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Abstract

We study the force of light on a two-level atom near an ultrathin optical fiber using the mode function
method and the Green tensor technique. We show that the total force consists of the driving-field
force, the spontaneous-emission recoil force, and the fiber-induced van der Waals potential force.
Due to the existence of a nonzero axial component of the field in a guided mode, the Rabi frequency
and, hence, the magnitude of the force of the guided driving field may depend on the propagation
direction. When the atomic dipole rotates in the meridional plane, the spontaneous-emission recoil
force may arise as a result of the asymmetric spontaneous emission with respect to opposite
propagation directions. The van der Waals potential for the atom in the ground state is off-resonant
and opposite to the off-resonant part of the van der Waals potential for the atom in the excited state.
Unlike the potential for the ground state, the potential for the excited state may oscillate depending on
the distance from the atom to the fiber surface.

1. Introduction

Itis known that the interaction between light and an atom leads to an optical force. Exerting controllable optical
forces on atoms finds important applications in many areas of physics, in particular in laser cooling and
trapping. A large number of schemes for such phenomena have been proposed, studied, and implemented [1, 2].
A common feature of the cooling and trapping schemes for atoms in free space is that the average of the recoil
over many spontaneous emission events results in a zero net effect on the momentum transfer. Thence, the
optical forces on atoms in free space are determined by only the absorption and stimulated emission of light and
the light shifts of the ground and excited states 1, 2].

An atom near a material object undergoes a dispersion force, which can be called the van der Waals force or
the Casimir—Polder force in the nonretarded or retarded interaction regime [3—6]. The van der Waals
interactions between atoms and cylinders have been studied [7—14]. In most of the previous work, the atoms
were considered as point-like polarizable particles. When an atom is driven by an external field near an object,
the van der Waals interaction depends on the atomic excitation. In addition, the atom undergoes a radiation
force, which depends on the field intensity, the field polarization, and the atomic dipole orientation. Moreover,
due to the presence of the object, a nonzero spontaneous emission recoil fore may appear.

Indeed, for atoms near a nanofiber [15-20], a flat surface [20-22], a photonic topological material [23, 24], a
photonic crystal waveguide [25], or a nonreciprocal medium [26], spontaneous emission may become asymmetric
with respect to opposite directions. This directional effect is due to spin—orbit coupling oflight carrying transverse
spin angular momentum [27-33]. Asymmetric spontaneous emission may lead to a nonzero average spontaneous
emission recoil and, hence, may contribute to the optical force on the atoms. In particular, a lateral spontaneous
emission recoil force may arise for an initially excited atom with a rotating dipole near a nanofiber [19, 20], a flat
surface [20, 22], or a photonic topological material [23, 24]. Such a lateral force appears because, in the presence of
amaterial object, the interaction between the radiation field and the atom with a rotating dipole is chiral [ 15-26].

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. A two-level atom driven by guided light of an ultrathin optical fiber.

For an atom driven by a guided field, the Rabi frequency may depend on the field propagation direction. The
effects of the directional dependencies of the spontaneous emission rate and the Rabi frequency on the optical
force for an atom near an ultrathin optical fiber have recently been studied [34]. The Casimir—Polder potential of
an atom driven by a laser field near a flat surface has been calculated [35]. It is worth noting that asymmetric
coupling not only allows one to selectively excite modes in a preferential direction but also leads to effects like
modified superradiance and subradiance [36, 37], nonreciprocal transmission [38], and modified strong-
coupling regime [39].

The aim of this paper is to present a significant extension and comprehensive treatment for the force of light
on a two-level atom near an ultrathin optical fiber. We calculate analytically and numerically all the components
of the force of light. Furthermore, in this paper we use the mode function method as well as the Green function
technique and show the connection between them. This gives us access to more details and broader insights. In
particular, we compute the van der Waals potentials for the atom in the ground and excited states.

The paper is organized as follows. In section 2 we describe the model system. Section 3 is devoted to deriving
the expressions for the force in terms of the mode functions and the Green tensor. In section 4 we present
numerical results. Our conclusions are given in section 5.

2.Model

We consider a two-level atom driven by a classical field in a guided mode of a vacuum-clad ultrathin optical fiber
(see figure 1). The atom has an upper energy level |e) and a lower energy level |g), with energies fiw, and fiw,,
respectively. The atomic transition frequency is wy = w, — w,. The fiber is a dielectric cylinder of radius a and
refractive index n; > 1and is surrounded by an infinite background vacuum or air medium of refractive index
n, = 1. We use Cartesian coordinates {x, y, z}, where zis the coordinate along the fiber axis, and also cylindrical
coordinates {r, ¢, z}, where r and ¢ are the polar coordinates in the fiber transverse plane xy. In addition to the
classical guided driving field, the quantum electromagnetic field interacts with the atom leading to spontaneous
emission and energy level shift.

2.1. Quantum electromagnetic field
The positive-frequency part E™" of the electric component of the field can be decomposed into the
contributions Ef;) and E{" from guided and radiation modes, respectively, as

E(+) — Egr) + E£+). (1)

In view of the very low losses of silica in the wavelength range of interest, we neglect material absorption.
Regarding the guided modes, we assume that the fiber supports the fundamental HE;; mode and a few
higher-order modes [40] in a finite bandwidth around the atomic transition frequency wy. We label each guided
mode in this bandwidth by an index p = (wNfp). Here, wis the mode frequency, the notation N = HE,,,,, EH,,,,,
TEq,,, or TMy,,, stands for the mode type, with I = 1,2, ...being the azimuthal order and m = 1, 2, ...being the
radial mode order, the index f = +1 or —1 denotes the forward or backward propagation direction along the
fiber axis z, and p is the polarization index. The HE,,,, and EH,,,, modes are hybrid modes. For these modes,
the azimuthal orderis I = 0, and the index p is equal to 41 or —1, indicating the counterclockwise or clockwise

2
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circulation direction of the helical phasefront. The TE,,,, and TM,,,, modes are transverse electric and magnetic
modes. For these modes, the azimuthal mode order is | = 0 and, hence, the mode polarization is single and the
polarization index p can take an arbitrary value. For convenience, we assign the value p = 0 to the polarization
index p for TE,,, and TM,,,, modes. In the interaction picture, the quantum expression for the positive-
frequency part Egr) of the electric component of the field in guided modes is [18]

. 7w’
B =iy
I

4Te
Here, e = e{")(r, () is the profile function of the guided mode 4 in the classical problem, a,, is the
corresponding photon annihilation operator, 3°, = > g, fo * dwisthe generalized summation over the guided

aﬂ e(ﬂ) efi("-)tfﬂjzfpl‘p). (2)

modes, (is the longitudinal propagation constant, and 3’ is the derivative of 3 with respect to w. The constant 3
is determined by the fiber eigenvalue equation [40]. The operators a,, and a;' satisfy the continuous-mode
bosonic commutation rules [a,,, a;,] = 6(w — W) 6NN 6 6ppr. The normalization condition for the guided
mode profile function e is

2m 00
S de [ niteoprar =1, 3)
0 0

where n,.(r) = n, forr < aand n, forr > a. The explicit expressions for the profile functions e of guided

modes are given in [40, 41]. An important property of the mode functions of hybrid and TM modes is that the
longitudinal component e, is nonvanishing and in quadrature (7/2 out of phase) with the radial component e,.
For radiation modes, the longitudinal propagation constant (3 for each value of the frequency w can vary
continuously, from —kn, to kn, (with k = w/c). Welabel each radiation mode by an index v = (w/lp), where
I =0, £1, £2,...isthemode order and p = +, — is the mode polarization. In the interaction picture, the
quantum expression for the positive-frequency part E) of the electric component of the field in radiation

modesis [18]
E£+) — IZ alle(v)efl(wtfdzfl@)' (4)
L\ 4mep

Here, e = e™)(r, ) is the profile function of the radiation mode v in the classical problem, a, is the

corresponding photon annihilation operator,and 3, = 37, fo * dw f :2 dg is the generalized summation
ey

over the radiation modes. The operators a, and a, satisfy the continuous-mode bosonic commutation rules
lay, a))] = 6(w — W)O(B — B') 6w bypr. The normalization condition for the radiation mode profile function

@)

€ 1S

2T o)
j; d@fo Neee (€W ¥ g 1y pprdr = §(w — W). (5)

(

The explicit expressions for the mode functions e are given in [18, 40].

2.2. Classical guided driving field

We describe the classical guided driving field. We assume that the driving field is prepared in a hybrid HE or EH
mode, a TE mode, or a TM mode. Let w; be the frequency of the field. For a quasicircularly polarized hybrid
HE,,,, or EH},,, mode with propagation direction f; and phase circulation direction py, the field amplitude is

£ = Ale,;t + pre,@ + fre.R)elii=tinte, (6)
where A is a constant. For a TE,,, mode with propagation direction f;, the field amplitude is
E = Ae,pelihiz, (7)
For a TM mode with propagation direction f;, the field amplitude is
E=Ale,t + f; e,2)elfLhiz, 8)

Quasilinearly polarized hybrid modes are linear superpositions of counterclockwise and clockwise quasicircu-
larly polarized hybrid modes. The amplitude of the guided field in a quasilinearly polarized hybrid mode can be
written in the form

E =2 Ale, cos(lp — oot + depsin(ly — ¢, )@ + fre. cos(lp — 4,2l
x elfifiz) 9)

where the phase angle ¢, determines the orientation of the symmetry axes of the mode profile in the fiber
transverse plane. In particular, the specific values ¢,,; = 0 and 7/2 define two orthogonal polarization profiles,

3
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called even and odd, respectively. In equations (6)—(9), the mode profile function componentse,, e, and e, are
evaluatedatw = wyand 8 = (.

2.3. Atom-field interaction

We introduce the atomic operators o;; = |i) { jl, wherei, j = e, g. The operators o,, = |e) (¢|and o, = |g) (el
describe the upward and downward transitions, respectively. The operators o, = |e) (e|and 0, = |g) (g
describe the populations of the upper and lower levels, respectively. We denote the position of the atom as

(1, p, 2).
The Hamiltonian for the atom-field interaction in the dipole approximation is given by

Hipe = —EQJege*I(‘”L“W — %) Gyogage @m0t
e}

— 1% Gyogeage @0t 4+ He, (10)
(a3

where (2 = d - £/7 is the Rabi frequency, the notations = p, vand }°, = 3, + -, stand for the general
mode index and the full mode summation, respectively, and the coefficients

!/
G, = Wb
Ameg /s
G = |2
4men/n
!
G, = |-
47 heg
G}/ - v
47 heg

characterize the coupling of the atom with the guided mode p and the radiation mode v. Here, d = (¢|D|g) is
the matrix element of the atomic dipole operator D. The coefficient G,, characterizes the coupling of the atom
with mode v via the corotating term o,y a,,. The coefficient G, describes the coupling of the atom with mode «
via the counterrotating term o, a,. In deriving the Hamiltonian (10) we have used the rotating-wave
approximation for the driving field but not for the quantum field.

- (W) ei(fiz+plo)

. e(V)) ei(ﬁz+l¢)’ (11)

and

d
d
(d* - ety ei(fiztply)
(d*

. e(V))ei(ﬁz+l<P) (12)

3. Radiation force on an atom

The interaction between an atom and the light field affects the internal state of the atom and leads to a radiation
force.

3.1. Excitation of an atom

We consider the excitation of an atom. We call p") the density operator of the atomic internal state in the
(D)

ee’

interaction picture. We introduce the phase-shifted density operator p with the matrix elements p,, =

— D _ (D a—i(wp—wo)t — D ai(wr—wo)t : : :
Pog = Pyg> P = Pge € 17 »and p,, = Pog €170 . We obtain the generalized Bloch equations [1]

oo *

Pee = E(nge - Q peg) - Ppee’

, i

pgg = _E(nge - Q*peg) + Fpee’

= Lo L iia 13
@—5(%—%%-5+1@g (13)

Here, A = w; — &y is the detuning of the frequency w; of the driving field from the frequency @y = wy + dwy
of the atomic transition between the shifted levels, with [42]

2 2
M:_PZ( G 1G] ) .

o \wW — wo w + woy
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The parameter I' = 7, + ~, is the rate of spontaneous emission, with [18]

Ve = 27TZ|GwnNﬁ>|2 (15)
Nfp
and
kony 5
v=203 [ 1Guupds (16)
Ip —komny

being the contributions from the resonant guided and radiation modes, respectively.
We consider the regime where the atom is at rest and in the steady state. In this regime, we can set the
derivatives in equations (13) to zero. Then, we obtain [1]

15 Q2 /4
P = T s NyT4+08/2
0 QT + 2iA) /4
Pog = . - - (17)
T — 21A)(A + s) A+ T2/4 + Q) /2
where
2
A2 4+ T2/4

is the saturation parameter.

3.2.Force on an atom in terms of the mode functions

We consider the center-of-mass motion of the atom and perform a semiclassical treatment for this motion. In
such a treatment, the center-of-mass motion is governed by the force calculated from the quantum internal state
of the atom. The force of the light field on the atom is defined by the formula

F = —(VHy). (19)

We use the interaction picture. Inserting equation (10) into equation (19) gives the following expression for the
force:

F= {g(VQ) <Ueg> e—i(wrwo)t + iﬁZ(VGa) <0.egau> e—i(u—wo)t

+ i) (VGy) (0geaq) e et 4 c.c.}. (20)

Meanwhile, the Heisenberg equation for the photon operator a, is d, = G0 e ~40" + G:Ueg ellwtwor,
Integrating this equation, we find

t 4 Lk [T , ,
an(t) = a,(to) + G:f dt’ Uge(t/)el(w—wo)t + G:f dt’ Ueg(t/)el(wrwo)t , 1)
to to

where t, is the initial time. In deriving equation (21), we have neglected the time dependence of the position of
the atom. We consider the situation where the quantum electromagnetic field is initially in the vacuum state. We
assume that the evolution time r — #; and the characteristic atomic lifetime 7 are large as compared to the
characteristic optical period T = 27/wj,. Under these conditions, since the continuum of the field modes is
broadband and the interaction between the atom and the field is weak, the Born—Markov approximation

Oge(t') = 04 (t) can be applied to describe the back action of the second and third terms in equation (21) on the
atom [42]. Under the condition t — #, > T, we calculate the integral with respect to ¢’ in the limit t — t; — oo.
With the above approximations, we obtain

Ao (t) = aq(to) + TGroe(t)5(w — wo) — iGrog(t) ei(“‘”(’)tL
W — Wy
_ iG:@g(t)ei(”“““O)tL, (22)
w + Wy
where the notation P stands for the principal value. We substitute equation (22) into equation (20) and neglect
fast-oscillating terms. With the use of the relations p,, = (0ue)> ppg = (Tge)> Ppe = ()€~ 0)", and

peg = <Uge> ei(WI_*Ldg)t’ we obtain [34]

F = F(drv) + peeF(spon) + peeF(vdW)e + pggF(vdW)g’ (23)
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where
(drv) _ 4 &
F - E(pgeVQ + peg Vv ) (24)
is the force resulting from the interaction with the driving field,
ECPom) — i 7y (G VGoy — Goy VG (25)
Qo

is the force resulting from the recoil of spontaneous emission of the atom in the excited state [19], and
|Gal?

FdWe — 4Py —— (26)
o W Wo
and
(vdW) |Gal*
FdWie — zVvPpy  ——— (27)
o Wt Wo

are the forces resulting from the van der Waals potentials for the excited and ground states, respectively. In
equation (25), the notation ay, is the label of a resonant guided mode y1, = (woNfp) or a resonant radiation
mode vy = (wp Blp), and the generalized summation >, is defined as PIEDY w T >, with Z =>Np

k
andy, =3, f "™ d3. We note that E6Pom and F¥dW)¢ enter equation (23) with the weight factor Pee» While

FOdW)g enters with the weight factor pg,. The term F6@ = ) FPom js the force produced by the recoil of the
photons that are scattered from the atom with the excited-state population p,,. In deriving equation (27) we have
used the symmetry property |G,> = |G, where & = i = (w, N, —f, —p)fora = p = (w, N, f, p)in the
case of guided modesand & = ¥ = (w, — 0, —I, p)fora = v = (w, 5,1, p) in the case of radiation modes [18].
The force F9™) of the driving field includes the effects of the momentum transfers in the competing
elementary absorption and stimulated emission processes. This force also includes the effect of the AC-Stark
shifts of the atomic energy levels.
The forces F*W)¢ and F"¥W)¢ are produced by the van der Waals potentials U, and Uy [43], that s,
FvWe — YU, and F¥¥W)2 = — V U],. These body-induced potentials are given as

ﬁrpz IG | E(vac)
@ W — Wo
|Ga| (vac)
—hP — OE;, 28
Z ot o A (28)

where §E** and 5Eg("ac) are the energy level shifts induced by the vacuum field in free space (in the absence of
the fiber). Note that 6E{** — §Eg(vac) = /5w, where 6w(* is the Lamb shift of the transition frequency
of the atom in free space. The detuning of the field from the atom near the fiber can be writtenas A = Ay —

(U, — Gp) /i, where Ay = wp — wp — &u(vac) is the detuning of the field from the atom in the absence of
the fiber.

We now calculate the individual components of the force. First, we calculate the axial component F, of the
total force. When we use the symmetry of the mode profile functions, we find E4W¢ = FdW)g — o, Then, the
axial component F, of the total force is found to be

Fz _ Fz(drv) + peeFZ(SPOH)’ (29)

where

v lﬁf ﬂL
B = == = Fp,

kony p
Fz(spon) _ _Z fiﬁ(N)(’y(Jr) Egj\’)) _ f ﬁﬁ’yﬁ‘”dﬁ- (30)
N —kony
Here, we have introduced the notation
YW =273 |Gunpl? (31)
p

for the rate of spontaneous emission into the guided modes of type N with the propagation direction f = =+, and
the notation

YD =273 |Gyl (32)
Ip
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for the rate of spontaneous emission into the radiation modes with the axial component (3 of the wave vector. It
is clear that F9™) is the recoil of the absorbed photons and p,, FSP°™ is the recoil of the photons re-emitted into
guided and radiation modes. The component F{4™ is a light pressure force [1].

We can show that FZ(SPO“) o Im [dd,]. Thus, FZ(SP"“) is nonzero when Im [d,*d,] = 0, that is, when the
atomic dipole rotates in the meridional plane rz. In the case where Im [d;*d,] = 0, spontaneous emission is
symmetric with respect to the forward and backward directions. In this case, we have FP°® = 0 and
hence E, = F\4™),

For the atom in the steady-state regime, we find the expression F{") = f, /i3, T'p,,.. In this case, we have

—Koh

kony p
L o I o
N

Next, we calculate the radial component F, of the total force. Making use of the symmetry properties of the
mode functions, we can show that F®"°™ = 0. Then, the radial component F, of the total force is found to be

E — Fr(drv) + peeFr(VdW)e + pgg F.r(VdW)g, (34)

where

T o0
Fr(d )_(p a5 peg )’

2% or or
F}fvdW)e — _%’ Fr(VdW)g — _ al]g . (35)
or or

Due to the evanescent-wave behavior of guided modes in the transverse plane, the radial component F™ of the
force of the driving field in a guided mode is a gradient force (dipole force) [1].
Finally, we calculate the azimuthal component F,, of the total force. The result is

drv S vdW vdW
E = F;r ) 4 peeFSpon) + peeFL,(a e 4 ngF,(a )8, (36)
where
7 o0 o*
F(drv) _ 7 el =1,
4 2r Pee o1 Peg oL
*
Fipom — i Z[Gjﬂ—aG““ — Ga, 8G”‘“],
r Oy Oy
FdWe _ ,l%, FOdWg — 71_8%. (37)
v r 0p v r Oy

Itis clear that the azimuthal component F,fgd“’) of the driving-field force is determined by the gradient of the Rabi
frequency of the driving field with respect to the azimuthal angle . This component is, in general, a combination
of the pressure and gradient forces in the azimuthal direction [1]. We can show that F;SPOH) oc Im[d;*d,,]. This
result means that F,fjpon) isnonzero when Im [d;|< d,] = 0,thatis, when the atomic dipole rotates in the fiber
transverse plane xy.

3.3. Force in terms of the Green tensor
Expressions (25)—(27) describe the spontaneous-emission recoil force F¢P°" and the van der Waals forces
FdWe and F4Wg in terms of the mode functions. These forces can also be presented in terms of the Green
tensor [43, 44]. The explicit expression for the Green tensor G of a two-layer fiber is given in [45-47]. The
connection between the Green tensor and the mode functions is given in appendix.
With the help of equations (A.4) and (1 1), we can rewrite equation (25) for the spontaneous-emission recoil
force FGPom) a5
.2
Forom = 20 g (d - Im[GP(R, R; wp)] - &} [p_r + c.c., (38)
€oC
where G® is the reflected part of the Green tensor. The equivalence of equations (38) and (25) can be easily
verified by substituting equations (A.4) into equation (38) and making use of equations (11). It is clear from
equation (38) that, when d is a real vector, that is, when the dipole of the atom is linearly polarized, we have
Fépom = 0, However, when d is a complex vector, that is, when the dipole of the atom is elliptically polarized, we
may obtain F¢PoM == 0,
Similarly, with the help of equations (A.4) and (11), we can rewrite equations (28) for the van der Waals
potentials U, and Uy as
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00 2
U— -1 zpf dw—2"—d - Im[GP(R, R; w)] - d¥,
TEYC W — Wo
U= ZPf ¥ dw d - Im[GP(R, R; w)] - d*. (39)
TEYC 0 w + woy

We can easily verify the equivalence of equations (39) and (28) by substituting equations (A.4) into equation (39)
and making use of equations (11). It follows from the reciprocity property Gi](-R) R, R w) = G}iR) (R/, R; w) that
U.and Ujare real functions.

We use the contour integral technique to change the integrals in equations (39) to the imaginary frequency.
Then, we obtain [43]

- f du—"—sd.- Re[GR(R, R; iu)] -
7T60C

d Re[GP(R, R; wy)] - d*,
€oC

= f du——"——d - RelGV(R, R; )] - & (40)
W@C

The first and second terms in the expression for U, in equations (40) are, respectively, the off-resonant part U

and the resonant part U™ of the van der Waals potential for the excited state |¢) [43]. Thus, we can write

U, = U°H 4 U where

00 2
yo — __“o_ f du—""—d - R[GO(R, R; iw)] - d¥,
megc? Jo wy + u?
2
U = 7_“102(1 - Re[GM(R, R; wy)] - d¥, (41)
€0

The potential U, for the ground state |¢) does not contain a resonant part. Note that U, is opposite to the off-
resonant part U™ of U,, that s, U = — U,
Thus, expression (23) for the total radiation force F can be rewritten as

00 2
F=F4 4 (5, — po) f duﬁV{d - Re[GP(R, R; iu)] - d*}
0

Tegc?
2
- peegw—coz{v[d - G®(R, R'; wp) - d*]|r—r + c.c.}. (42)
0

Note that, since In[G®'(R, R; iu)] = 0, we can replace Re[G® (R, R; iu)]in equations (40)—(42) by
G® (R, R; iu). The second term in equation (42) contains an integral over the imaginary frequency. This term
describes the effects of the off-resonant van der Waals potentials U™ and U = — U on the force. The last

(re9) and the scattered-

term in equation (42) corresponds to the resonant excited-state van der Waals potential U,
photon recoil.

Equation (42) is in agreement with the results of [43], where multilevel atoms were considered. When we
neglect the second term in equation (42), which corresponds to the off-resonant part of the van der Waals force,

and assume the weak excitation regime, we can reduce equation (42) to

2
- — Z Re(pfVE) + Loko 2 L3 Re{p!IVIGP R, R5 wo)lgj} =g, (43)

i=X,),2 Li=X,1,Z
where g = € is the positive frequency component of the induced dipole, with
_ d*d
(A +10/2)

being the fiber-enhanced atomic polarizability tensor. Under the condition w; ~ wy, equation (43) is in
agreement with the results of [44] for classical point dipoles.

(44)

4, Numerical calculations

We calculate numerically the force acting on the atom in the case where it is at rest and in the steady state. We use
the wavelength Ay = 780 nm and the natural linewidth v, /27 = 6.065 MHz, which correspond to the
transitions in the D, line of a Rb atom. The atomic dipole matrix element d is calculated from the formula

Y = d?w; /3meq /ic? for the natural linewidth of a two-level atom. We assume that the fiber radius is

a = 350 nm, and the refractive indices of the fiber and the vacuum cladding are n; = 1.453 7andn, = 1,

8
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Figure 2. Radial dependence of the axial component F{4™ of the driving-field force F4™ of a resonant (A = 0) guided light field on a
two-level atom. The incident light field is in an x-polarized HE;; mode (solid red curves), a TEq; mode (dashed green curves), a TMy,
mode (dotted blue curves), or an x-polarized HE,, mode (dashed—dotted magenta curves) and propagates in the forward f; = +1
direction along the fiber axis zwith a power P = 1 pW. The atom is positioned on the x axis. The dipole orientation vector is d=%
(), ¥ (b), and Z (c). The dipole magnitude d corresponds to the natural linewidth v,/27 = 6.065 MHz of the D, line of a 87Rb atom.
The fiber radius isa = 350 nm. The wavelength of the atomic transitionis Ay = 780 nm. The refractive indices of the fiber and the
vacuum claddingare n; = 1.453 7and n, = 1, respectively. The fiber-induced shift of the atomic transition frequency is neglected.

respectively. The fiber can support the HE;, TEq;, TMy;, and HE,; modes. The atom is positioned on the x axis
if not otherwise specified. The driving field is prepared in a quasilinearly polarized hybrid HE mode, a TE mode,
oraTM mode. In the case of HE modes, we choose the x polarization, which leads to a maximal longitudinal
component of the field at the position of the atom.

4.1. Driving-field force

We first calculate the driving-field force F4™). We plot in figure 2 the radial dependence of the axial component
FY™ of the driving-field force in the cases where the driving field is at exact resonance with the atom (A = 0)
and the dipole orientation vector d = d/d coincides with one of the unit basis vectors X, ¥,and Z of the
Cartesian coordinate system. As already mentioned in the previous section, F{4™ is a pressure force. Figure 2
shows that F{4™) depends on the mode type and the orientation of the dipole vector. We note that for the
parameters of figure 2, the radial component F™ and the azimuthal component Féd“’) vanish and are therefore
not plotted. These transverse components of the driving-field force F“") may appear when the dipole
orientation vector is arbitrary or the field detuning is nonzero.

We show in figure 3 the radial dependencies of the components F{™"), F4™) and F,éd“’) of the driving-field
force in the case where the driving field is at exact resonance with the atom (A = 0) and the dipole orientation
vectorisd = (X + § + 2) / /3. We observe from figure 3(b) that, when the dipole is not strictly oriented along
the x, y, or zdirection, the radial force component F,(d“’) can be nonzero even though A = 0. This featureisa
consequence of the vector nature of the guided driving field. The dashed—dotted magenta curve in figure 3(c)
indicates that the azimuthal force component F:gdr") for the HE,; mode can be negative or positive depending on
the radial position r.

We plot in figure 4 the radial dependencies of the axial component F{“™ and the radial component F4™) of
the driving-field force in the case where the detuning of the driving field is A /2m = —100 MHz and the dipole
orientation vector is d = . The figure shows that, when the detuning A is large, the radial component F™ is
much larger than the axial component F4™, For the parameters of figure 4, the force F'" for the TE mode and
the azimuthal component F,fgd”) for all the modes vanish and are therefore not plotted.

Due to the presence of a nonzero axial component &,  f; e, of the guided probe field, the absolute value of
the axial component F{“™ of the driving-field force may depend on the field propagation direction f; [34]. We
plotin figure 5 the radial dependence of F{™") in the case where the driving field is at exact resonance with the
atom and the dipole orientation vector is d= (ix — 2) / V2. We observe from the figure that the absolute value
of FY4™) depends on f;. For the parameters of figure 5, the force F9™ for the TE mode and the components F@™)
and Ffadrv) for all the modes vanish and are therefore not plotted.

In order to get insight into the origin of the dependence of the driving-field force on the propagation
direction, we perform a simple analysis. For an x-polarized hybrid mode or a TM mode with the propagation

9
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Figure 3. Radial dependencies of the components F9 (), F,(d”) (b),and Féd“’) (c) of the driving-field force F™) of a resonant
(A = 0) guided light field on the atom. The dipole orientation vectoris d = (& + § + 2) / /3. Other parameters are as for figure 2.
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Figure 4. Radial dependencies of the axial component F{“™ (a) and the radial component F4™ (b) of the driving-field force F9™ of a
nonresonant guided light field on the atom. The detuning of the field is A /2 = —100 MHz. The dipole orientation vectoris d = X.
Other parameters are as for figure 2.

direction f7, the field at the position of the atom is £(¢ = 0) o< e,X + f, e,Z.Ford o iX — Z, the Rabi
frequencyis Q o< ie, — f; e,. Since the relative phase between the complex amplitudes e, and e, is 7/2, the
magnitude of (2 is proportional to |e,| — |e,|or |e,| + |e,| depending on f;. The direction dependence of €2 leads
to the direction dependence of the excited-state population p,., which is proportional to |2[? in the non-
saturation regime. The corresponding difference between the excited-state populations pgeﬂ and pie’) for the
opposite propagation directions f, = +and f, = —isAp,, = g) — pg) o |e|e,|- This difference is
proportional to the electric transverse spin density p;_ PN o Im[E* x €] - § o f;le,||e,| of the driving field

[41]. Due to spin—orbit coupling of light [27-33], the sign of pj,_ *Pin depends on f;. The direction dependence of
pecleads to that of the absolute value of the force component F4™) = 1, 78,1 p,,. Thus, the dependence of |[EUm)]
on f7 is a signature of spin—orbit coupling of light.

In general, the driving-field force F4™) depends on the azimuthal position ¢ of the atom. We plot in figure 6
the azimuthal dependence of the axial component F{4™ in the case where the driving field is at exact resonance
with the atom and the dipole orientation vector is d = (it — %) / V2. Inorder to get a broader view, we plotin
figure 7 the spatial profile of F{™") in the fiber transverse plane for an x-polarized HE,; mode. We observe from
figures 6 and 7 that F\4™) varies with varying ¢ and depends on f;. For the parameters of figures 6 and 7, the
components F9™) and F,fgd"’) vanish and are therefore not shown.

10
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Figure 5. Radial dependence of the axial component F{™ of the driving-field force F4™) of a resonant (A = 0) guided light field on
the atom with a complex dipole matrix element vector d= (i — 2) / 2. Theincident light field is in an x-polarized HE;; mode (a), a
TMy; mode (b), or an x-polarized HE,; mode (c) and propagates in the forward f; = +1 (solid red curves) or backward f; = —1
(dashed blue curves) direction along the fiber axis z. Other parameters are as for figure 2.
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Figure 6. Azimuthal dependence of the axial component F{4™ of the driving-field force F9™) of a resonant (A = 0) guided light field
on the atom with a complex dipole matrix element vector d = (ix — 2) /V2. Theincident light field is in an x-polarized HE,; mode
(a),aTEq; mode (b), a TMy; mode (¢), or an x-polarized HE,, mode (d) and propagates in the forward f; = +1 (solid red curves) or
backward f; = —1 (dashed blue curves) direction along the fiber axis z. The distance from the atom to the fiber surface is
r — a = 200 nm. Other parameters are as for figure 2.

4.2. Spontaneous-emission recoil force

In this subsection, we study the spontaneous-emission recoil force F®P°™, This force appears when the atomic
dipole rotates in the meridional plane containing the atomic position, that is, when the dipole orientation vector
disa complex vector in the zx plane [19, 34]. We plot in figure 8 the radial dependence of the axial component
ESPM of the spontaneous-emission recoil force in the case where the dipole orientation vector is

d= (% — ) / V2. The figure and its inset show that F*P°™ oscillates with increasing r and can be negative and
positive, depending on the radial position r of the atom [19, 34]. The oscillations of FP°™ with varying rare due
to the oscillations of the decay rate into radiation modes [18]. Such oscillations result from the interference due

to reflections from the fiber surface.

In general, the spontaneous-emission recoil force F®P°™ depends on the azimuthal position ¢ of the atom.
We plot in figure 9 the azimuthal dependence of the axial component FP°™ in the case where the dipole
orientation vectoris d = (i% — 2)/+/2. The corresponding spatial profile of FP°™ in the fiber transverse plane

11




10P Publishing

NewJ. Phys. 20 (2018) 093031 FLKien etal

x/a

Figure 7. Two-dimensional spatial profile of the axial component F{4™ of the driving-field force F4™) ofa resonant (A = 0) guided
light field on the atom with a complex dipole matrix element vector d = (i& — 2)/+/2. The incident light field is in an x-polarized
HE,; mode and propagates in the forward f;, = +1 (a) or backward f;, = —1 (b) direction along the fiber axis z. Other parameters are
as for figure 2.
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Figure 8. Radial dependence of the axial component F°V of the spontaneous-emission recoil force FP°" on the atom with a
complex dipole matrix element d = (i — Z) /2. Other parameters are as for figure 2. The inset shows the details of the oscillations
of F{P°" with increasing .

is shown in figure 10. The figures show that the magnitude of F*P°™ varies with varying . We also observe that
the sign of F*P°™ depends on (.

According to equation (23), the spontaneous-emission recoil force FP°™ enters the expression for the total
force F with the weight factor p,,. Itis clear that the force produced by the recoil of the scattered photons is
FGe@) = FPom We depict in figure 11 the radial dependence of the axial component FS“™ of the scattering
recoil force for the parameters of figure 5. The figure shows that F*“"Y depends on the propagation direction f;

of the driving field. The propagation direction dependence of F*“ results from the propagation direction

12



I0OP Publishing NewJ. Phys. 20 (2018) 093031 FLKienetal

2 -
1 -
z
N
~
5 0
o
= N
R
-1
-2 T T T 1
0 /2 T 3m/2 2n
Azimuthal angle ¢
Figure 9. Azimuthal dependence of the axial component F*?°" of the spontaneous-emission recoil force F¢P°™ on the atom with a
complex dipole matrix element d = (i — Z) / V2. The distance from the atom to the fiber surfaceis ¥ — a = 200 nm. Other
parameters are as for figure 2.
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Figure 10. Two-dimensional spatial profile of the axial component FP°™ of the spontaneous-emission recoil force F¢Pom on the
atom with a complex dipole matrix element d = (iX — %) /2. Other parameters are as for figure 2.

dependence of 2. Due to the evanescent-wave behavior of the radial dependence of the driving field intensity,
the oscillations and changes in sign of F*“"¥ are small and, hence, hard to see in figure 11.

Note that, due to the cylindrical symmetry, the radial components F®P°™ and F*“ of the spontaneous-
emission and scattering recoil forces are zero. Therefore, these force components are not plotted. For the
parameters of figures 8—11, the azimuthal components Ffjp"“) and F:Q“m) vanish and are therefore not shown.
However, F,SP"“) and, hence, Fffca“) may arise in the case where the dipole orientation vector is a complex vector
in the fiber transverse plane xy. We plot in figure 12 the radial dependence of the azimuthal component Fffpo“) of

the spontaneous-emission recoil force in the case where the dipole orientation vectoris d = (% + if) /2.
Figure 12 and its inset show that, like FP°™ in the case of figure 8, FSP"“) oscillates with increasing rand can be

negative and positive. For the parameters of figure 12, the axial component FP° vanishes and is therefore not
plotted.

4.3. Fiber-induced van der Waals potential and force

In this subsection, we calculate the fiber-induced van der Waals potentials Uy and U, for the atom in the ground
and excited states. We plot in figures 13 and 14(a) the radial dependencies of the potentials U,and U,,
respectively. We show in figure 14(b) the resonant part U™ of the potential U, for the excited state. We observe
from the figures that both U, and U, depend on the orientation of the atomic dipole. We also observe that U,
varies monotonically while U, oscillates with increasing . The magnitude of U, is substantially larger than that of
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Figure 12. Radial dependence of the azimuthal component Fffp"") of the spontaneous-emission recoil force F¢P°" on the atom. The
dipole matrix element of theatom is d = (% + i) /+/2 . Other parameters are as for figure 2. The inset shows the details of the
oscillations of FSPO“) with increasing r.

U,. Werecall that the off-resonant part of U, is Ue("ﬂ) = —U,. Comparison between figures 14(a) and (b) shows
that the potential U, is mainly determined by its resonant part U™,

Depending on the dipole orientation, the potentials U, and U, may vary with varying azimuthal angle ¢ of
the position of the atom in the fiber transverse plane. We plot in figure 15 the azimuthal dependencies of the
potentials in the cases where the dipole orientation vector is d = Rand 2. The corresponding spatial profiles of
the potentials in the fiber transverse plane are shown in figure 16. We note that the dependencies of U, and U, on
plead to the azimuthal components FéVdW)e and Fg’dw)g of the van der Waals forces (see figure 18).

We show in figure 17 the radial dependencies of the radial components F~W)¢ and F¥4W$ of the van der
Waals forces on the atom in the excited and ground states. We observe from figure 17(b) that the force E")¢
for the ground state is always negative and the absolute value of this force reduces with increasing . Meanwhile,
figure 17(a) shows that the force F"¥")¢ for the excited state oscillates with increasing r, and can take not only
negative but also positive values depending on the distance r.
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Figure 13. Radial dependence of the potential U, for a two-level atom in the ground state. The dipole orientation vector is d=f(red
solid curve), ¢ (green dashed curve), and Z (blue dotted curve). Other parameters are as for figure 2.
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Figure 14. Radial dependencies of the potential U, (a) and its resonant part U (b) for a two-level atom in the excited state. The
dipole orientation vector is d = F (red solid curve), ¢ (green dashed curve), and Z (blue dotted curve). Other parameters are as for
figure 2.

Depending on the orientation of the dipole matrix-element vector d and the position (r, ) of the atom in the
fiber transverse plane, the azimuthal components Fé"dw)e and F;de)g of the van der Waals forces may be

nonzero. We show in figure 18 the dependencies of the azimuthal components Ff;"dw)e and Fé"dw)g of the van

der Waals forces on the azimuthal angle ¢ of the position of the atom. We observe that Ff;’dw)e and Ff,VdW)g
appear when the azimuthal angle between the dipole vector d and the radial vector r of the atomic position is
@ = nm /2, with nbeingan integer number. In addition, |F,§’dw)e| and |F$’dw)g | achieve their largest values
when ¢ = 7/4 + nw/2.

We note that, in figures 13—17, the van der Waals potentials and the corresponding forces are
divergent when r/ais 1. This divergence is a consequence of the fact that, when the distance r — afrom
the atom to the fiber surface is very small, the van der Waals potential of the atom near the fiber can be
approximated by the van der Waals potential of an atom near a flat dielectric surface, which is proportional
to—1/(r — a)’.

15



I0OP Publishing NewJ. Phys. 20 (2018) 093031 FLKienetal

0.05 -

—dx ARANCY
(=]
&
~ 0.00
bN
005t
-0.0010 -
(=]
&
\00-0'0015_
)
-0.0020 T T T i
0 /2 T 3n/2 2n
Azimuthal angle ¢

Figure 15. Azimuthal dependencies of the potentials U, (a) and Uy (b) for a two-level atom in the excited and ground states. The
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Figure 16. Two-dimensional spatial profiles of the potentials U, (upper row) and Uy (lower row) for a two-level atom in the excited
and ground states. The dipole orientation vector is d = % (left column) and Z (right column). Other parameters are as for figure 2.

4.4. Total force

Finally, we compute the total force F of the field on the atom. We plot in figure 19 the radial dependencies of the
axial component F, and the radial component F, of the total force F of the field on the atom in the case where the
dipole orientation vector is d = . 1In these numerical calculations, we take into account the effect of the fiber-
induced van der Waals potentials on the detuning of the driving field from the atomic transition frequency. Since
d s a real vector, we have F6?*" = ( and, hence, E, = F{9™). The radial component F, of the total force is
composed of the radial component F“4™) of the driving-field force and the radial components F¥")¢ and
EYW)E of the fiber-induced van der Waals forces with the weight factors p,. and Pqp Tespectively. For the
parameters of figure 19, the azimuthal component F,, of the total force is zero and is therefore not shown. We
observe from figure 19(a) that the axial component F, of the force of the HE,; mode is larger than that of the
other modes. Figure 19(b) shows that the radial component F, of the total force can be positive or negative
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Figure 18. Azimuthal dependencies of the azimuthal components F,é"dw)e (a)and Fé"dw)g (b) of the van der Waals forces on the atom

in the excited and ground states. The dipole orientation vector is d=% (red solid curve) and Z (blue dashed curve). The distance from
the atom to the fiber surfaceisr — a = 200 nm. Other parameters are as for figure 2.

depending on the position r of the atom. The repulsive feature of the force in the region of large r is mainly due to
the fact that a positive detuning Ay was used in the calculations.

When the atomic dipole matrix-element vector is a complex vector, the propagation direction
dependence of the Rabi frequency and the asymmetric spontaneous emission may occur as shown earlier. In
this case, the absolute value of the total force may depend on the propagation direction of the probe field. We
plotin figures 20 and 21 the radial and azimuthal dependencies of the components of the total force Fin the
case where the dipole orientation vector is a complex vector d = (it — 2)/V2. Theincident light field is in an
x-polarized HE,; mode. The figure shows that the absolute values of components of the force depend on the
propagation direction f;. For the parameters of figure 20, where ¢ = 0, the azimuthal component F, vanishes
and is therefore not shown in this figure. However, in the case of figure 21, where @ is arbitrary, F, may
become nonzero.
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Figure 19. Radial dependencies of the axial component F, (a) and the radial component F, (b) of the total force F of the field on the
atom with the dipole orientation vector d = . The detuning of the driving field from the atom in the absence of the fiber is

Ay/2m = 10 MHz. The power of the driving field is P = 100 pW. The fiber-induced shift of the atomic transition frequency is taken
into account. Other parameters are as for figure 2.
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Figure 20. Radial dependencies of the axial component F, (a) and the radial component F, (b) of the total force F of the field on the
atom with the complex dipole orientation vector d = (i& — £)/+/2. The incident light field is in an x-polarized HE,; mode and
propagates in the forward f; = +1 (solid red curves) or backward f; = —1 (dashed blue curves) direction along the fiber axis z. The
detuning of the driving field from the atom in the absence of the fiber is Ay /27 = 10 MHz. The power of the driving field is P =
100 pW. The fiber-induced shift of the atomic transition frequency is taken into account. Other parameters are as for figure 2.

5. Summary

In this work, we have calculated analytically and numerically the force of light on a two-level atom near an
ultrathin optical fiber. We have derived the expressions for the force in terms of the mode functions and the
Green tensor. We have shown that the total force consists of the driving-field force, the spontaneous-emission
recoil force, and the fiber-induced van der Waals potential force. The axial component of the driving-field force
is a light pressure force, while the radial component is a gradient force. The azimuthal component of the driving-
field force may also appear and is, in general, a combination of the pressure and gradient forces in the azimuthal
direction. Due to the existence of a nonzero axial component of the field in a guided mode, the Rabi frequency
and hence the magnitude of the force of the guided driving field may depend on the propagation direction.
When the atomic dipole rotates in the meridional plane, the spontaneous-emission recoil force may arise as a
result of the asymmetric spontaneous emission with respect to opposite propagation directions. The
spontaneous-emission recoil force has a nonvanishing axial or azimuthal component when the atomic dipole
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Figure 21. Azimuthal dependencies of the axial component F, (a), the radial component F, (b), and the azimuthal component F,, (c) of
the total force F of the field on the atom with the complex dipole orientation vector d = (i% — %) / /2. The distance from the atom to
the fiber surfaceisr — a = 200 nm. Other parameters are as for figure 20.

rotates in the meridional or cross-sectional plane, respectively. The van der Waals potential for the atom in the
ground state is off-resonant and opposite to the off-resonant part of the van der Waals potential for the atom in
the excited state. Unlike the potential for the ground state, the potential for the excited state has a resonant part,
which is dominant with respect to the off-resonant part, and may oscillate depending on the distance from the
atom to the fiber surface.

Our results are fundamental, as they quantify a new physical behavior of the force of light. They can also be
envisioned to have significant influence on ongoing and future experiments in quantum and atom optics.
Having a controllable force of a structured light field on atoms can help to develop near-field optics, break the
existing limits, and reach new dynamical regimes.
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Appendix. Green tensor in terms of mode functions

The generalized Green tensor G can be decomposed as G = Ggq + G4, Where the parts Ggq and G4 are related
to guided and radiation modes, respectively. For clarity, we now use the explicit expressions p = (wNfp) and

v = (wPlp) for the mode indices of guided and radiation modes, respectively. According to [48], the parts Gyq
and G4 are given in the upper half-plane of the complex frequency w, as

2 00 (wNfp) (WNfp)*( g/
GualR, R ) = [ ) () S DO
2m Jo N w? — w?

X eipl(ﬁa*@/)eifﬂ(zfz/)’

2 oo kn (wplp) (WBlp)*( 4/
c 2 e r)e r
Grd(R: R/; wc) = f dwf dﬁz ( ) 2 ( )
21 Jo —kmy I w? — w?
x elllp=¢)eifle=2), (A.1)

wherer = (r, p)and ' = (+/, ¢’). We can show that the Green tensor satisfies the Schwarz reflection principle
G*(R, R’; w,) = G(R, R; —uf) [47].

On the real waxis, the Green tensor is defined as G(R, R’; w) = lim,_ o, G(R, R’; w + i¢). We use the
identity
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where ¢ — 0+. Then, for a positive real frequency wy, we find
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and

2
Cc
Im Ggy(R, R'5 wo) = —— > ' (wo) e“oMP)(r) eoNP*(r’)
4(4)() Nﬁ)
% eipl(apfp’)eifﬁ(wn)(zfz’)’

2 kon:
c 0" ‘
Im Gua(R, R'; wo) = — A3 eol) (r) ol *(r')
4CU() —komy Ip
% eillp—¢)eife—2". (A.4)

In deriving the above equations, we have taken into account the facts that the results of the summations
Zap eWNIPD) (1) e WNP*(¢/) eipl (90— @) @ ifB (2=2) and > e(Whlp) () eWhlp) (/) @il (9= 9N ¢i8(z=2) gre real tensors. When we
use the properties of the mode functions, we can show that G, (R, R; w) = G, (R, R; w) = G, (R, R; w) = 0.
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