�B regulating pathways such as stimulatory C-type lectin receptor signaling, T-cell
receptor signaling, and Fc epsilon receptor signaling. Influenza virus is known to
manipulate host immune response pathways (specifically NF-�B regulating pathways)
to promote viral replication (54, 55). Because previous virus-host PPI network analyses
have not studied these connecting proteins as a separate population, their importance
to the biology and regulation of the system has been overlooked. The subnetwork
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construction approach applied in this work isolates additional host biological processes
essential to the regulation of virus replication, further demonstrated by siRNA screening
results of the connecting proteins. Together, the results suggest that future work in
virus-host protein networks can leverage the technique presented here to identify
subnetworks with increased biological relevance to the analyzed phenotypes/condi-
tions and increase predictive power for the purposes of drug discovery.

The conclusion that host-virus interaction data can be leveraged to improve virus
replication host factor discovery is unlikely to be affected by off-target concerns
associated with siRNA screens. Though off-target concerns often challenge siRNA
studies, changes to experimental protocols (such as requiring multiple siRNA hits per
targeted gene or changing siRNA concentrations) can only moderately improve false-
positive rates (56–58). The protocol used in this study was not optimal to ensure the
characterization of any one targeted gene. As such, the hit rates of gene groups are
compared. Protocols between these experiments and those used for comparisons are
either identical (32) or very similar (33), suggesting that off-target rates across the
tested groups are unlikely to explain the differences in observed hit rates.

The variability and incompleteness of PPI data as well as the limited agreement
between influenza virus replication screens are well-known concerns for network-based
drug target discovery. False discovery of virus-host interactions and the possibility that
virus-host interaction data are skewed toward well-studied networks could also have an
effect on the clustering result in virus-interacting proteins. However, the enrichment of
host proteins important for influenza virus replication within the constructed virus
subnetwork demonstrates that even with these possible shortcomings, PPI network
analyses have the power to identify important host factors for influenza virus replica-
tion. The antiviral protein candidate screen performed in this study further supports the
use of PPI data during candidate prioritization with significant hit rates against virus-
interacting proteins and randomly targeted proteins.

The observation that betweenness does not significantly improve host factor pre-
diction suggests that alternative topology measures should be considered. There were
several reasons why betweenness was selected. Biological pathways are known to have
several alternative routes to maintaining cellular operations, a key feature of biological
robustness (59–61). Biological networks are also theorized to have a bow tie-like
structure that suggests a natural bottlenecking within the PPI network near critical
cellular machinery (62). These concepts together suggest targeting bottlenecks (high-
betweenness proteins) as a means of mitigating escape via alternative paths. It is also
a concern for alternative pathways as to why the set of virus-interacting proteins was
not limited to confirmed host factors of influenza virus replication. In future work, other
network topology measures (e.g., degree, Burt’s constraint, or closeness) could be
tested in the subnetwork and subnetwork construction and could be varied to consider
different subsets of either the virus-interacting proteins or the internal host factors.
Even so, the results suggest that construction of the virus-specific subnetwork provides
major advantages in host factor discovery and can significantly expand drug candidate
repertoires beyond virus-interacting proteins. Furthermore, since the connecting pro-
teins do not directly interact with the virus, they may be more resistant to concerns
related to drug-mediated selective pressure.

Another interesting continuation of this study would identify the cause of the effect
of connecting proteins on virus replication. The mechanism by which each host factor
is regulating virus replication may offer additional clues for drug candidate prioritiza-
tion efforts. Overall, this PPI-based study provides insight into the network character-
istics of virus-host interactions and supports the idea that the influenza virus evolved
to interact with host proteins in dominant network positions in order to maximally
manipulate host cells.

MATERIALS AND METHODS
Protein-protein interaction network construction and analysis. Protein-protein interaction (PPI)

data were downloaded from the Human Integrated Protein-Protein Interaction rEference (HIPPIE) data-
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base (37) (version 1.4). Interactions with a confidence score of less than 0.7 were removed. The
interaction data were then analyzed with the igraph package in R. The interaction data resulted in one
large network containing 9,969 nodes and 86 smaller disconnected networks (most with 2 nodes, all
contained 7 or fewer) which were removed from the study. The final human PPI network contained 9,969
proteins and 57,615 interactions.

All PPI topology analyses were performed with the R library igraph version 1.0.1 (63).
Degree adjustment for removal of abundance-degree correlation. HEK293 cell abundance data

from Geiger et al. (64) was used to avoid the effects of differing cell lines. A linear model was fit to the
total network’s abundance log10 degree data (see Fig. S1A in the supplemental material) using R 3.2.2’s
glm function. The correlation slope (0.093) was used to calculate adjusted degree values as follows:

adjusted degree � �log10 original degree � slopelm � abundance� � interceptlm

where lm is the linear model. The final values reported are the 10adjusted_degree.
Statistical analyses and graphics packages. All statistical tests were performed in R 3.2.2 using the

functions prop.test, fisher.test, pairwise.t.test or wilcoxon.test (which performs a Mann-Whitney U test) as
appropriate. Prop.test and fisher.test both compare outcome proportions between binomial groups with
the latter being more precise for small group sizes. Graphics were produced with either the default
graphing features of R or with the ggplot2 library (65).

Cells and viruses. Influenza A/WSN/33 virus (WSN) (H1N1) was generated using reverse genetics (66).
HEK293 cells were cultured in DMEM (Sigma-Aldrich) supplemented with 10% FCS (10% FCS/DMEM) and
antibiotics at 37°C in 5% CO2. Virus plaque titers were determined by plaque assay in Madin-Darby canine
kidney (MDCK) cells. MDCK cells were cultured in Eagle’s MEM (Gibco) with 5% NCS at 37°C in 5% CO2.

siRNA treatment. siRNA treatment procedure, cell viability, and virus titer determination are
described in detail in Watanabe et al. (32). Briefly, two siRNAs per candidate gene were selected from a
predesigned genome-wide human siRNA library (FlexTube siRNA; Qiagen). AllStars Negative Control
siRNA (Qiagen) was used as a negative control. The siRNA against the NP gene of WSN virus (GGA UCU
UAU UUC UUC GGA GUU) purchased from Sigma-Aldrich was used as a positive control. HEK293 cells
were transfected twice with 25 nM (final concentration, 50 nM) siRNA duplexes using RNAiMAX (Invit-
rogen). At 24 h after the second transfection, cell viability was determined using the CellTiter-Glo assay
system (Promega) following the manufacturer’s instructions. To assess influenza virus replication, two
parallel sets of siRNA-transfected cells were infected with 50 plaque-forming units (PFU) of WSN virus per
well of a 24-well tissue culture plate at 24 h after the second siRNA transfection. At 48 h postinfection,
supernatants were harvested, and virus titers were determined by plaque assay in MDCK cells.

Quantitative reverse transcription-PCR. To confirm the downregulation of host genes by their
respective target siRNAs, quantitative reverse transcription-PCR (qRT-PCR) experiments were performed.
Table S6 provides a complete list of primer sequences. HEK 293 cells, transfected twice with 25 nM siRNA
(final concentration, 50 nM), were lysed at 48 h posttransfection, and total RNA was extracted by using
the Maxwell 16 LEV simplyRNA tissue kit (Promega). Reverse transcription was performed by using
ReverTra Ace qPCR RT Master Mix (Toyobo, Osaka, Japan) or SuperScript III reverse transcriptase
(Invitrogen). The synthesized cDNA was subjected to quantitative PCR with primers specific for each gene
by using the Thunderbird SYBR qPCR Mix (Toyobo). The relative mRNA expression levels of each gene
were calculated by the ΔΔCT method using beta-actin as an internal control. Primer sequences are
available upon request.

Determining candidate proteins involved in influenza virus replication. For each set of siRNAs,
the virus titers from cells treated with siRNAs were normalized by the titers obtained from cell treated
with AllStars Negative Control siRNA (Table S2). siRNAs that reduced cell viability by more than 40%
compared to AllStars Negative Control siRNA-treated cells were not considered for further analysis.
Unlike our previous study (32), LOESS regression was not needed (Fig. S3). A two-sided, unpaired
Student’s t test was used to compare the mean virus titers in cells treated with gene-specific siRNAs with
those in cells treated with AllStars Negative Control siRNA. Holm’s method for multiple comparisons was
then applied to the P values.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.02002-18.
FIG S1, TIF file, 1.2 MB.
FIG S2, TIF file, 0.3 MB.
FIG S3, TIF file, 0.6 MB.
FIG S4, TIF file, 0.2 MB.
TABLE S1, XLSX file, 0.8 MB.
TABLE S2, XLSX file, 0.1 MB.
TABLE S3, XLSX file, 2.3 MB.
TABLE S4, XLSX file, 0.02 MB.
TABLE S5, XLS file, 0.1 MB.
TABLE S6, XLSX file, 0.04 MB.
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