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Nanofiber quantum photonics

Kali P Nayak1, Mark Sadgrove2, Ramachandrarao Yalla1,
Fam Le Kien3 and Kohzo Hakuta1

Abstract. Recent advances in the coherent control of single quanta of light,
photons, is a topic of prime interest and is discussed under the common banner
of quantum photonics. In the last decade, the subwavelength diameter waist of
a tapered optical fiber, referred to as an optical nanofiber, has opened promising
new avenues in the field of quantum optics, paving the way towards a versatile
platform for quantum photonics applications. The key features of the technique
are that the optical field can be tightly confined in the transverse direction
while propagating over long distances as a guided mode and enabling strong
interactionwith the surrounding medium in the evanescent region. These features
have led to surprising possibilities to manipulate single atoms and fiber-guided
photons, e.g. efficient channeling of emission from single atoms and solid-state
quantum emitters into the fiber guided modes, high optical depth with a few
atoms around the nanofiber, trapping atoms around a nanofiber and atomic
memories for fiber-guided photons. Furthermore, implementing a moderate
longitudinal confinement in nanofiber cavities has enabled the strong-coupling
regime of cavity quantum electrodynamics to be reached, and the long-range
dipole-dipole interaction between quantum emitters mediated by the nanofiber
offers a platform for quantum non-linear optics with an ensemble of atoms. In
addition, the presence of the longitudinal component of the guided field has led
to the unique capabilities for chiral light-matter interactions on nanofibers. In
this article, we review the key developments of the nanofiber technology towards
a vision for quantum photonics on an all-fiber interface.
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Nanofiber quantum photonics 2

1. Introduction

The goal of ultimate control of single quanta of
light, i.e. single photons, has driven researchers to
a new era of quantum photonics [1, 2]. The field of
quantum photonics deals with generation, detection
and coherent manipulation of photonic quantum
states for applications like quantum computing [3],
quantum communication [4], quantum simulation [5,
6], quantum metrology [7] and so on. In this context,
a key challenge is to realize an efficient interface for
coherent transfer of quantum states between atomic
and photonic qubits [4].

The interaction strength between a single atom
and photons is determined by the overlap between
the transverse spread of the photonic mode and the
atomic absorption cross-section σ = 3λ2

2π , where λ
is the wavelength of atomic resonance. Therefore
strong transverse confinement of the photonic mode to
subwavelength dimensions is an essential requirement
to achieve efficient interaction. The atom-photon
interaction can also be enhanced by implementing
longitudinal confinement of the photonic mode in
high-finesse optical cavities leading to cavity quantum
electrodynamic (QED) effects [8, 9].

Over the past several decades the interaction of
single atoms and photons in high-finesse, free-space,
optical Fabry-Perot (FP) cavities has been investigated
in numerous studies [4, 8, 9, 10, 11]. However, in the
past decade there have been significant advances in
implementing the transverse confinement of photonic
modes in nanophotonic waveguides and cavities
to realize hybrid quantum interfaces. Examples
include, but are not limited to, photonic crystal
waveguides and cavities [12, 13, 14], whispering gallery
mode (WGM) cavities [15, 16, 17] and plasmonic
nanostructures [18, 19, 20]. In a different approach,
new ideas have also emerged to control single photons
using quantum coherence in multiple emitters [21,
22]. Using electro-magnetically induced transparency
(EIT), single photons can be coherently stored in an
atomic ensemble as a collective excitation. Moreover,
such a collective excitation can be efficiently retrieved
from the atomic ensemble as a single photon.

In 2002, Hakuta and co-workers proposed a novel
idea to control fiber guided light using EIT in a setting
where the guided light of a subwavelength diameter
silica optical fiber interacts with the surrounding
medium in the evanescent region [23]. The key
features of the technique are the strong transverse
confinement of the guided field, the long interaction
length along the fiber and the fiber-in-line property (i.e.
the effect occurs in a subwavelength-diameter section
of a tapered standard single-mode optical fiber),
which is not easily achievable in other nanophotonic

systems. Shortly after this proposal, in 2003 Tong
et al reported the fabrication and study of properties
of silica nanowires for photonic applications [24].
Since then the study of subwavelength diameter
optical fibers, referred to as optical nanofibers,
has been of increasing interest to the scientific
community. Optical nanofibers have been widely
adapted for diverse applications ranging from nonlinear
optics, nanophotonics, quantum optics and quantum
photonics [25, 26, 27, 28].

In particular, in the last decade optical nanofibers
have shown promising new avenues in quantum
photonics. Following the pioneering works, between
2004 to 2007 Kien et al have reported a series of
theoretical proposals on interfacing neutral atoms with
nanofibers e.g. trapping atoms around a nanofiber [29,
30], efficient channeling of single-atom emission into
the nanofiber guided modes [31] and efficient scattering
of the nanofiber guided light by a single atom [32].
Moreover, the theoretical proposals were promptly
followed by early experimental demonstrations of the
atom-nanofiber interface. In 2007, Nayak et al [33]
and Sague et al [34] experimentally demonstrated
the efficient channeling of few-atom fluorescence into
nanofiber guided modes and the efficient scattering of
the guided light by a few laser-cooled atoms around
the nanofiber, respectively.

Following these pioneering demonstrations, there
have been several milestone experimental demonstra-
tions that have enabled optical nanofibers as a work-
bench for quantum photonics applications. Photon
correlation measurements have demonstrated detec-
tion of single-atom fluorescence through the nanofiber
guided modes [35, 36]. Trapping atoms using nanofiber
guided modes has enabled an optically dense quantum
interface [37, 38]. Not only atoms but single solid-state
quantum emitters like quantum dots [39, 40] and nan-
odiamonds [41, 42] have been interfaced with nanofiber
guided modes leading to the measurement of chan-
neling efficiency [43] of fluorescence photons into the
nanofiber guided modes.

More recently, EIT and photon storage experi-
ments [44, 45] along with experiments demonstrating
Bragg reflection [46, 47] from an array of trapped atoms
on a nanofiber, have opened a route towards quan-
tum nonlinear optics with atomic ensembles. In or-
der to further enhance the atom-photon coupling at
the single-atom level, new prospects for cavity QED
on nanofibers have been proposed [48] and various
types of nanofiber cavities have been demonstrated
[49, 50, 51, 52, 53]. This has led to demonstrations
of Purcell enhancement [52] and the strong-coupling
regime of cavity QED [54], paving the way towards
quantum nonlinear optics with single atoms. Moreover,
a detailed understanding of the longitudinal polariza-
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Nanofiber quantum photonics 3

tion component of the nanofiber guided modes, has
led to demonstrations of chiral light-matter interaction
on nanofibers such as directional spontaneous emission
[55] and non-reciprocal light transmission [56] using an
array of atoms trapped on the nanofiber. Such chiral
light-matter interaction may open unique possibilities
for quantum photonic applications.

The purpose of this article is to review the
progress and present status of nanofiber technology
in the context of quantum photonics. The review
is organized as follows. In Section 2, we review
the fundamental aspects of the nanofiber guided field
and its interaction with atoms from a theoretical
point of view. First we discuss the field distribution
and transverse confinement of the fundamental guided
mode of the nanofiber. Then we discuss the interaction
between an atom and the nanofiber guided modes
i.e. modified spontaneous emission and channeling
of atomic fluorescence into nanofiber guided modes,
scattering of guided light by an atom and trapping
atoms using the optical dipole potential induced by
the guided light. In Section 3, we review the technical
aspects of fabricating and characterizing high quality
nanofibers.

In Section 4, we review the experimental demon-
strations for interfacing laser-cooled atoms with
nanofiber guided modes. This includes spectroscopy
and photon correlation measurement of atomic fluores-
cence coupled into the nanofiber guided modes, trap-
ping atoms using nanofiber guided modes, scattering of
the guided field by atoms under various settings lead-
ing to Bragg reflection and non-reciprocal light trans-
mission and EIT and photon storage experiments. In
Section 5, we review the experimental demonstrations
for interfacing solid-state quantum emitters like quan-
tum dots and nanodiamonds with nanofibers. This
includes deposition techniques, spectroscopy and pho-
ton correlation measurement of single emitters on a
nanofiber and measurement of channeling efficiency
into nanofiber guided modes.

In Section 6, we review the prospects and
experimental demonstrations of cavity QED on optical
nanofibers. This includes demonstration of various
types of nanofiber cavities along with demonstration of
cavity QED effects under Purcell and strong-coupling
regimes. In Section 7, we conclude the review with a
brief outlook for future developments.

2. Fundamental aspects of the field in
nanofiber guided modes

In this section we review the fundamental aspects of the
nanofiber guided field and its interaction with atoms
from a theoretical point of view. First we discuss
the field distribution and transverse confinement

Tapered Fiber

Nanofiber

Guided Mode

ϕ zr
y

x

Figure 1. Schematic diagram showing the guided mode
propagation in the nanofiber region of a tapered optical fiber.

of the fundamental guided mode of the nanofiber.
Then we discuss several aspects of the interaction
between an atom and the nanofiber guided modes,
namely modified spontaneous emission and channeling
of atomic fluorescence into nanofiber guided modes,
scattering of guided light by an atom and trapping
atoms using the optical dipole potential induced by
the guided light.

2.1. Strong confinement of a single-mode optical
nanofiber guided field

A brief schematic of light propagation in a nanofiber is
shown in Fig. 1. The nanofiber is the subwavelength-
diameter waist of a tapered single-mode optical fiber.
A typical single-mode optical fiber consists of a central
core with a diameter of 4-9 µm that guides the
light and a surrounding clad with a diameter of 125
µm. Therefore by tapering the original fiber to
form a nanofiber waist, the core of the original fiber
almost vanishes at the nanofiber region. The cladding
material of the original fiber serves as the core of
the nanofiber and the surrounding medium serves as
the clad. Details of the adiabatic coupling between
modes of the original fiber and the nanofiber are
discussed in the next section. In this subsection, we
will discuss the intensity distribution and polarization
orientation of the mode of an optical nanofiber that
has a cylindrical, subwavelength-diameter silica core
and an infinite vacuum clad. It should be noted that
due to its thin diameter the nanofiber can support
only the fundamental HE11 mode which has no cut-off
frequency. Therefore throughout this paper we discuss
only the fundamental HE11 mode.

2.1.1. Field distribution of fundamental mode with
quasilinear polarization A brief description of light
propagation in step-index optical fibers can be found in
Appendix A. A detailed treatment of these issues can
also be found in [57, 58, 59, 60, 61]. Here we present
the field distribution of a fundamental mode of the
nanofiber with quasilinear polarization. The radius of
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Nanofiber quantum photonics 4

the nanofiber is a and the refractive index is n1. The
surrounding cladding medium has a refractive index
n2. We consider light of wavelength λ, frequency ω and
free-space wave number k = 2π/λ = ω/c, propagating
in the nanofiber. Without loss of generality, we assume
that the mode propagates in the forward direction. In
the cylindrical coordinates (r, ϕ, z), the solutions of
Maxwell’s equations for the Cartesian components of
the electric field amplitude E in such a mode are given,
for r < a (inside the fiber), by

Ex = iA
β

2h
[(1 − s)J0(hr) cos ϕ0

− (1 + s)J2(hr) cos(2ϕ − ϕ0)],

Ey = iA
β

2h
[(1 − s)J0(hr) sin ϕ0

− (1 + s)J2(hr) sin(2ϕ − ϕ0)],
Ez = AJ1(hr) cos(ϕ − ϕ0), (1)

and, for r > a (outside the fiber), by

Ex = iA
β

2q

J1(ha)
K1(qa)

[(1 − s)K0(qr) cos ϕ0

+ (1 + s)K2(qr) cos(2ϕ − ϕ0)],

Ey = iA
β

2q

J1(ha)
K1(qa)

[(1 − s)K0(qr) sin ϕ0

+ (1 + s)K2(qr) sin(2ϕ − ϕ0)],

Ez = A
J1(ha)
K1(qa)

K1(qr) cos(ϕ − ϕ0), (2)

where s = [(qa)−2 + (ha)−2]/[J ′
1(ha)/haJ1(ha) +

K ′
1(qa)/qaK1(qa)] [57, 58, 59]. Here the parameters

h = (n2
1k

2−β2)1/2 and q = (β2−n2
2k

2)1/2 characterize
the fields inside and outside the fiber, respectively. The
longitudinal propagation constant β is determined by
the fiber eigenvalue equation discussed in appendix
A. Jn and Kn stand for the Bessel functions of
the first kind and the modified Bessel functions of
the second kind, respectively. The coefficient A is
determined by the normalization condition. The angle
ϕ0 determines the orientation axis of the polarization
of the field. The angles ϕ0 = 0 and ϕ0 = π/2
correspond to polarizations aligned along the x and
y axes, respectively.

In the case of nanofibers, the decay parameter
qa of the evanescent wave may become sufficiently
small. As a result, K1(qa) and K2(qa) may become
much larger than K0(qa). Hence, the terms containing
K1(qr) and K2(qr) in the expressions (2) may become
significant in the outer vicinity of the fiber surface.
This leads to a substantial longitudinal component
Ez and azimuthal dependences of the transverse
components (Ex, Ey) of the field outside the fiber.
In addition, it may be seen that the longitudinal
component has a π/2 phase difference from the
transverse components. This leads to polarization
rotation along the axial plane. So we see that the

-4 -2 0 2 4x/a -4
-2

0
2

4

y/a

0
2
4
6

-1 0 1 -1
0

1
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]
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  |
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Figure 2. The transverse profile of the total intensity |E|2
of the electric field in a fundamental mode with quasilinear
polarization. The inset shows the intensity profile of the field
inside the fiber. The parameters used: a = 200 nm, λ = 1.3 µm,
n1 = 1.4469, n2 = 1 and ϕ0 = 0. From Fam Le Kien et al [60].

properties of the exact fundamental mode HE11 may
become substantially different from that of the linearly
polarized mode LP01.

Figure 2 shows the total intensity |E|2 of
the electric field in a fundamental mode with
quasilinear polarization. The major orientation axis of
polarization is chosen along the x axis (ϕ0 = 0). It may
be seen that the profiles inside and outside the fiber are
very different from each other. The spatial distribution
of the field intensity is not cylindrically symmetric at
all. A conspicuous discontinuity of the field intensity is
observed at the fiber surface. This discontinuity is due
to the boundary condition for the normal component
of the electric field. The high contrast between the
refractive indices n1 and n2 of the silica core and the
vacuum clad, respectively, makes this effect dramatic.

Figure 3 shows the cross-section profiles of the
intensities |Ex|2, |Ey|2 and |Ez|2 of the Cartesian-
coordinate components of the electric field. We observe
that the intensities |Ey|2 and |Ez|2 are weaker than
the intensity |Ex|2. However, |Ey|2 and |Ez|2 are not
negligible at all. Outside the fiber, |Ex|2 and |Ey|2
substantially depend on ϕ.

We note that the orientation of the total
transverse component vector E⊥ = Re[(Exx̂ +
Eyŷ)e−i(ωt−βz)] does not vary in time. However, the
total electric field E = Re[(Exx̂+Eyŷ+Ezẑ)e−i(ωt−βz)]
rotates elliptically with time, in a plane parallel to the
fiber axis z.

2.1.2. Optimum field confinement and nanofiber
diameter A key aspect of the nanofiber method is the
strong transverse confinement of the guided optical
field along with significant penetration length in the
evanescent region to realize strong interaction with the
surrounding medium. From a qualitative argument it
may be seen that if the nanofiber is very thick the
transverse confinement is weak. On the other hand, if
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Figure 3. The transverse profiles of the intensities |Ex|2 , |Ey|2
and |Ez|2 of the Cartesian-coordinate components of the electric
field in a fundamental mode with quasilinear polarization. The
insets show the intensity profiles of the field inside the fiber. The
parameters used are as for figure 2. From Fam Le Kien et al [60].

ka

(a)

(b)

(c)

β/
k

Λ
/λ

r ef
f /λ

Figure 4. (a) Propagation constant β, (b) evanescent-wave
penetration length Λ, and (c) effective mode radius reff of the
fundamental HE11 mode as functions of the fiber size parameter
ka. The wavelength of the light is chosen to be λ = 852 nm. The
refractive index of the fiber is n1 = 1.4525 and of the surrounding
medium is n2 = 1.

the fiber is too thin, the guided mode penetrates too
deeply into the outside of the fiber resulting in weak

confinement. Therefore there must be some optimum
diameter for which the transverse confinement will be
strongest. In the following we discuss the parameters
which determine this optimum nanofiber diameter.

We plot in Fig. 4, the propagation constant
β, the evanescent-wave penetration length Λ, and
the effective mode radius reff of the fundamental
HE11 mode as functions of the fiber size parameter
ka. The evanescent-wave penetration length of the
nanofiber guided mode is given by Λ = 1/q. The
effective mode radius is reff =

√
Aeff/π, where Aeff(=

(
∫
|e|2dr)2/

∫
|e|4dr) is the effective mode area. The

figure shows that reff has a minimum, and that the
minimum value can be less than half of wavelength
of light. Thus, when the nanofiber radius a is small
enough but not too small, the guided field is tightly
confined in the transverse plane, the evanescent-wave
field can penetrate deeply into space, and the gradient
of the field is steep.

2.2. Efficient interface for quantum emitters and fiber
guided photons

The subwavelength confinement, the deep penetration
into the surrounding medium, and the steep intensity
gradient of the nanofiber guided field in the evanescent
region open new possibilities to tailor light-matter
interactions using a fiber mode. From the viewpoint
of quantum optics we address the following three
fundamental aspects of light-matter interaction. 1)
Due to the strong confinement of the guided field, the
spontaneous emission from atoms can be substantially
modified around the nanofiber and a significant
fraction of a single atom’s emission can be channeled
into the fiber guided mode. 2) Atoms and photons can
be confined within the single-atom absorption cross-
section leading to efficient scattering of the guided
field by a single atom. 3) The steep gradient of the
guided field can be used for trapping atoms around
nanofiber using the optical dipole potential. In the
following we present theoretical descriptions of these
three fundamental aspects of nanofiber light-matter
interfaces.

2.2.1. Modified spontaneous emission of an atom
around a nanofiber The confinement of the guided
modes substantially affects the spontaneous emission
process and consequently enhances the coupling
between quantum emitters and fiber guided modes
[31, 62, 63, 64, 65]. Radiative decay of an atom in the
vicinity of a nanofiber has been studied in the context
of a two-level atom [62, 63, 64] as well as for realistic
multilevel atoms including the hyperfine structure (hfs)
of the energy levels [31, 65]. The parameters for the
decay of populations [31, 62, 63, 64, 65] and cross-level
coherences [31, 65] have been calculated.
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Nanofiber quantum photonics 6

We follow Ref. [31] closely to demonstrate efficient
radiative coupling between a multilevel atom and the
guided modes of a nanofiber. We consider a cesium
atom in the vicinity of a nanofiber (see the upper
part of Fig. 5). The refractive index n1 of the fiber
is taken to be 1.45. The fiber axis z is taken to be
the quantization axis for the atomic states. We study
the cesium D2 line, which occurs at the wavelength
λ0 = 852 nm. We introduce the notations e ≡ eM ′

and g ≡ gM for the magnetic sublevels F ′M ′ and
FM of the hfs levels 6P3/2F

′ = 5 and 6S1/2F = 4,
respectively. The coupling between eM ′ and gM by
spontaneous emission is illustrated in the lower part of
Fig. 5.

In the interaction picture, the atomic dipole
operator is given by

D =
∑

eg

(d∗
egσgee−iω0t + degσ

†
gee

iω0t). (3)

Here the operators σge = |g〉〈e| and σ†
ge = σeg =

|e〉〈g| describe the downward and upward transitions,
respectively, and deg = 〈e|D|g〉e−iω0t is the dipole
matrix element. We introduce the notations d(−1) =
(dx−idy)/

√
2, d(0) = dz, and d(1) = −(dx+idy)/

√
2 for

the spherical tensor components of the dipole vector d.

g1g0g-1 g3g-4 g4g-2g-3 g2

e1e0e-1 e3e-4 e4e-2e-3 e2 e5e-5

6S    F=41/2

6P    F'=53/2

nano ber

 guided modes 

atom

 radiation modes (a)

(b)

Figure 5. (a) An atom interacting with guided and radiation
modes in the vicinity of an optical nanofiber. (b) Schematic of
the 6P3/2F ′ = 5 and 6S1/2F = 4 hfs levels of a cesium atom.
From Fam Le Kien et al [31].

We decompose the positive-frequency part E(+)

of the electric component of the field into the
contributions from the guided and radiation modes
as E(+) = E(+)

guided + E(+)
rad . The continuum field

quantization follows the procedures presented in [66,
67, 68]. Regarding the guided modes, it is assumed

that the single-mode condition [57, 58, 59] is satisfied
for the field frequency ω around the cesium D2-line
frequency ω0. Each guided mode is labelled by an
index µ = (ω, f, p), where f = +,− denotes forward
or backward propagation direction, and p = +,−
denotes the counterclockwise or clockwise rotation of
polarization. After quantization of the field in the
guided modes, the following expression is obtained for
E(+)

guided in the interaction picture:

E(+)
guided = i

∑

µ

√
~ωβ′

4πε0
aµe(µ)e−i(ωt−fβz−pϕ). (4)

Here β is the longitudinal propagation constant, β′

is the derivative of β with respect to ω, aµ is
the respective photon annihilation operator, e(µ) =
e(µ)(r, ϕ) is the electric-field profile function of the
guided mode µ in the classical problem (see Appendix
A), and

∑
µ =

∑
fp

∫ ∞
0

dω is the summation over the
guided modes.

Each radiation mode is labelled by the index
ν = (ω, β, m, p), where m = 0,±1,±2, . . . is the
mode order and p = ± is the mode polarization.
After quantization of the field in the radiation modes,
the following expression is obtained for E(+)

rad in the
interaction picture:

E(+)
rad = i

∑

ν

√
~ω

4πε0
aνe(ν)e−i(ωt−βz−mϕ). (5)

Here aν is the respective photon annihilation operator,
e(ν) = e(ν)(r, ϕ) is the electric-field profile function
of the radiation mode ν in the classical problem (see
Appendix B), and

∑
ν =

∑
mp

∫∞
0

dω
∫ k

−k
dβ is the

summation over the radiation modes.
Assume that the atom is located at a point

(r, ϕ, z). In the dipole and rotating-wave approxi-
mations, the coupling coefficients Gµeg and Gνeg of
the atomic transition e ↔ g with the guided mode
µ = (ω, f, p) and the radiation mode ν = (ω, β, m, p),
respectively, are given by the expressions

Gµeg =
1√
Zµ

√
ωβ′

4πε0~
(
deg · e(µ)

)
ei(fβz+pϕ) ,

Gνeg =
1√
Zν

√
ω

4πε0~
(
deg · e(ν)

)
ei(βz+mϕ) , (6)

where Zµ and Zν are the normalization constants and
are determined by the equations

Zµ =
∫ 2π

0

dϕ

∫ ∞

0

n2
rf |e(µ)|2 rdr (7)

and

Zν =

∞∫

0

dω

2π∫

0

dϕ

∞∫

0

n2
rf

[
e(ν)e(ν′)∗

]
β=β′,m=m′ ,p=p′

rdr.

(8)
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Nanofiber quantum photonics 7

Here nrf (r) = n1 for r < a, and nrf (r) = n2 for r > a.
The quantity |e(µ)|/

√
Zµ depends on the confinement

of the guided mode in the fiber transverse plane. This
quantity can be considered as the inverse of the square
root of the local effective mode area.

We assume that the atom is initially prepared in
the excited state |e〉 and the field is initially in the
vacuum state |0〉. In this case, the total decay rate
(Γee) of the excited state population is given as the
sum of decay rate into guided (γ(g)

ee ) and radiation (γr
ee)

modes as follows

Γee = γ(g)
ee + γ(r)

ee . (9)

The decay rates into guided and radiation modes are
given by

γ(g)
ee = 2π

∑

g

∑

µ

|Gµeg|2 (10)

γ(r)
ee = 2π

∑

g

∑

ν

|Gνeg|2.

The channeling efficiency into the guided modes can be
defined as

η =
γ

(g)
ee

Γee
=

γ
(g)
ee

γ
(g)
ee + γ

(r)
ee

. (11)

1 2 3 4 5
0.9

1.2

1.5

1.8

0.92

1.04

1.16

1.28
0.0

0.2

0.4

0.6

r/a

(a)

(c)

(b)

Γ
/

e
e
Γ

0
/

(g
)

γ
e
e
Γ

0
/

(r
)

γ
e
e
Γ

0

Figure 6. Spontaneous emission rates into (a) guided modes,
(b) radiation modes, and (c) both types of modes, for the
magnetic sublevels 6P3/2F ′ = 5 M ′, plotted as functions of
the position of the atom. The fiber axis z is the quantization
axis. In each plot, different lines correspond to different values
|M ′| = 0, 1, 2, 3, 4, and 5. The fiber radius is a = 200 nm and
the wavelength of the atomic transition is λ0 = 852 nm. The
refractive indices of the fiber and the vacuum clad are n1 = 1.45
and n2 = 1, respectively. The rates are normalized to the free-
space decay rate Γ0 = 33 × 106 s−1. From Fam Le Kien et al
[31].

In the following, we discuss the results of
numerical calculations of Ref. [31] for the decay
characteristics of magnetic sublevels of a cesium atom
in the presence of a nanofiber. The plots in Fig. 6 show

the spatial dependence of the spontaneous emission
rates for various magnetic sublevels 6P3/2F

′ = 5 M ′

into guided modes, radiation modes, and both types
of modes. The fiber radius a is chosen to be 200 nm.
It can be seen from Fig. 6 that different magnetic
sublevels of the same state 6P3/2 have different decay
rates in the vicinity of the nanofiber surface, unlike
the case of atomic cesium in free space. The presence
of the nanofiber produces substantial decay rates into
the guided modes. In addition, the decay rates into
radiation modes γ

(r)
ee and the total decay rates Γee are

enhanced from the free-space rate Γ0 by small factors.
As expected, the effect of the nanofiber on the decay
rates is largest for the atom on the nanofiber surface.
When the atom is far away from the nanofiber, γ

(g)
ee

reduces to zero while γ
(r)
ee and Γee approach the free-

space value Γ0. The small oscillations around the
value of unity in Fig. 6(b) can be ascribed to the
constructive/destructive interference due to reflections
from the nanofiber surface [63].

1 2 3 4 5
0.0

0.1

0.2

0.3

1.0 1.3 1.6 1.9 2.2

r/a

(a) (b)

k  a0

Γ /
e
e

(g
)

γ
e
e

Figure 7. Channeling efficiency of spontaneous emission into
guided modes for various magnetic sublevels, as functions of (a)
the atomic position and (b) the fiber radius. In (a), the nanofiber
radius is a = 200 nm. In (b), the atom is on the nanofiber
surface. Other parameters are as in Fig. 6. Note that the peaks
in (b) occur around k0a = 1.45, which correspond to a = 200
nm for the cesium D2 line. From Fam Le Kien et al [31].

In order to get deeper insight into the channeling
of spontaneous emission into guided modes, we plot the
channeling efficiency η for various magnetic sublevels
in Figs. 7(a) and 7(b) as a function of r/a and
k0a, respectively. From Fig. 7(a), it may be seen
that, in the close vicinity of the nanofiber surface,
the channeling efficiencies into guided modes are
substantial, in the range from 0.2 (for Me = 0) to
0.28 (for Me = ±5). As the atom-surface separation
increases, γ

(g)
ee /Γee quickly reduces to zero, as expected.

From Fig. 7(b) it can be seen that, γ
(g)
ee /Γee is sensitive

to k0a, reaching a maximum at around k0a = 1.45.
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Nanofiber quantum photonics 8

This size parameter corresponds to a nanofiber radius
of about 200 nm. For such a parameter, a significant
fraction (up to 28% for Me = ±5) of spontaneous
emission by the atom can be channeled into guided
modes.

We note that the hfs eigenstates of an alkali-metal
atom are specified with respect to a quantization axis.
Therefore, the decay parameters of a realistic atom
depend on the orientation of the magnetic field relative
to the fiber axis. The effect of the orientation of the
quantization axis on the radiative decay parameters of
a cesium atom near a nanofiber has been studied in
Ref. [65].

We also note that, when the size parameter V
is larger than the cut-off value Vc

∼= 2.405, the fiber
can support not only the fundamental mode HE11 but
also higher-order modes. Spontaneous emission from
an alkali-metal atom into the fundamental and higher-
order modes of a vacuum-clad ultrathin optical fiber
has recently been investigated [69].

2.2.2. Scattering of guided light by a single atom
We now discuss the scattering of a guided mode field
from an atom trapped near to an optical nanofiber as
depicted in Fig. 5, following closely the treatment given
in Refs. [32] and [70]. We will consider atomic cesium,
and specifically its D2 line at a wavelength of λ0 = 852
nm. The atom is assumed to be initially prepared in
the ground state 6S1/2 with a hyperfine level F = 4.
Probe light in the fiber mode is assumed to be tuned
close to the resonance between this ground state and
the excited state 6P3/2 with a hyperfine level F ′ = 5.

For our description of the cesium atom’s internal
state, we take the z-axis (fiber axis) as the quantization
axis, and we assume that the atom is situated on
the positive x-axis. We denote the spherical tensor
components of the dipole matrix element by d

(−1)
eg =

(dx − idy)/
√

2, d
(0)
eg = dz, and d

(1)
eg = −(dx +

idy)/
√

2. Additionally, we denote the spherical tensor
components of the field envelope vector E by Eq with
(q = 0,±1). Specifically, we have E−1 = (Ex−iEy)/

√
2,

E0 = Ez, and E1 = −(Ex + iEy)/
√

2. The Rabi
frequencies

Ωeg =
1
~
(deg · E) =

1
~

∑

q=0,±1

(−1)qd(q)
eg E−q (12)

characterize the interaction of the atom and the probe
field. The atom is assumed to be prepared in an initial
incoherent mixture of Zeeman sublevels |M 〉 of the
ground-state hyperfine level F , with the population
distributed independently of M . For the regime of
stationary probe field E with the atom in its steady
state, the total scattering rate of probe field photons
from the atom is given by

R =
∑

ee′

Γee′ρe′e = Rg + Rr, (13)

where Rg =
∑

ee′ γ
(g)
ee′ρe′e and Rr =

∑
ee′ γ

(r)
ee′ρe′e are

the scattering rates into guided and radiation modes
respectively. Note that Γee′ , γ

(g)
ee′ and γ

(r)
ee′ denote the

decay rates of the excited state manifold which we
discussed previously. The population of the excited
state manifold is denoted by ρe′e and can be obtained
from the solution of the steady-state density matrix
equations [32].

We would like to know scattering rates into the
nanofiber guided modes as functions of propagation
direction and polarization. We consider the quasilinear
polarized HE11 guided modes with the index ξ = x
and y for the major polarization axis along the x and
y directions, respectively. Then, the scattering rate
into the fundamental mode with propagation direction
f = ± and a given polarization ξ = x or y is given by

Rfξ =
∑

ee′

γ
(fξ)
ee′ ρe′e. (14)

Here we have introduced the notation

γ
(fξ)
ee′ = 2π

∑

g

Gω0fξegG∗
ω0fξe′g. (15)

Note that Gω0fξeg is the coefficient for the coupling
between the resonant guided mode (ω0, f, ξ) and the
atomic transition |e〉 ↔ |g〉. The coupling coefficient
has a general expression

Gωfξeg =

√
ωβ′

4πε0~
(
deg · e(ωfξ)

)
eifβz , (16)

in the case of the quasi-linearly polarized HE11 mode,
where e(ωfξ) is the normalized mode profile function
(see Appendix A). Additionally, we introduce the
notation

γ
(f)
ee′ =

∑

ξ=x,y

γ
(fξ)
ee′ (17)

for the the spontaneous emission coefficients into the
guided modes with direction f . For simplicity, we
make the abbreviations γ

(fw)
ee′ = γ

(+)
ee′ and γ

(bw)
ee′ = γ

(−)
ee′ ,

and note that the relation γ
(g)
ee′ = γ

(fw)
ee′ + γ

(bw)
ee′ holds.

For the scattering rate into the guided modes with a
direction f , we use the notation

Rf =
∑

ξ=x,y

Rfξ , (18)

with the abbreviations Rfw = R+ and Rbw = R−.
Note that we can decompose the scattering rate as
Rg = Rfw+Rbw . The total output guided mode field is
then given by the interference between the input probe
field and the forward scattered field, with conservation
of energy giving the loss rate

Rloss = Rr + Rbw. (19)

The steady state regime density-matrix equations
are solved and used to find the coefficients ηfw =
~ωRfw/Pz and ηbw = ~ωRbw/Pz which give the
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Nanofiber quantum photonics 9

efficiency of scattering into forward and backward
propagating guided modes, respectively, for a given
mode power Pz. More generally, we define the
efficiency coefficients for a given propagation direction
f and polarization ξ: ηfξ = ~ωRfξ/Pz. For our
numerical calculations, we use a fiber radius a = 250
nm and a mode power Pz = 10 fW, which is much
lower than the saturation power of 4.4 pW.

Figures 8 and 9 show the scattering efficiency
coefficients as functions of the normalized radial
distance r/a for x- and y-polarized probe fields,
respectively. Note that a common feature of these
results is that, in general (except for ηfy in the case
of Fig. 8), the scattering efficiency coefficients reduce
with increasing radial distance r. This reduction is
due to the evanescent-wave profiles of the guided-
mode functions outside the fiber, which affect the
scattering rates Rfξ via the Rabi frequencies Ωeg and
the spontaneous emission coefficients γ

(fξ)
ee′ .

r/a

Sc
at

te
rin

g 
ef

fic
ie

nc
y

(a) (b)
forward backward

ξ = x
ξ = y
both types

Figure 8. (Color online) Radial-distance dependencies of the
scattering efficiency coefficients for quasi x-polarized guided
probe field. ηfw and ηbw for scattering into forward and
backward guided modes, respectively, are shown by the solid
black lines in parts (a) and (b), respectively, at zero detuning
and for the parameters given in the text. ηfξ with ξ = x (dashed
red lines) and ξ = y (dotted green lines) for the modes with x
and y polarizations, respectively, are also shown. From Fam Le
Kien and A. Rauschenbeutel [70].

For the case of quasilinear mode polarization
along the x-axis, comparison of Figs. 8(a) and (b)
show that forward scattering is about an order of
magnitude stronger in the forward direction compared
with the backward direction. In addition, it may
be seen that the main component scattered into
both forward and backward propagating modes is
the x-polarized component, i.e., the component with
the same polarization as the probe field. On the
other hand, the scattering efficiency of the y-polarized
component (shown in the insets by dotted green lines)
is seen to be independent of scattering direction and

is up to four orders of magnitude smaller than the
efficiency for the x-polarized component (dashed red
lines). The direction-independence of the y-polarized
component is due to the vanishing amplitude of the
longitudinal component of the quasi y-polarized guided
mode at the position on the x axis considered here.
We also note that the atypical increase of ηfy for r/a
between ∼ 1.1 to ∼ 1.5 due to interference between
different atomic transition channels.

r/a

(a) (b)

Sc
at

te
rin

g 
ef

fic
ie

nc
y

forward backward

ξ = x
ξ = y
both types

Figure 9. (Color online) Same as Fig. 8 but for the case where
the probe field is quasi y-polarized. From Fam Le Kien and A.
Rauschenbeutel [70].

The scattering efficiency coefficients for a probe
field with quasi y-polarization are shown in Fig. 9.
In this case, Figs. 9(a) and (b) are identical, showing
that rates for both individual components, Rfx and
Rfy and the total rate Rf = Rfx + Rfy for a given
direction f are independent of the scattering direction.
This is due to the zero longitudinal component of the
probe field for the position considered here. It is
interesting to note that both x (dashed red lines) and
y (dotted green lines) components are present in the
scattered fields, and, furthermore, the x-component
is slightly larger even though the input probe field
is y-polarized. This arises from the differences in the
quasi x- and y-polarized guided modes at the chosen
position, along with the properties of the atomic dipole
matrix elements and the atomic steady-state density
matrix.

2.2.3. Directional spontaneous emission from a two-
level atom We will now consider the case of a two-
level atom near to a nanofiber in order to gain a better
understanding of the forward/backward scattering
asymmetry. In this case, the spontaneous emission
rate into positive-direction propagating guided modes
(f = +) and negative-direction propagating guided
modes (f = −) is given by
γ(f) = γ(fx) + γ(fy), (20)
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Nanofiber quantum photonics 10

where [31]

γ(fξ) =
ω0β

′
0

2ε0~
∣∣d · e(ω0fξ)

∣∣2 (21)

is the rate of spontaneous emission into the guided
modes with the propagation direction f = +,− and the
polarization ξ = x, y. We note that the dipole matrix-
element vector d is, in general, a complex vector. We
note that γ(fξ) and, consequently, γ(f) depend on the
magnitude, the orientation, and the polarization of the
dipole matrix-element vector d. Furthermore the rate
Γf of scattering into the guided modes with a given
propagation direction f is related to the corresponding
spontaneous emission rate γ(f) as Γf = ρeeγ

(f).
To proceed, we will take the atom to be situated

on the positive x-axis, with the z-axis being the fiber
axis as before. Then, we obtain the expressions for the
profile functions

e(ω0fx) =
√

2 (i|er |, 0, f |ez|) (22)

and

e(ω0fy) =
√

2 (0, i|eϕ|, 0) (23)

in the cases of quasi x- and y-polarized guided modes,
respectively (see Appendix, Eqs. (A.21)). It is clear
from Eqs. (21) and (23) that the rate γ(fy) of
spontaneous emission into the guided modes with the y
polarization does not depend on the emission direction
f . Meanwhile, it follows from Eqs. (21) and (22) that
the rate γ(fx) of spontaneous emission into the guided
modes with the x polarization does not depend on the
emission direction f if the dipole components dz and
dx have the same phase, that is, if the component of
the atomic dipole in the zx plane is linearly polarized.
However, the rates γ(fx) and γ(f) may depend on f
if both components dz and dx are nonzero and have
different phases, that is, if there is an ellipticity of the
polarization of the atomic dipole matrix-element vector
d in the zx plane.

Let us now consider such a case. In particular, we
will consider the case of a circularly polarized atomic
dipole in the zx plane, leading to the choice of the y-
axis as the natural quantization axis. The quantization
coordinate system is {xQ, yQ, zQ}, where

xQ = z, yQ = x, zQ = y. (24)

In this coordinate system, the dipole matrix element
d of the atom has only a single nonzero spherical
tensor component dq = −q(dxQ + iqdyQ)/

√
2, where

q = Me − Mg = ±1 corresponds to the transition type
σ±. An example of such a two-level atom is a cesium
atom with the cycling transition between the Zeeman
levels |F ′ = 5, M ′ = ±5〉 and |F = 4, M = ±4〉 of
the excited state 6P3/2 and the ground state 6S1/2,
respectively. The initial state can be prepared by
optical pumping with the use of a circularly polarized
field freely propagating along the y direction. In

the Cartesian coordinate system {x, y, z}, the dipole
matrix-element vector is

d =
dq√
2
(i, 0,−q). (25)

The above expression shows that, in the Cartesian
coordinate system {x, y, z}, the dipole matrix-element
vector d has two nonzero components, dz and dx =
−iqdz, which are different in phase from each other
by π/2. This is a consequence of the fact that the
polarization of the atomic dipole is circular in the zx
plane. From Eq. (25), we find

d · e(ω0fξ) =
dq√
2
(ie(ω0fξ)

x − qe(ω0fξ)
z ). (26)

For the y-polarized guided modes, Eq. (23) yields
e
(ω0fy)
x = e

(ω0fy)
z = 0. This leads to d · e(ω0fy) = 0

and, hence, γ(fy) = 0. For the x-polarized guided
modes, Eq. (22) yields e

(ω0fx)
x = i

√
2|er| and e

(ω0fx)
z =

f
√

2|ez|. This leads to

d · e(ω0fx) = −dq(|er | + fq|ez |). (27)

Hence, we find

γ(f) = γ(fx) =
ω0β

′
0d

2
q

2ε0~
(|er| + fq|ez|)2. (28)

From the above analysis, it is clear that in this case
γ(f) depends on the emission direction f = ± and also
on the transition type σ± characterized by the number
q = Me−Mg = ±1. Moreover, when we set f = + and
f = − in Eq. (28) and then calculate the ratio between
the results, we find

γ(+)

γ(−)

∣∣∣∣
q=1

=
γ(−)

γ(+)

∣∣∣∣
q=−1

=
(
|er| + |ez|
|er| − |ez|

)2

. (29)

This shows that in general, the spontaneous emission
of the two-level atom into the guided modes of
the nanofiber may have different rates for different
directions f = ±. We emphasize that the occurrence of
γ(+) 6= γ(−) is due to the existence of the longitudinal
component ez of the guided-mode profile function, the
existence of the components dz and dx of the atomic
dipole matrix element, the ellipticity of the polarization
of the x-polarized guided mode in the zx plane, and the
ellipticity of the polarization of the atomic dipole in the
zx plane. We note that the ratio γ(+)/γ(−) is simply
determined by the ratio between the radial and axial
components er and ez, respectively, of the guided-mode
profile function. In Fig. 10, we plot the dependence of
the ratio γ(+)/γ(−) on the radial position r of the atom.
The figure shows that γ(+)/γ(−) decreases slowly with
increasing r and can be as large as about 13.3 for an
atom on the fiber surface (r/a = 1).

Page 10 of 57AUTHOR SUBMITTED MANUSCRIPT - JOPT-105027.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Nanofiber quantum photonics 11

r/a

γ(+
) / γ

(-
)

Figure 10. Ratio between the spontaneous emission rates from
a two-level atom into the guided modes in the directions +ẑ and
−ẑ, respectively. The two levels of the atom considered here are
|F ′ = 5,M ′ = 5〉 and |F = 4,M = 4〉 of the D2 line of atomic
cesium with respect to the quantization axis ẑQ = ŷ. The atom
is positioned on the positive side of the x axis. Other parameters
are as in Fig. 8. From Fam Le Kien and A. Rauschenbeutel [70].

2.2.4. Trapping atoms using guided modes of a
nanofiber Optical trapping of neutral atoms is one
of the crucial techniques for storing and processing
quantum information. In particular, manipulation of
individual neutral atoms in microscopic dipole traps
is a promising approach. Several techniques have
been developed in order to produce optical dipole
traps [71] with a microscopic trapping volume. Among
these are strongly focused free-space optical traps
[72], optical lattices [73], traps based on evanescent
light fields [74], and plasmonically enhanced optical
trapping potentials [19, 20].

The tight confinement of the nanofiber guided
field and the strong intensity gradient of the guided
field in the evanescent region surrounding the nanofiber
enables optical dipole trapping of atoms at relatively
low powers compared to focussed beams in free space.
Various trapping schemes have been theoretically
formulated and experimentally demonstrated. In
optical dipole trapping, red-detuned (blue-detuned)
light far from resonance provides an attractive
(repulsive) potential which is proportional to the
intensity of the light. The evanescent tail of the HE11

fundamental guided field provides a steep intensity
gradient but there is no local minimum to create a
trap.

Balykin et al proposed a method to use a
single red-detuned guided mode field to balance the
centrifugal force experienced by an atom with a
velocity component perpendicular to the nanofiber axis
[75]. Another way to produce a local minimum is
to employ a two color trap in which red-detuned and
blue-detuned light fields in the nanofiber fundamental
mode create a trapping minimum close to the nanofiber

Figure 11. The total trapping potential Utot and its
constituents, for a two-color trap of a ground-state cesium atom
outside a nanofiber with two circularly polarized input light
fields. The absolute value of the red-detuned component U1

(dotted line) subtracts from the blue-detuned component U2

(dashed line) to give the net optical potential U (thin solid line).
This is modified by the van der Waals surface interaction, giving
the total potential Utot (thick solid line). The radius of the fiber
is a = 200 nm. The laser wavelengths are λ1 = 1.06 µm and
λ2 = 700 nm. The laser powers are P1 = 30 mW and P2 = 29
mW. From Ref. [29].

surface due to the differing evanescent decay lengths
of the two wavelengths of light. In particular, due
to the presence of the attractive van der Waals force
near the fiber surface, blue-detuned light is essential
to keep the atoms away from the fiber surface. Kien
et al have proposed and investigated an atom trap
and waveguide using a two-color evanescent light field
around a nanofiber [29]. It was shown that by choosing
a proper power ratio for the two colors, a stable
trapping potential can be realized around the nanofiber
in the form of a cylindrical shell or two straight lines
parallel to the fiber axis in the cases of circularly and
linearly polarized input light, respectively.

A detailed theoretical formulation for the trapping
potential using the guided modes of a nanofiber is
presented in Appendix C. The total atomic trap
potential Utot consists of the optical potential U and
the surface-induced potential V , that is,

Utot = U + V. (30)

The time-averaged optical potential of the induced
dipole moment d interacting with the driving electric
field E is given by

U = −
1
2
d(t) ·E(t) = −

1
4
|E|2Re[α] (31)

where |E|2 is proportional to the intensity of the
optical field and Re[α] is the real part of the complex
polarizability of the atom.

A typical calculated trapping potential is shown in
Fig. 11. The ground-state cesium atom has two strong
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Nanofiber quantum photonics 12

transitions, at 852 nm (D2 line) and 894 nm (D1 line).
To trap the atom red- and blue-detuned light fields
with wavelengths λ1 = 1.06 µm and λ2 = 700 nm,
respectively, are used. It may be seen that a trapping
minimum is formed within 200 nm of the fiber surface
with a trap depth of few mK. The two-color guided
mode trap has been experimentally demonstrated first
by Vetsch et al [37] and then followed by many groups
[38, 76, 77, 78, 54, 47].

Figure 12. The light shifts (optical potentials) of cesium atoms
in a two-color evanescentfield arounda nanofiber. The panels (a)
and (b) show the potentials for the excited-state manifold 6P3/2

and the ground-state manifold 6S1/2, respectively. The radius
of the fiber is a = 200 nm. The two laser beams are tuned to
the wavelengths λ1 = λR = 934.5 nm and λ2 = λB = 685.5 nm,
with the powers P1 = 11.5 mW and P2 = 48.5 mW, respectively.
Only the results for the transitions involving the excited-state
sublevels that are split from F = 5 are shown. From Ref. [30].

A major issue in these types of microscopic traps
is that the excited state can experience an ac Stark
shift of different sign and magnitude compared with
the ground state, leading to change in the resonant
frequency of the atoms in the dipole trap. Therefore,
due to the high spatial gradient of the trapping fields,
the resonant frequency of trapped atoms can vary
substantially with their position in the trap, leading
to dephasing and creating an obstacle for various
quantum optics experiments.

Kien et al have investigated the light shifts, of
the ground and excited states of atomic cesium in
a two-color evanescent field around a nanofiber [30].
They showed that by tuning one trapping field to
around 934.5 nm in wavelength (central red-detuned
magic wavelength) and the other field to around
685.5 nm in wavelength (central blue-detuned magic
wavelength), the light shifts of the 6S1/2 to 6P3/2

transitions can be minimized. The simultaneous use
of the red- and blue-detuned magic wavelengths can
allow state-insensitive two-color trapping and guiding
of cesium atoms along the nanofiber. Figure 12

shows the optical potentials of cesium atoms in a
two-color magic-wavelength trap around a nanofiber.
One can see that the excited- and ground-state optical
potentials have similar shapes. The deep minima for
the potentials are located close to each other in space,
indicating the possibility of state-insensitive two-color
trapping of cesium atoms around the nanofiber. Such
a state-independent trapping scheme can allow the
simultaneous operation of trapping and probing. A
state-insensitive and compensated two-color nanofiber
trap was first demonstrated by Goban et al [38, 76].

3. Fabrication and characterization of
nanofibers

Techniques for the fabrication of optical nanofibers
are now well known and used in many laboratories
throughout the world. The essential method is to
heat a standard optical fiber to soften the silica
sufficiently that it may be pulled and tapered [24,
25, 79, 80, 81, 82, 83, 84, 85]. The first creation
of subwavelength diameter fibers for guiding of light
is typically attributed to Tong. et al [24]. Other
important early efforts include that of Brambilla et
al and Clohessy et al in creating low-loss, sub-micron
tapers [79, 86]. Additionally, Sumetsky et al produced
sub-micron fiber tapers in order to determine how thin
a silica fiber could be and still guide light [87, 88].

In this section we will briefly review the fabrication
and measurement of optical nanofibers, with a focus
on the widely used “flame brush” technique as well
as recent methods to characterize the shape and
dimensions of nanofiber tapers.

3.1. Experimental fiber tapering

A schematic of a tapered fiber is shown in Fig. 13(a).
If a silica fiber with initial radius R0 is heated to its
softening point with a constant hot-zone of length L
and then pulled through a distance 2z0, a uniform waist
region of reduced radius R(z0) and length L is formed
at the center which tapers up smoothly on either
side to the original radius R0. Assuming that silica
which passes outside the hot-zone quickly hardens,
volume conservation allows us to derive the shape of
the tapered region which is found to be exponential,
i.e. [89]

R(z) = R0 exp(−z/L). (32)

If the hot-zone can be varied, it may be shown
that essentially arbitrary (although monotonically de-
creasing) taper shapes can be realized [89]. Commonly
used taper shapes include exponential tapers - useful
for creating tapers which reduce to sub-micron dimen-
sions over a short distance, and linear tapers, which
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(a)

(c)

(b)
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Figure 13. (a) Depiction of a fiber taper showing the definition
of the local fiber taper angle Ω. (b) Example of a measured
fiber taper profile from [80]. In this example, three different hot-
zone lengths were used. (c) SEM image of a typical nanofiber
sample with a diameter of around 530 nm. ((b) is included with
permission from [80].)

can be useful for producing adiabatic tapers for multi-
ple modes [90]. Measured and theoretically predicted
diameters for a multi-stage, linear taper produced by
Stiebeiner et al are shown in Fig. 13(b) [80]. The
scanning electron microscope (SEM) image of a typ-
ical nanofiber sample with a diameter of around 530
nm is shown in Fig. 13(c).

Experimentally, the most common method to
realize tapering with adjustable hot-zone length is by
sweeping a clean flame back and forth along the fiber
axis [83]. The effective hot-zone length is set by the
width of the sweep, allowing the tapering angle to be
adjusted. Other methods to create a hot-zone include
ceramic heaters [85] and CO2 lasers [91]. A broad
discussion of such methods may be found in Ref. [83].

3.2. Guided light transmission and the adiabatic
criterion

We now consider how a fiber taper of the type described
above transmits the fundamental mode. Adiabatic
mode transformation is a commonly used technique
to achieve high transmission in nonuniform optical
waveguides [93]. The key idea is to change the fiber
diameter slowly along the propagation direction of the
light such that all the optical power remains in a
single eigenmode, while the coupling to other modes is
suppressed. However, from the viewpoint of practical
application a finite length of the taper is essential. This
leads to the adiabatic criterion for the tapering angle.

When two orthogonal guided modes with wave
number β1 and β2 propagate in an optical fiber, their
fields beat with a spatial period zB = 2π/|β1 − β2|.
For the purposes of the present analysis, we will assume
that β1 is the propagation constant of the fundamental
mode HE11 and that β2 is the propagation constant of
the next higher order mode with the same symmetry as
the fundamental mode. In order to achieve adiabatic
mode transfer, the characteristic taper length zT =
R/ tan(Ω) should be larger than zB , where R and Ω
are the local radius and taper angle (see Fig. 13(a)),
respectively. From this intuitive length scale argument
one can find that the criterion for adiabatic tapering
of an optical fiber is given by

|Ω| � R

zB
=

R|β1 − β2|
2π

. (33)

The first presentation of this criterion is attributed
to Stewart and Love [92] and is discussed in more
detail in Synder and Love’s textbook [93] where it is
referred to as the slowness condition. In the same
textbook, a more rigorous treatment is given in terms
of coupled mode theory. Nonetheless, the heuristic
adiabatic criterion Eq. 33 is typically used in the
tapered fiber community and produces excellent results
in terms of allowing the design and realization of
high quality tapered nanofibers with transmission of
> 99% [81, 82, 84].

As shown in Fig. 14(a), the value of neff = β/k
for each mode depends on the radius of the fiber. In
this case, the maximum angle satisfying the adiabatic
criterion will also change with fiber radius, as shown
in Fig. 14(b). It is important to note that in the
region where the core begins to vanish, the fiber
mode transitions from a core-guided mode with weak
confinement due to the silica clad, to a clad guided
mode strongly confined by the silica-vacuum interface
(vacuum clad fiber). This transition region, known as
the core-mode cutoff, is the most critical region for
adiabatic tapers, and the region where the adiabatic
tapering angle takes its smallest value. As the vacuum
clad fiber becomes thinner, the fiber approaches the
single-mode condition, and the adiabatic taper angle
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(a)

(b)

Figure 14. (a) Effective refractive index of fiber guided modes
as a function of fiber radius R. (b) Adiabatic taper angle as a
function of fiber radius. The calculations are performed for an
commercial optical fiber (SM800) from Fibercore at a wavelength
of 780 nm. Figures are adapted from [82] with permission.)

rapidly becomes larger as the amplitude of the higher
order modes vanishes.

We note that the adiabatic criterion constrains the
local taper angle, but not its rate of change. Therefore,
the taper angle may change suddenly without causing
loss, so long as the new angle also satisfies the
adiabatic criterion. This fact conveniently allows the
fabrication of high transmission fiber tapers using hot-
zones which change discontinuously over a number
of stages. For example, a relatively long hot-zone
length can be used to taper through the core-mode
cutoff region, after which smaller hot-zones can be
used to quickly reduce the taper size without inducing
losses. Although fabrication of an optimally short
adiabatic taper requires a continuously varying hot-
zone length [84, 89], performing the taper in several
stages offers a simple strategy which is often sufficient
for most purposes.

3.3. Nanofiber diameter measurement

Optical nanofibers are typically characterized by their
length and their radius. Although their length is well
defined by the sweep length in the fabrication process,
it is often necessary to measure the radius precisely
in order for reliable comparison with theory to be
made. Measurement in a scanning electron microscope
allows simple determination of the nanofiber radius,
but it is often a destructive measurement, requiring the
mounting of the nanofiber in a special apparatus, and

Figure 15. Methods of non-destructive nanofiber diameter
measurement. (a) (Adapted with permission from [95].)
Experimental setup for probing of nanofiber diameter with a
microfiber. In this case, measurement of whispering gallery
modes was utilized to estimate the nanofiber diameter. (b)
(Adapted with permission from [97].) Experimental setup for
measurement of nanofiber diameter using a composite photonic
crystal cavity. SC, ONF and SA stand for super continuum
source, optical nanofiber and spectrum analyzer respectively. (c)
(Adapted with permission from [100].) Experimental setup for
measurement of nanofiber diameter using harmonic generation.

relatively high probability of exposing the nanofiber to
contaminants during the mounting process.

For the above reasons, in situ methods to optically
measure the nanofiber radii have been developed in
recent years. Below we briefly summarize these
methods and compare their merits and demerits.

One of the first optical methods for probing
fiber shape at the nano-scale was by Birks and co-
workers [94]. Here, the use of the whispering gallery
modes (WGMs) of the tapered fiber cross section for
the fiber under measurement were coupled to using
a second fiber taper (see Fig. 15(a)). It was shown
that this allowed sensitive determination of the taper
diameter to 1 part in 10,000. Sumetsky and co-workers
used related WGM methods to probe the diameter
of microfibers and nanofibers with angstrom levels of
accuracy [95, 96].

Another method which used a resonator to
determine the diameter of a nanofiber was that of
Keloth et al [97]. In this case, the resonator was
formed by bringing a nanostructured grating with
a central defect region into optical contact with
a nanofiber creating a defect mode cavity for the
nanofiber fundamental mode (see Fig. 15(b)). Because
the effective index modulation seen by the mode
depends sensitively on the nanofiber diameter, the
resonance wavelength of the composite cavity has
the same sensitive dependence, allowing a one-to-one
correspondence between cavity resonance wavelength
and nanofiber diameter to be determined. This
method reaches nanometer sensitivity, and requires no
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Nanofiber quantum photonics 15

post-processing of data since the nanofiber diameter
may simply be read off from the cavity resonance
wavelength once an initial calibration has been
performed.

Madsen et al used a method which involved
bringing the nanofiber to be measured into contact
with another probe fiber taper [98], experimentally
similar to Refs. [94, 95, 96]. However, in the case
of Madsen et al, transmission through the nanofiber
under measurement was recorded as light was scattered
by the measuring fiber taper. Because the drop
in transmission depends on the nanofiber diameter
at the point where the measuring taper touches it,
the nanofiber diameter may be calculated from the
transmission drop. With a similar experimental
setup, Fatemi et al analyzed the light coupled from
a nanofiber taper into a microfiber probe taper
analyzing the transmission into the probe fiber and
using detailed analysis of intermodal beating to achieve
sub angstrom accuracy in their diameter measurements
of the nanofiber [99].

Other methods rather different to those described
above have also been published recently. Wiedmann et
al used second and third harmonic generation in the
nanofiber region to sensitively estimate the nanofiber
diameter [100] (see Fig. 15(c)). The sensitivity
to nanofiber diameter in this case resulted from
the phase matching required for harmonic generation
which requires that the fundamental wavelength and
the generated harmonic wavelength both experience
the same effective refractive index - a condition which
is only satisfied at a certain fiber diameter. Also
recently, Xu et al demonstrated a real-time monitoring
of the micro/nanofiber waist diameter by measuring
the transmission drops caused due to the cutoffs of
higher order modes [101]. Most recently, Lai et al
used Rayleigh backscattering of light due to intrinsic
roughness of the nanofiber surface combined with a
detailed backscattering model to estimate the radius of
fiber tapers [102]. These methods have the advantage
that they do not require bringing the nanofiber
into contact with another object. However, they
also require detailed analysis in terms of theoretical
modelling and data processing.

As tapered fibers, become increasingly used in
different fields, non-destructive measurement methods
will become increasing important. As reviewed in
this subsection, a range of methods now exist for
in-situ measurement of tapered fiber diameter, with
most methods having sufficient accuracy (of order a
few percent or better) to make them competitive with
scanning electron microscope methods.

4. Interfacing neutral atoms

In this section, we review the experimental demonstra-
tions for interfacing laser-cooled atoms with nanofiber
guided modes. This includes spectroscopy and photon
correlation measurement of atomic fluorescence cou-
pled into the nanofiber guided modes, trapping atoms
using nanofiber guided modes, scattering of the guided
field by atoms under various settings leading to Bragg
reflection and non-reciprocal light transmission and
EIT and photon storage experiments.

4.1. Efficient channeling of atomic emission into
guided modes

a)

b)

Figure 16. (Color online) (a) Schematic diagram of the
experiment. Optical nanofiber is located at the waist of a
tapered optical fiber. The laser cooled atoms in a MOT
is overlapped with the nanofiber. APD denotes avalanche
photodiode. (b)Photon counts measured through the optical
nanofiber under three different conditions; (1) the MOT laser
beams and B-fields are switched off, (2) the MOT laser beams
are switched on, and (3) the MOT laser beams and B-fields are
switched on. From Ref. [33].

As discussed in Section 2, the spontaneous
emission of atoms can be strongly modified around
a nanofiber and a significant amount of atomic
fluorescence can be coupled into the guided modes of
the nanofiber [31, 64]. The coupling efficiency depends
on the fiber diameter and the position of atoms relative
to the fiber surface. The optimum coupling efficiency
can be realized for a condition of k0a = 1.45, where
k0 is the free-space propagation constant and a is the
radius of the nanofiber. This corresponds to a fiber
diameter of 400 nm for the D2-transition of Cs-atoms.
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Nanofiber quantum photonics 16

Under this condition a total coupling efficiency of 22%
can be realized close to the nanofiber surface. This
corresponds to 11% coupling into either direction of the
nanofiber guided modes. This opens the possibility to
detect few atom fluorescence through the fiber guided
modes. The coupling efficiency decreases exponentially
with atom-fiber separation. In particular, the total
coupling efficiency decreases to 6% at one radius away
from the fiber surface. In order to realize an interaction
time longer than the atomic spontaneous emission
lifetime of 30 ns, laser cooled atoms are typically used.

4.1.1. Spectroscopy of laser-cooled atoms Nayak et al
have demonstrated coupling of atomic fluorescence into
nanofiber guided modes and spectroscopy of a small
number of laser cooled atoms in the vicinity of the
surface of a nanofiber [33]. A brief schematic of the
experiment is shown in Fig. 16(a). The nanofiber
was located at the waist of a tapered single-mode
optical fiber. A cloud of laser-cooled Cs-atoms in a
magneto optical trap (MOT) was overlapped with the
nanofiber and the fluorescence of the atoms around
the nanofiber was measured at the end of the tapered
fiber using an avalanche photodiode. The diameter of
the nanofiber was 400 nm over a length of 2 mm and
the transmission of the tapered fiber was 87% which
was further reduced to 40% after installation. The
number density of the MOT was 2 × 1010 atoms/cm3

and the temperature of the atom cloud was 200 µK.
The MOT cloud was overlapped with the nanofiber by
using an offset B-field in three perpendicular directions
while observing the MOT and fiber position outside
the chamber using CCD cameras in two orthogonal
directions. After overlapping the MOT with the
nanofiber, the MOT density was reduced by 3 times
and the cloud temperature increased to 400 µK. It is
interesting to note that the MOT (400 µK) and the
nanofiber (300 K) had temperatures which differed by
six orders of magnitude and yet were still able to co-
exist.

After overlapping the MOT with the nanofiber,
the atom fluorescence was readily observed through
the nanofiber guided modes. Typical photon count
measurements made through the nanofiber are plotted
in Fig. 16(b). The photon counts are plotted for three
conditions: (1) both MOT laser beams and B-fields are
switched off, (2) MOT laser beams are switched on, and
(3) both MOT laser beams and B-fields are switched
on. A fluorescence photon count rate of 3×105 counts/s
was observed from MOT atoms above a scattering
background of 8× 105 counts/s from the MOT beams.
Assuming an effective observation region of 200 nm
around the nanofiber, from the MOT dimensions and
density, they estimated an effective atom number of
5 in the observation region. Assuming an average

coupling efficiency of 6% they estimated an observable
fluorescence photon count rate of 6 × 105 counts/s
which reasonably agreed with the observed value.

Morrissey et al have used a similar technique to
characterize the MOT cloud [103]. They measured
the MOT size and shape by monitoring the MOT
fluorescence through the nanofiber guided modes.
They also investigated the loading rate and lifetime of
the MOT. Russell et al implemented such a technique
to measure the temperature of the atom cloud. They
induced an oscillation of the MOT cloud by modulating
the magnetic field and then compared the frequency
response of the modulation of the cloud position [104]
monitored by measuring the fluorescence through the
nanofiber. From this measurement they could estimate
the cloud temperature both above and below the
Doppler limit. Russell et al have also performed release
- recapture temperature measurements of laser-cooled
atoms using an optical nanofiber in a MOT [105].

Figure 17. (a) Excitation spectra of the laser cooled
atoms measured through the nanofiber guided modes for two
excitation intensities; (1) 3.2 mW/cm2, and (2) 0.32 mW/cm2 .
The detuning ∆ is measured relative to atomic resonance.
The detuning axis is also represented as the atom-surface
separation z, which is calibrated assuming vdW interaction.
(b) Theoretically calculated spectra for the photoassociative
transitions (dashed curve) and the bound to bound transitions
(dotted curve). From Ref. [33].

In order to eliminate the scattering background
from the MOT beam and to investigate the laser
induced fluorescence spectrum of atoms around the
nanofiber, Nayak et al implemented a fluorescence
measurement scheme using a probe beam [33]. In this
measurement scheme, the MOT beams were switched
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Nanofiber quantum photonics 17

off periodically for 10 µs in every 200 µs. During the
dark period of 10 µs the fluoresecence measurements
were performed by exciting the atoms using a probe
beam introduced perpendicular to the nanofiber in a
standing wave configuration. By scanning the probe
beam frequency across the resonance of 6S1/2, F = 4 →
6P3/2, F

′ = 5 transition, the fluorescence excitation
spectra of atoms were measured through the nanofiber
guided modes [33]. The observed spectra are displayed
in Fig. 17(a) for two probe intensities. The observed
line shape is drastically different from the usual atomic
line shape. The spectrum shows a long tail in the red
detuned side and consists of two peaks. One peak is
almost on the atomic resonance and shows a small red
tail. The other peak is located around a detuning of ∆
=-30∼-50 MHz and shows a long red tail up to ∆=-140
MHz.

Figure 18. (Color online) Fluorescence excitation spectra of
laser cooled atoms, measured through the nanofiber guided
modes for the closed-cycle transition, 6S1/2, F = 4 →
6P3/2, F ′ = 5. The detuning is measured with respect to the
atomic resonance. Traces A and B denote the spectra measured
before and after the violet laser irradiation, respectively. From
Ref. [35].

Regarding the photon counts, the signal-to-noise
ratio was greatly improved by using this method.
At resonance a maximum fluorescence count rate of
1.2 × 104 counts/s was observed above a scattering
background of 2.5× 103 counts/s. From the scattering
counts due to the probe beam they estimated a
scattering probability of 3.7 × 10−8. However, the
fluorescence count rate was also reduced by 20
times compared to the direct observation of MOT
fluorescence. This was attributed to loss of atoms in
the observation region due to adsorption of atoms on

the nanofiber surface.
The observed line shape was attributed to the van

der Waals (vdW) interaction between the Cs-atom and
the nanofiber surface. Due to the interaction with the
surface, the atomic resonance can be red-shifted by
∆νvdW ≈ ν/(k0z)3, where z is the distance of atom
from the surface. As shown in Fig. 17(a), from the
above relation, they calibrated the detuning axis as
the atom position from the surface, using a parameter
ν ≈ 0.8 MHz for Cs-atom and glass surface.

The spectrum was further investigated by calcu-
lating the eigenstates of the center-of-mass motion of
the atom in the close vicinity of the nanofiber. The de-
tails of the calculations are reported in Ref. [106, 107].
The eigenstates are essentially analogous to molecular
vibrational states where the molecule consists of the
nanofiber and the Cs-atom. Simulations were carried
out for two types of transitions. One is for the transi-
tions from free ground atomic states to the bound vi-
brational states of the excited vdW potential (photoas-
sociative transition) as shown by dashed curve in Fig.
17(b). The other is for transitions from bound ground
vibrational states to bound excited vibrational states
(bound to bound transition) as shown by dashed curve
in Fig. 17(b). Thus they assigned the observed red
shaded peak on the atomic line to a photoassociation
process and the other broad spectrum to the bound-
to-bound vibrational transitions for atoms in the vdW
potential.

In their subsequent publications Nayak et al
reported a dramatic change in the excitation spectrum
after irradiating the nanofiber with a violet laser of
wavelength 407 nm [35, 108]. The measured spectra are
shown in Fig. 18. The trace A denotes the spectrum
measured before irradiation by the violet laser and
is similar to the one discussed in Fig. 17. Trace B
denotes the spectrum measured after irradiation by the
violet laser. The irradiation condition was as follows:
the nanofiber region was irradiated with 150 mW/cm2

intensity violet laser while the MOT was overlapped
on the nanofiber and the spectrum was measured after
switching off the violet laser. A dramatic change in the
spectrum may clearly be seen. The broad spectrum in
the red detuned side disappeared and the sharp peak
near resonance was enhanced by 30 times. Although
the spectrum was still found to be slightly asymmetric,
it became narrower similar to the spectrum of an atom
in free space and the FWHM was measured to be 15
MHz.

Although the exact mechanism of the effect due
to the violet laser was not conclusively determined,
it was understood that the violet laser modified the
surface of the nanofiber in such a way that atoms
were far less likely to fall into the surface potential.
As a result the red side tail due to the bound to
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Nanofiber quantum photonics 18

Figure 19. Emission spectra (gray curves) of laser cooled
atoms measured through the nanofiber guided modes. The
spectra are derived from the Fourier transform of the photon
correlation signals for two different detunings of the excitation
laser frequency, (a) ∆ = +20 MHz and (b) ∆ = −20 MHz. The
resolution of this measurement is 250 kHz. The frequency axes
denote the detuning from the atomic resonance 6S1/2, F = 4 →
6P3/2, F ′ = 5. The black curve in (a) is the theoretical fit. From
Ref. [108].

bound transition was strongly suppressed and the
atoms around the nanofiber behaved as free atoms.
This was further evident from the observed single atom
behavior in photon correlation experiments (discussed
in subsubsection 4.2.2) [35]. Single atom behavior was
observed only under the same conditions as that which
give trace B in Fig. 18. In additional experiments,
Das et al have measured the fluorescence emission
spectrum under the same condition. They employed a
combined heterodyne and photon correlation technique
to measure the fluorescence emission spectrum of
atoms around the nanofiber. Under the same
conditions which gave trace B in Fig. 18, they observed
clear Mollow triplet-like behavior [109].

Further details of the effect of a violet laser irradi-
ation on the nanofiber-MOT system were reported in
Ref. [108]. It was found that the violet laser irradi-
ation was effective only in the presence of the MOT.

This suggested that the photoionization of the MOT
atoms modifies the nanofiber surface. After switch-
ing off the violet laser the spectrum gradually changed
from a condition similar to that seen in trace B of Fig.
18. The red tail gradually increased and finally settled
to a condition similar to that seen in trace A of Fig.
18. The rate of change was found to be proportional
to the background atom density and did not depend
on whether the MOT was overlapped with nanofiber.
Therefore, it was understood that hot atoms from the
background gas stick to the nanofiber surface, modify-
ing the surface condition. The fluorescence emission
spectrum under an intermediate condition was also
measured to check for free and bound atom behaviors.
Free and bound atoms were excited by choosing a blue
and red detuned excitation, respectively. Figure 19(a)
and (b) shows the fluorescence emission spectrum mea-
sured for an excitation detuning of ∆ = +20 MHz and
∆ = −20 MHz, respectively. As seen in the figure,
clear Mollow triplet behavior was observed for an exci-
tation detuning of ∆ = +20 MHz indicating free atom
like behavior. However the Mollow triplet behavior was
completely washed out for the excitation at ∆ = −20
MHz. This was taken as evidence for molecular behav-
ior due to formation of atom surface bound states.

Many groups are working on a similar setup
where a cloud of laser-cooled atoms is overlapped
with the nanofiber. However, there has not been any
further study on the topic of atoms sticking to the
nanofiber surface. Some groups have reported that
the nanofiber transmission drops due to such atom-
surface adsorption effects. However, it was reported
that transmission could be recovered by heating up the
nanofiber by sending around a few µW to a few mW
of laser power through the guided modes [110, 111].

4.1.2. Photon statistics and single atom detection
Nayak et al have demonstrated that single atoms can
be detected using an optical nanofiber by measuring
the photon correlation of the fluorescence signal
measured through the nanofiber guided modes [35].
The fiber guided fluorescence signal was split into two
channels using a 3 dB fiber coupler and the photon
correlations between the two channels were measured
using a time-correlated photon counter. In order to
reduce the atom number in the observation region the
MOT density was reduced by decreasing the Cs atom
dispenser current (ID) and the excitation laser was
shone perpendicular to the nanofiber and focused to
100 µm to excite only a small region of the MOT cloud.

Observed photon correlation signals are shown
in Fig. 20(a). The figure shows the coincidences
of photon events observed in the two channels
as a function of the delay time between them.
Antibunching of fluorescence photons at zero time-
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Nanofiber quantum photonics 19

Figure 20. (Color online) (a) Photon correlations of
fluorescence signal from the atoms around the nanofiber. τ
denotes the delay time between the two channels. The green and
red traces show the photon coincidences measured for dispenser
currents ID=3.8 A and 4.0 A, respectively. The pink curve
shows the photon coincidences of the background light measured
without atoms. The dashed curves denote the theoretically
calculated photon coincidences for average atom number n ' 0.3
and 1.7, respectively. (b) The green curve shows the normalized
correlation for longer timescale, measured through the nanofiber,
for ID = 3.8 A. The black dashed curve is the exponential fit to
the data. From Ref. [35].

delay may clearly be seen, and Rabi oscillation
behavior was observed in the wings. They assumed
a Poissonian distribution of atom number and hence
the observed coincidences could be fitted using the
relation, g

(2)
n (τ ) = 1

ng(2)(τ ) + 1, where n is the average
atom number, g

(2)
n (τ ) and g(2)(τ ) are the normalized

correlation functions for n atoms and a single atom,
respectively. Fitting the experimental observations
using the above relation yielded an average atom
number n = 0.3 and 1.7 for Cs atom dispenser currents
ID = 3.8 A and 4 A, respectively. As shown in
Fig. 20(b), the normalized coincidences for longer
timescales show an exponential decay with a time
constant of 1.8 µs. The observed antibunching of

fluorescence photons in Fig. 20(a) confirms that single
atoms can be detected using an optical nanofiber.
The observed decay in the correlation at much longer
timescales as shown in Fig. 20(b) was attributed to the
dwell time of the single atom in the observation volume.
Assuming an atom temperature of 100 µK, the dwell
time of 1.8 µs corresponds to an atom transit-length of
about 200 nm.

Grover et al have further investigated the
temperature measurement of an atomic cloud around
a nanofiber by measuring photon correlations [110].
They measured the temporal width of the photon
correlation function due to the atomic transit time
and used it to determine the most probable atomic
velocity and, hence the temperature. They confirmed
the results with standard time-of-flight temperature
measurements and trajectory simulations.

b)a)

Figure 21. (Color online) Second-order correlations (red solid
curves) between fluorescencephotons emitted into the nanofiber,
when the excitation laser is in a traveling wave configuration.
The panels (a) and (b) show the measured correlations for one-
end and opposite-endobservation schemes, respectively, for three
different dispenser currents (i) 3.8 A, (ii) 4.6 A, and (iii) 5.0 A.
The black dashed curves show the theoretical fittings and the
estimated average atom numbers are denoted by n. From Ref.
[36].

Nayak et al have further reported a detailed
investigation of photon correlations in resonance
fluorescence from a few atoms into the guided
modes of a nanofiber [36]. Because the nanofiber
method inherently implies single-mode observation
of atomic fluorescence, the photon correlations must
evolve as interplay between first and second order
correlations when the atom number varies [112]. They
demonstrated that the photon correlations measured at
one end of the nanofiber varied from antibunching to
bunching with increasing atom number and the photon
correlations measured at opposite ends were always
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Nanofiber quantum photonics 20

antibunching-like regardless of the number of atoms.
Prior to the experimental demonstration, Kien et

al reported a detailed theoretical analysis of photon
correlations in multi-atom resonance fluorescence
measured through a nanofiber [112]. Based on
the formalism developed in [112], the second-order
correlation function can be written as

G(2)
n (τ ) ∝ ng(2)(τ ) + n2{µ0 + µ|g(1)(τ )|2δfa,fb

+µ′|g(1′)(τ )|2δfa,−fb} (34)

where n is the average atom number, fa and
fb denote the observation directions, and τ denotes
the delay time. In deriving the above formula,
a Poissonian distribution for the atom number in
the observation region was assumed. g(2)(τ ) ∝
〈A†

j(a)A†
j(b)Aj(b)Aj(a)〉 is the second-order correlation

function for emission from a single atom and has
antibunching behaviour at τ = 0, while g(1)(τ ) ∝
〈A†

j(a)Aj(a)〉 and g(1′)(τ ) ∝ 〈A†
j(a)A†

j(b)〉 are the first-
order correlation functions which have bunching and
antibunching behavior, respectively at τ = 0. Here
a and b denote the detector positions and Aj is the
operator for the amplitude of the flux of photons
emitted from the jth atom into the guided modes. It
may be noted that the g(2)(τ ) term scales as n while
the other terms scales as n2. This implies that the
first-order correlations will dominate with increasing
atom number. Additionally, it should be noted that
the g(1) term contributes only to same direction (one-
end) correlation, while the g(1′) term contributes only
to opposite direction (opposite-end) correlation. The
correlation function differs from that for freespace
observation through the coefficients µ0, µ, and µ′,
which are determined by the mode profile function of
the guided modes.

Figure 22. (Color online) The measured correlations between
fluorescence photons emitted to opposite-ends of the nanofiber
guided modes (solid curves) for two excitation schemes: (a)
standing wave and (b) traveling wave. The black dashed curves
are the theoretical fittings. The estimated average atom number
is n ∼ 13. From Ref. [36].

The experimentally observed photon correlations
for the traveling-wave excitation scheme for the one-
end and opposite-end measurements are shown in
Fig. 21(a) and (b) respectively. It may be clearly

seen that at lower dispenser current, i.e. when the
average atom number is less than 1, the two types
of observation schemes show clear antibunching of
fluorescence photons. However, for higher dispenser
current of ID =5.0 A, the average atom number is
∼10 and there is a drastic difference between the
two types of correlations. The one-end correlation
shows a bunching behavior and the opposite-end
correlation shows the antibunching behavior. The
bunching behavior in the one-end correlation is well
understood from the contribution of the g(1)term.
The observations are fitted using Eq.(34) yielding
the corresponding atom numbers as indicated. The
coefficients µ0 =0.36 and µ=0.22, used for fitting also
corresponded well to the theoretical value. However
for the opposite-end correlation, the contribution of
the g(1′) term was not observed and they had to use
µ=0 to fit the observations.

Furthermore, it was demonstrated that the
excitation geometry is crucial to observe the g(1′) term
in opposite-end correlations [36]. The opposite-end
correlations at higher atom number are compared in
Fig. 22(a) and (b), for standing and travelling wave
excitation respectively. It can be seen that the wings
are higher for the standing-wave scheme than for the
traveling-wave scheme. This suggests that the g(1′)

term in opposite-end correlations can be observed by
standing-wave excitation. This was attributed to the
effect of the spatial dependence of the phase of the
excitation beam and the transverse spread of the atom-
position distribution in the observation region around
the nanofiber.

4.2. Trapping atoms on a nanofiber

Out of the various proposals for trapping atoms around
a nanofiber, only the two-color guided mode trap has
been experimentally realized so far, and the method
has been widely adapted. A conceptual description,
along with a detailed theoretical formulation of the
trapping potential, are discussed in Section 2 and
Appendix C, respectively.

The experimental realization of two-color nanofiber
trapping was first demonstrated by Vetsch et al [37,
113, 114]. They trapped cesium atoms using a 500
nm diameter nanofiber. A schematic of the experi-
ment is shown in Fig. 23(a). Blue-detuned light at
780 nm with a power of 25 mW was launched into the
fiber in a travelling wave configuration and the red-
detuned light at 1064 nm with a power of 2 x 2.2 mW
was launched in a standing wave configuration to cre-
ate a linear array of trapping sites on the nanofiber.
In order to achieve maximum azimuthal confinement
the states of polarization of the dipole laser beams at
the nanofiber waist were aligned perpendicular to each
other. The state of polarization was verified by ob-
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Nanofiber quantum photonics 21

Figure 23. (Color online) (a) Schematic diagram of the
experimental setup for the two-color nanofiber trap. The blue-
and red-detuned lasers used for creating the trapping potential
are launched into the tapered fiber in traveling and standing
wave configurations, respectively. A weak resonant laser was
used for probing the atoms via the evanescent field. (b) The
fluorescence image of the trapped atomic ensemble. From Ref.
[37].

serving the angular distribution of the Rayleigh scat-
tered light from the nanofiber perpendicular to its axis.
Cesium atoms were first collected and laser-cooled in
a MOT overlapped with the nanofiber and then the
nanofiber trap was loaded during an optical molasses
phase. A fluorescence image of the trapped atoms is
shown in Fig. 23(b).

The trapped atoms were probed by measuring the
absorption spectrum of weak probe light launched into
the fiber. A typical absorption spectrum is shown in
Fig. 24(a). A dramatic increase in the optical depth
(OD) due to the trapping of atoms may readily be seen.
Fitting yielded an OD of 13(2) for a detuning of 13
MHz and FWHM of 20 MHz. The shift and broadening
were attributed to the state dependent light shift of
the transition frequency induced by the trapping laser
fields. The number of atoms was determined from the
saturation measurement shown in Fig. 24(b). At high
saturation the ensemble of trapped atoms absorbed 7.5
nW of the probe. Comparing this with the power
radiated by a single saturated Cs-atom of 3.8 pW,
yielded the number of trapped atoms to be 2000. From
this analysis, they inferred an average absorbance per
atom of 0.65%. Additionally, the trap lifetime was
measured to be 50 ms, which was much smaller than
the lifetime expected from background gas collisions.

A detailed investigation of the reduced trap
lifetime in such a guided mode trap was addressed
in Ref. [114]. Various types of heating mechanisms
were experimentally investigated. It was inferred that
the phase fluctuations of the standing wave trapping

field is the dominant heating process that probably
leads to the limited lifetime. In a later publication,
Wuttke et al reported that mechanical oscillations of
the nanofiber in the form of high-Q torsional modes can
optomechanically couple to the nanofiber guided field
leading to phase and polarization fluctuations [115].
They pointed out that this may be another factor
contributing to the reduced lifetime of atoms in the
guided mode trap.

Reitz et al have further studied the ground state
coherence properties of the atoms in such guided
mode traps [116]. They used microwave radiation
to coherently drive the clock transition. From the
measured Ramsey fringes and spin echo signals they
inferred a reversible dephasing time of T ∗

2 = 0.6 ms and
an irreversible dephasing time of T ′

2 = 3.7 ms. From
theoretical modeling, they inferred that the coherence
times T ∗

2 and T ′
2 are mainly limited by the finite initial

temperature of the atomic ensemble and the heating
rate, respectively. However, the observed coherence
times have opened possibilities to implement such an
atom-nanofiber interface for various applications in
quantum photonics.

Goban et al demonstrated a state-insensitive and
compensated two-color nanofiber trap of Cs-atoms [38,
76]. They implemented pairs of counterpropagating
red- and blue-detuned trapping beams at wavelengths
of λR = 937 nm and λR = 686 nm, that is,
close to the red-detuned and blue-detuned magic
wavelengths, respectively. The polarization states
of the trapping fields were chosen to be parallel
to each other. Differential scalar light shifts were
eliminated by the use of magic wavelengths, and
the inhomogeneous Zeeman broadening due to the
vector light shift was suppressed by 250 times due
to the use of the counterpropagating configuration.
In order to avoid mismatch in the standing waves of
red and blue-detuned light, a large detuning between
the counterpropagating blue-detuned beams was used
leading to an effective moving standng wave. They
measured an absorption linewidth Γ/2π = 5.7 ± 0.1
MHz for the trapped Cs-atom 6S1/2, F = 4 →
6P3/2, F

′ = 5 transition, where Γ0/2π = 5.2 MHz in
free space. They inferred an optical depth per atom of
0.08 from the measured OD of 66. A trap lifetime of
12 ± 1 ms was measured, which was further extended
to 140± 11 ms by polarization gradient cooling.

Several other groups have also implemented such
two-color nanofiber traps [77, 78, 54, 47]. Apart from
the HE11 mode trapping schemes there are several
interesting proposals for using higher order modes of
nanofibers for trapping atoms [117, 118]. Moreover,
proposals exist for trapping using illumination of the
nanofiber from the side [119]. A similar idea of side
illumination trapping has been implemented for the
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Nanofiber quantum photonics 22

Figure 24. (Color online) (a) Absorption spectrum (black
squares) for atoms trapped around a nanofiber. The spectrum
is measured by monitoring the transmission of a weak probe
field through the nanofiber after loading the trap. For reference,
the spectrum of the MOT cloud (green line) measured through
the nanofiber is plotted. The red line is a theoretical fit. (b)
Saturationmeasurement (blue circles) for estimating the number
of trapped atoms. The red line is a theoretical fit. From Ref.
[37].

optical tweezer based trapping of single atoms on
nanofiber and nanobeam cavities [12].

4.3. Scattering of the guided field by atoms around
nanofiber

Due to the subwavelength confinement of light in the
nanofiber guided modes, a single atom in the vicinity
of the nanofiber can be excited within the atomic
absorption cross-section. As a result the single atom
can significantly scatter the guided field. Kien et
al have investigated the scattering of an evanescent
light field by a single cesium atom outside a nanofiber
[32]. They showed that the confinement of the field
and the presence of the longitudinal field component
substantially affect the scattering process. They have
estimated that, the transmittance of the field can be
substantially reduced to 48% due to scattering into
radiation modes (with the efficiency as high as 44%)
and backward guided modes (with the efficiency as high
as 8%).

Figure 25. (Color online) Backscattering properties of an array
of atoms trapped in a two color trap around the nanofiber. The
black dots show the measured backscattered power per trapped
atom as a function of P+

i . The four panels show the data
for different polarizer-analyzer settings as indicated. Each data
point is the average of 80 experimental runs. The solid black
lines are fits obtained by an ab initio model that includes the
multilevel structure of the atoms and the full vectorial properties
of the guided field. The dash-dotted red, dashed green, and
dotted blue lines are calculated using the ab initio, the intensity-
only, and the polarization-only models, respectively. From Ref.
[121].

The scattering of the guided field by laser-cooled
atoms around the nanofiber was first demonstrated by
Sagué et al [34]. They measured the transmission
spectrum of a weak probe field guided through the
nanofiber overlapped with a laser-cooled atom cloud.
They demonstrated that for an average atom number of
2 atoms in the vicinity of nanofiber, 20% of the guided
light can be scattered at the on-resonance condition.
They have further analyzed the spectral profiles
measured for different probe powers, considering the
light-induced dipole forces, van der Waals interaction,
and enhancement of the spontaneous emission rate of
the atoms around the nanofiber. Additionally, Kumar
et al have measured the transient absorption of the
guided mode field in order to estimate the temperature
of the atoms around the nanofiber. Temperature
variations from 160 µk to 850 µk, for a probe power
ranging from 0 to 50 nW, have been observed [120].

Vetsch et al have demonstrated scattering of fiber
guided light by atoms trapped in two diametrically
opposite linear arrays around the nanofiber as shown
in Fig. 24 [37, 113]. Similar measurements were
also reported by Goban et al in a state-insensitive
and compensated nanofiber trap [38]. There, they
also measured the reflection spectrum by varying the
number of trapped atoms. A broadening of the
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reflection spectrum was observed with increasing atom
number which they attributed to the randomness of
the atomic distribution.

Reitz et al have reported a detailed analysis of
backscattering properties of an array of atoms trapped
in a two color trap around the nanofiber [121]. The
array of atoms are trapped in two lines at azimuthally
opposite directions on the nanofiber. The polarization
along the axis containing the atoms is the strong-
coupling axis (SCA) and that orthogonal to this
axis is the weak-coupling axis (WCA). They have
measured the saturation and polarization properties
of the backscattered light for polarization of the
excitation guided field aligned to SCA and WCA. The
observations are shown in Fig. 25. Backscattering
was observed for arbitrary input polarization and the
backscattered power at saturation was found to be
3 orders of magnitude smaller than the input power.
For the input polarization along the SCA, saturation
occurs at lower input powers. A crucial observation
was that significant backscattered power was found for
the crossed polarizer-analyzer setting, which revealed
the presence of an inelastic scattering mechanism that
changes both the polarization of the scattered light
and the internal state of the atom. The observations
could only be understood by an ab initio model that
included the multilevel structure of the atoms and the
full vectorial properties of the guided field. The fitting
to the data are shown by the black curves in Fig. 25.

Figure 26. (Color online) (a) Density plot of the intensity
profile of a quasilinearly polarized HE11 mode propagating in
the +z direction, calculated for λ = 852 nm. The trapped
atoms are indicated by the yellow dots. The WCA and SCA are
indicated by two dashed lines. Here the main polarization axis
(green double arrow) coincides with the WCA (φ = π/2). (b)
Modulus squared of the normalized spherical tensor components
(ε−1, ε0, ε+1)/|ε| of the field for the right-hand-side atom as a
function of φ, plotted in red, green, and blue, respectively. The
components ε−1 and ε+1 have to be interchanged for the left-
hand-side atom. From Ref. [121].

The complexity of the polarization of the guided
mode which is strongly nonparaxial can be understood
as being due to the tight confinement of the guided

field. As a result of the steep gradient of the transverse
components, the evanescent region locally exhibits a
significant longitudinal polarization component that
is π/2-phase shifted with respect to the transversal
components, as discussed earlier in Section 2. The total
intensity and the longitudinal field component and
thus the polarization vary azimuthally. The intensity
profile of a quasilinearly polarized nanofiber guided
field is shown in Fig. 26(a) [121]. Its main transversal
polarization component and the plane containing the
atoms enclose an angle φ. Figure 26(b) shows the
modulus square of the normalized spherical tensor
components as a function of φ, of the probe field
propagating in +z direction, at the position of the
atom assuming the quantization axis along y-axis. If
the polarization is aligned along the WCA (φ = π/2),
the intensity is minimum and the field is purely linear
at the position of the atoms and drives π transitions.
If the polarization is aligned along the SCA (φ =
0, π), the intensity is maximum at the position of the
atoms and the polarization is almost circular. The
field then essentially drives the σ−(σ+) transitions for
atoms located at x < 0(x > 0). If the probe field
propagates in the reverse direction (−z direction) then
the polarization is reversed at the atom position.

Such an understanding of the complex polariza-
tion of the guided field has led to a series of interesting
experiments demonstrating the chiral light-matter cou-
pling on the nanofiber [55, 56, 122, 123, 124]. Below
we review the experiments performed with an array of
atoms trapped on the nanofiber.

Mitsch et al have demonstrated optical state
preparation and manipulation by exploiting the
polarization properties of the guided field [122]. They
used atoms trapped in two diametrically opposite
linear arrays around the nanofiber and, by using
a single optical mode, the two atomic ensembles
were simultaneously optically pumped to opposite
Zeeman states. Moreover, using the state-dependent
light shifts, they demonstrated independent coherent
manipulation of the two ensembles. Using such precise
control of quantum state, Mitsch et al have also
demonstrated directional spontaneous emission from
an array of trapped atoms on a nanofiber [55]. They
were able to tune the spontaneous emission into the
counterpropagating guided modes from symmetric to
strongly asymmetric, where more than 90% of the
fluorescence could be launched into one or the other
direction.

Sayrin et al, have further extended the idea to
demonstrate non-reciprocal light transmission through
a array of atoms trapped on the nanofiber thus
realizing an optical isolator controlled by the internal
state of atoms [56]. They used a spin polarized linear
array of atoms trapped on the nanofiber and measured
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Figure 27. (Color online) Nonreciprocal transmission of
photons interacting with an ensemble of spin-polarized atoms
trapped around a nanofiber. Transmissions T− (red circles) and
T+ (blue circles) and isolation I (black squares) as a function
of the chirality χ, calculated at the position of the atoms. The
lines overlaid on the data are the result of a numerical calculation
with 〈N〉 ∼ 27. The error bars indicate the 1σ statistical error
based on counting statistics. Inset: Cross section of the optical
nanofiber (gray disk) including the trapped atoms (blue sphere)
and the main polarization axis of the guided field (green double
arrow). The angle between the main polarization axis of the
guided field and the x axis is denoted as φ. From Ref. [56].

the transmission of a quasilinearly polarized weak
probe field propagating in the forward and backward
direction. The results of forward and backward
transmission are plotted in Fig. 27 as a function
of polarization. When the polarization is aligned
along the atom position (φ = 0), the chirality takes
maximum value χ = 0.84 and there is a strong
nonreciprocal transmission T+ = 0.13±0.01 and T− =
0.78 ± 0.02 demonstrating an isolation of I = 7.8 dB.
When the polarization is aligned to the perpendicular
axis (φ = π/2), there is no chirality (χ = 0) leading to
equal transmission in both directions.

Based on such experimental advances, Kien et
al have re-investigated the scattering problem in
a more general formalism, considering the complex
polarization properties of nanofiber guided modes and
complex transition structure of the atom. They
have shown that the scattering of the guided field
by an atom can be asymmetric with respect to the
forward and backward directions and depends on the
polarization of the probe field [70]. Such anisotropy
in scattering of light is a result of the complex
transition structure of the atom and the existence
of a longitudinal component of the guided-mode.
Further Kien et al have investigated the propagation
of nanofiber guided light through an array of atoms
[125]. They have shown that when the array period is

far from the Bragg resonance, the backward scattering
is weak. Conversely, if the period satisfies the Bragg
resonance condition, most of the guided probe light
can be reflected back into the backward propagating
guided mode over a broad region of field detunings even
though there is an irreversible decay channel into the
radiation modes.

Figure 28. (Color online) Reflection and transmission spectra
for a probe quasilinearly polarized along the y direction (atoms
are trapped along x direction). (a) and (b) Experimental results
and (c) and (d) the simulated spectra for ∆λ =0.12 nm and
∆λ = 0.2 nm, respectively. From Ref. [47].

Sorensen et al [46] and Corzo et al [47]
have experimentally demonstrated coherent Bragg
scattering of the guided field by an array of atoms
trapped on the nanofiber. Sorensen et al have used
a two color (red (standing wave) and blue detuned
(traveling wave) wavelength of 1057 nm and 780
nm) nanofiber trap to trap atoms and used near
resonant light (detuning of -176 MHz) in standing wave
configuration to structure the atomic array to satisfy
the Bragg resonance condition [46].

On the other hand Corzo et al have used a laser
with detunings of ∆λ =0.12 and 0.2 nm from the
resonance as the red detuned standing wave laser for
trapping the atoms on the nanofiber [47]. This satisfies
the slightly detuned Bragg resonance condition. The
reflection and transmission spectra of the resulting
atomic Bragg mirror is shown in Fig. 28. It may
be seen that for both the detunings of the trapping
laser, a broad reflection band was observed with a peak
reflectance of around 0.65 on the blue detuning side.
The reflection spectra for a detuning of ∆λ = 0.2 nm is
slightly narrower and shifted towards the low frequency
side. The observations agreed well with numerical
simulations.

Dawkin et al have demonstrated a dispersive
interface for nanofiber guided light using an ensemble
of 1000 atoms trapped in the vicinity of an
optical nanofiber [126]. This method relies on the
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Nanofiber quantum photonics 25

Figure 29. (Color online) Phase shift φ‖ of the eigenmode
parallel to the atom trapping axis, induced by 1000 atoms and
measured as a function of the detuning from the free-space
transition frequency. From Ref. [126].

azimuthally asymmetric coupling of the ensemble with
the evanescent field of an off-resonant probe beam,
transmitted through the nanofiber. They used a
polarization spectroscopy method to estimate the
phase shift induced by the atoms. The measured
phase shift φ‖ for the eigenmode parallel to the atom
trapping axis is shown in Fig. 29 as a function of
detuning of the probe field from the atomic resonance.
One can see that the phase shift approaches 1 rad
around a detuning of six times the natural linewidth
corresponding to a phase shift per atom of ∼ 1 mrad.
Furthermore, they have implemented such a dispersive
technique to nondestructively determine the number
of atoms. Solano et al have implemented such a
dispersive and nondestructive technique to measure the
transient response of the atomic motion in the trap and
measured the trapping frequency of the nanofiber trap
[127].

There are also theoretical proposals for using the
guided field to control the motion of atoms around
the nanofiber. Kien et al have shown that there can
be negative azimuthal force on particles around the
nanofiber [128]. Sadgrove et al have proposed a tractor
beam effect for ultracold atoms in the vicinity of a few-
mode nanowaveguide [129]. Atoms trapped near the
waveguide can be transported in a direction opposite to
the guided mode propagation direction. There are also
proposals and demonstrations for using higher order
modes to increase the fluorescence collection and probe
absorption [130].

4.4. Quantum nonlinear optics with an atomic
ensemble

Strong light-matter interaction around the nanofiber
opens new possibilities for quantum non-linear optics
and single photon manipulation. As discussed earlier

a)

b)

c)

d)

Figure 30. (Color online) (a) The transmission spectra of the
signal field for different powers of the control field. A level
scheme is shown in the inset. The Λ system for EIT involves the
two ground states ‖g〉 = {6S1/2 ;F = 4} and ‖s〉 = {6S1/2 ;F =
3}, and one excited state, ‖e〉 = {6S3/2; F = 4}. The atoms
are initially prepared in ‖g〉. The control field is set resonant
to ‖s〉 → ‖e〉 transition. While the signal frequency is scanned
across ‖g〉 → ‖e〉 transition. Slow light (b) and storage (c) at the
single photon level. (b) Time traces of the transmitted pulses
for different control powers. The reference is measured without
atoms. (c) Storage and retrieval. The purple and blue points
show the transmittedpulse with and without atoms, respectively,
in the absence of control field. The black line indicates the timing
sequence of the control field for the photon storage experiment.
The red data correspond to the memory sequence, showing
leakage and retrieval. (d) Memory lifetime. Normalized retrieval
efficiency η as a function of the storage time. From Ref. [44].

in this section, the spontaneous emission of atoms
can be strongly modified around the nanofiber and
a significant amount of atomic fluorescence can be
coupled to the nanofiber. The efficient coupling of
atomic fluorescence enables the detection of single
atoms around the nanofiber. Additionally, a single
atom on the nanofiber can efficiently scatter guided
photons. The strong confinement of the guided field
and long interaction length along the nanofiber enables
the realization of an optically dense system around
the nanofiber. Another key feature is the long-range
coherent interaction between atoms on the nanofiber
which leads to collective effects [131]. Kien et al have
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Figure 31. (Color online) (a) Schematic illustration of the
cross-section of the nanofiber, showing the orientations of the
principal axes of quasi-linear polarizations of the nanofiber-
guided fields. The quantization axis is in the direction of Boff .
(b) Schematic diagram showing the relevant Zeeman sublevels
of the trapped cesium atoms used for the EIT experiment. The
transitions driven by the laser fields are indicated. (c) and
(d) Transmission spectrum of the guided probe field under EIT
conditions. (c) A narrow transmission window is observed on
an optically dense background. The width of the transmission
window is clearly smaller than the natural linewidth. The control
power is Pc = 26 pW, and the probe power is Pp = 2.9 pW. (d)
For Pc = 0.33 pW, a transmission window that is about 10 times
narrower is observed. Here, Pp = 1.7 pW. From Ref. [45].

shown that due to the collective effect the coupling
efficiency can be significantly enhanced [132]. Also
as discussed earlier in this section, by atomic state
preparation one can realize directional spontaneous
emission into the guided mode and coherent Bragg
reflection of photons. Due to such unique quantum
optical properties of the nanofiber system, it is ideally
suited for single photon manipulation in a fiber based
system. Kien et al have established theoretical
studies for atomic memory and heralded single photon
generation on a nanofiber system by using electro-
magnetically induced transparency (EIT) [133, 134,
135, 136, 137].

Storage of fiber guided single photons has been
experimentally demonstrated using a cloud of laser-
cooled atoms around the nanofiber [44] and also with
trapped atoms on the nanofiber [45]. Gouraud et al
have used a cloud of laser-cooled atoms to demonstrate
EIT and photon storage [44]. They used a cigar shaped
MOT around the nanofiber to realize an interaction
length of 5 mm and an optical depth of OD=3. From
absorption measurements, they estimated an effective

(a)

(b)

Figure 32. (Color online) (a) Time traces of probe pulses
transmitted through the TOF under EIT conditions for different
control powers. The solid lines are Gaussian fits to the data.
A delay of the pulses with respect to a reference pulse (dark
green) is clearly visible demonstrating slow fiber-guided light.
(b) Time traces showing the storage of light in a nanofiber-
trapped ensemble of cold atoms. A pulse of duration τ = 0.2
µs that contains 0.8 photons on average is launched into the
TOF. The light pulse is stopped inside the atomic medium by
reducing control power to zero (blue line). After 1 µs, control
power is increased to its initial value, and the pulse is retrieved.
From Ref. [45].

atom number of 2000±500. The signal to be stored
was guided inside the nanofiber while the control field
was introduced from the outside of the nanofiber, at
an angle of 13o relative to the nanofiber axis, with a
polarization perpendicular to the signal field.

Figure 30(a) shows the measured transmission
spectra of the signal as a function of its detuning δ from
resonance, for different values of the control power.
One can see that when the control field is applied,
a transparency window appears. The transparency
close to 75% is measured for a control power of 1.6
mW. The slow-light effect of a weak laser pulse at
single photon level, resulting from pulse propagation
under EIT condition is shown in Fig. 30(b). When
the control power was decreased, smaller transparency
but larger delays were obtained due to the narrower
transparency window. For a 0.5 mW control the signal
pulse was delayed by 60 ns corresponding to a 3000-fold
reduction in group velocity. Figure 30(c) demonstrates
the storage results for a signal pulse with a mean
photon number per pulse equal to 0.6 ± 0.1. The
memory effect was observed when the stored signal
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was retrieved after around 650 ns with an efficiency of
10±0.5%. Figure 30(d) shows the retrieval efficiency as
a function of the storage duration. The storage time is
limited to a few µs, which was understood to be due to
the motional dephasing caused by the non-zero atom
temperature.

Sayrin et al have demonstrated storage of fiber-
guided light in a nanofiber-trapped ensemble of cold
atoms [45]. The atoms are trapped on the nanofiber
by using two-color guided mode trapping. Figure
31(a) shows the cross-sectional view of the nanofiber,
illustrating the orientations of the principal axes
of quasi-linear polarizations of the nanofiber-guided
fields. The signal and the control fields were both
launched into the guided mode. The polarization
of the signal and control fields was quasilinear and
aligned parallel and perpendicular to the trapping
axis, respectively. Figure 31(b) shows the relevant
Zeeman sublevels of the trapped cesium atoms. The
transitions driven by the laser fields are indicated. The
quantization axis is in the direction of Boff .

The transmission spectrum of the signal field is
shown in Fig. 31(c) for a probe (signal) and control
power of 2.9 pW and 26 pW respectively. One can see
strong absorption of the signal field and a narrow EIT
peak. The OD was measured to be 5.9±0.2 and the
EIT transmission window has a width of 300 kHz and
a peak transmission of 70%. As shown in Fig. 31(d) a
much narrower EIT peak with a width of 26 kHz and
peak transmission of 60% was observed by reducing the
control power to 0.33 pW while the signal power was
1.7 pW. The slowing of the signal pulse for different
control power is shown in Fig. 32(a). A delay of 22±1
µs and transmission of 13.6 ± 0.5% is measured for a
control power of 0.33 pW. From the length of ∼1 mm
of the trapped atomic sample, they estimated a group
velocity of 50 m/s. The results for storage and retrieval
of a signal pulse is shown in Fig. 32(b). One can see
that the signal pulse is retrieved after 2 µs with an
overall storage and retrieval efficiency of 3.0± 0.4%.

Additionally, there have been nanofiber based
demonstrations of Autler-Towns splitting and multi-
level cascaded EIT using nanofibers [138, 139].

5. Interfacing solid-state quantum emitters

In the previous section, it was shown that nanofibers
can be used to collect single photons from single atoms
which are near to the nanofiber surface. However,
in many cases, solid-state quantum emitters, such
as semiconductor quantum dots and color-centers in
diamond, may offer a more convenient source of
single photons. In this context, integrating solid-
state emitters to optical nanofibers may open new
capabilities to generate single photons.

Some practical aspects of using solid-state emit-
ters are that the emitter may be operated under ambi-
ent condition without the need for sophisticated laser-
cooling techniques (as discussed for atoms) and the
emitter may be placed directly on the surface of the
nanofiber to increase the channeling efficiency. How-
ever some technical issues must be considered. One
issue is that the host containing the emitter must be
small enough in the form of a nanocrystal (NC). Ad-
ditionally, it is essential to develop experimental tech-
niques to deposit such a tiny NCs (dimension: 10 -
50 nm) containing a single quantum emitter on the
nanofiber (diameter: 300 nm - 600 nm) without affect-
ing the transmission of the nanofiber. Another issue
to consider is that unlike naturally occurring atoms,
the solid-state emitters are not identical and may have
broad emission lines. Also they may have non-radiative
decay leading to limited quantum efficiency.

In this section, we will review the use of nanofibers
as an interface for collecting single photons with a high
efficiency from solid-state quantum emitters including
quantum dots (QDs) and nitrogen vacancy centers in
nano-diamonds (NV/ND).

5.1. Interfacing single quantum dots with nanofibers

5.1.1. Spectroscopy and photon statistics of a
single quantum dot Fujiwara et al demonstrated the
efficient channeling of fluorescence photons from single
QDs into single-mode optical fibers using optical
nanofibers [39]. They used a dip coating technique
to deposit single QDs on the nanofiber surface. The
deposition procedure was as follows: nanofibers were
dipped in a solution of QDs dissolved in toluene
depositing QDs directly on the nanofiber surface. The
nanofiber transmission dropped by less than 10% due
to this deposition process.

The QDs were excited through a microscope
objective lens (NA=0.8) at a laser wavelength of 543.5
nm. The fluorescence was collected by the same
objective lens. An effective confocal pinhole was
realized by coupling the fluorescence to a single-mode
fiber (core size = 10 µm). The fluorescence collected by
the objective lens was detected by an avalanche photo
diode (APD) - APD1. The fluorescence channeled into
the nanofiber guided modes was detected by another
APD - APD2. Photon correlation measurements were
performed using both the APDs.

Figures 33(a) and (b) show fluorescence scanning
images of a single QD on a nanofiber measured through
the objective lens and the nanofiber guided modes,
respectively. The detected photon count rate (25 kcps
in Fig. 33(b)) through the nanofiber guided modes
was larger than that (18 kcps in Fig. 33(a)) detected
through the objective lens. The total photon count rate
detected from both ends of the nanofiber was 50 kcps.
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Figure 33. (a) and (b) show the fluorescence scanning images of
single QDs on the nanofibermeasured through objective lens and
nanofiber guided modes, respectively. (c) shows the measured
photon correlation for a single QD between objective lens and
nanofiber guides modes (d) shows photon count rate versus
excitation laser intensity. Adapted from [39].

The measured photon correlation for a single QD is
shown in Fig. 33(c). It may be seen that anti-bunching
occurs with a dip value of 0.096, demonstrating the
presence of a single QD. The total decay time (τ ) of the
excited-state of this QD was determined to be 35.4 ns.
They made measurements for three single QDs on the
nanofiber and found the mean value of τ to be 29.6±2.1
ns. The photon count rate versus excitation laser
intensity shown in Fig. 33(d) shows clear saturation
behavior. Using a similar method, they measured the
saturated photon count rates (n∞) for three single QDs
and found the mean value of n∞ to be 592±90 kcps.
They estimated the total channeling efficiency (both
sides of the nanofiber) of fluorescence photons from the
single QD into the nanofiber guided modes (η) using
the following equation:

η =
2n∞τ

ηAPDηF
(35)

where ηAPD is the APD quantum efficiency (ηAPD =
68% at 600 nm) and ηF is the measured transmission
efficiency from the nanofiber region to APD2 (ηF =
70%). Using this method, η was estimated to be
7.4±1.2%. Here it should be mentioned that the
quantum efficiency of the single QDs was implicitly
assumed to be 100%.

Yalla et al reported a systematic and detailed
approach to integrate single QDs to the nanofiber.

First of all they demonstrated a sophisticated
technique for systematic and reproducible deposition of
single QDs along an optical nanofiber with a precision
of 5 µm using a sub-pico-liter needle-dispenser
combined with an inverted microscope system [40].
Furthermore, they presented a detailed analysis of the
fluorescence photon emission characteristics for single
QDs on the nanofiber.

The main part of the experimental setup consisted
of an inverted microscope, an optical nanofiber, and a
sub-pico-liter needle-dispenser as shown in Fig. 34(a).
The diameter of the nanofiber was around 400 nm
and was uniform for 2 mm along the fiber axis. The
transmission through the tapered fiber was around
90%.
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Figure 34. (a) Schematic diagram of the experiment. OL,
BS, FM, LD, APD, and OMA denote objective lens, beam
splitter, flipper mirror, laser diode, avalanche photodiode, and
optical multichannel analyzer, respectively. (b) The fluorescence
photon counts observed by scanning the excitation laser focus
point along the nanofiber. Sharp emission peaks are clearly
seen along the nanofiber with a spacing of 20 ± 5 µm, in good
correspondence with the QD placement on the nanofiber. The
inset shows a typical measured emission spectrum for a single
QD on a nanofiber. The center wavelength is at 796 nm and the
spectral width is 52 nm FWHM. Adapted from [40].

The core-shell type colloidal QD solution was di-
luted by pure water to give the optimum concentra-
tion for single QD deposition using the sub-pico-liter
needle-dispenser. The dispenser consisted of a tapered
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glass-tube which contained diluted QD solution and a
needle having a tip of diameter 17 µm. Once the nee-
dle tip passed through the tapered glass-tube, it car-
ried a small amount of solution containing QDs at its
tip. In order to deposit small number of QDs on the
nanofiber, the needle-tip position was adjusted so that
the QD solution at its tip just touched the nanofiber.
This was confirmed by sending laser light through the
nanofiber and observing the scattered light due to the
needle tip touching the nanofiber surface through the
microscope. Using this technique, QDs were deposited
periodically on the nanofiber by shifting the nanofiber
along the fiber axis.

The QDs were excited using a cw diode-laser at a
wavelength of 640 nm through a microscope objective
lens. The fluorescence photons emitted from QDs were
channeled to the guided mode of the nanofiber and
were detected through the single-mode optical fiber.
At one end of the single-mode fiber, the fluorescence
light beam is split into two using a 50:50 non-polarizing
beam splitter, and the split beams are re-coupled into
multi-mode fibers and detected by fiber-coupled APDs
as shown in Fig. 34(a). The photon correlations were
derived from the arrival times of photons at both APDs
recorded using a two-channel single-photon-counter.
At the other end of the fiber, the fluorescence emission
spectrum was measured using an optical-multichannel-
analyzer (OMA) as shown in Fig. 34(a).

Figure 34(b) shows typically observed fluorescence
photon counts as measured by scanning the excitation
laser focus spot along the nanofiber. The observed
sharp peaks in the photon count rate, with a
spacing of 20 ± 5 µm, corresponded well with the
positions of QD deposition on the nanofiber. For
convenience of presentation, the deposited positions
are numbered 1 to 8. Out of the eight positions,
single QD behavior was observed at all positions
except for the positions 4 and 6, which was
confirmed by the photon counting and photon
correlation measurements discussed below. Therefore
this technique demonstrated a high probability for
successful deposition of single QDs on the nanofiber.
Moreover after the 8 depositions, the nanofiber
transmission was reduced by 10%, suggesting an
average loss per deposition of ∼ 1%.

The inset of Fig. 34(b) shows a typical emission
spectrum for the deposited QD at one of the positions
(position 3). The center wavelength is 796 nm and
the spectral width is 52 nm FWHM. Although the
measured width is narrower than the ensemble average
value of 82 nm for the QDs [140], it is still relatively
broad. The mechanism of the broadening may be
understood as being due to spectral diffusion and
exciton-phonon interactions which have been discussed
in several publications for similar QDs [141, 142].

The results for the photon counting and photon
correlation measurements for a typical position
(position 3) are displayed in Fig. 35(a) and (b),
respectively. Regarding the photon counts in Fig.
35(a), single step on/off-behavior was clearly observed.
This on/off behavior was due to the blinking of the
QDs, a well known phenomenon in solid-state single
photon emitters [143, 144, 145, 146]. Single-step
blinking is assumed to indicate a single QD within
the laser excitation region. The typical normalized
correlations clearly show anti-bunching behavior as
seen in Fig. 35(b). The correlation value at the anti-
bunching dip was 0.035. Therefore the number of QDs
for this position was estimated to be one[147].
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Figure 35. (a) and (b) show typical photon counts as a
function of time and the typical normalized photon correlations

g
(2)
N (τ) for a single QD, respectively. The red curve shows

the exponential fitting of the normalized photon correlations.
(c) shows the observed anti-bunching recovery rates (1/T )
for different excitation laser intensities for one/two dots on a
nanofiber. The solid lines show the linear fits to the data. (d)
shows the typical observed fluorescence photon-count rate for
different excitation intensities for single QDs on a nanofiber.
The observed photon counts are fitted (dashed curves) using Eq.
(38). Adapted from [40].

The observed photon statistics were analyzed
by using a rate-equation model for an incoherently
pumped two-level system. Based on this model the
observed photon count rate n(t) into one side of the
nanofiber guided modes is expressed by

n(t) = ηAPDηF
ηqη

2τ

αI

αI + 1/τ
{1 − exp(− t

T
)} (36)

where 1/T (= αI+1/τ ) is the intensity-dependent
recovery rate of the antibunching signal which is
essentially a population evolution of the excited
state, αI is the excitation rate at laser intensity
I, 1/τ is the total decay rate of the excited state,
ηAPD is the quantum efficiency of APD, ηF is the
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transmission efficiency, η is the channeling efficiency
of the fluorescence photons into the guided modes, and
ηq is the quantum efficiency of a QD. The quantum
efficiency of a QD is expressed by

ηq = (1/τr)/(1/τ ) (37)

where 1/τr is the radiative decay rate of the excited
state.

The measured anti-bunching signals at different
excitation intensities were fitted by an exponential
function to estimate the recovery rates (1/T ). In Fig.
35(c), the observed recovery rates for single QDs are
plotted versus excitation laser intensity. The linear
dependence may readily be seen. The data points were
fitted by the least-mean square method, and the fitted
results are shown by solid lines. The intercept at zero-
intensity and the slope gave an estimate of 1/τ and α,
respectively. The decay times (τ ) were distributed in
the range of 150± 50 ns for the investigated QDs.

The average photon-count rate into the nanofiber
guided modes integrated over timescales much longer
than τ can be expressed as follows:

〈n(t)〉 = ηAPDηF
ηqη

2τ

αI

αI + 1/τ
= n∞

αI

αI + 1/τ
(38)

where n∞ is the saturated photon count rate.
Figure 35(d) shows the fluorescence photon-count
rates (〈n(t)〉) versus excitation intensity measured for
different single QDs. Saturation behavior may readily
be seen in all the plots. The measured results were
fitted using Eq. (38) by fixing the parameters α
and 1/τ to the values determined from the intensity
dependence of the anti-bunching recovery rates. The
adjustable parameter was n∞.

They estimated the factor ηqη from the obtained
parameters using the following relation

ηqη =
2n∞τ

ηAPDηF
(39)

where ηAPD was assumed to be 60% at 780 nm
and ηF = 31% was the measured light-transmission
efficiency from the nanofiber region to the APD-
detector.

The measured ηqη-values showed a variation from
0.033 to 0.094. This variation mainly reflected the
variation of the quantum efficiency of QDs, since
the η-value can be assumed to be equal for QDs
distributed along the nanofiber within the range of 150
µm. Regarding the quantum efficiency ηq, the value
supplied by the manufacturer was 72% [140, 148, 149].
It should be noted that this value is an average value
measured for a liquid sample which contains a very
large number of QDs. The ηq-value for a single QD
is expected to be distributed around the mean value.
The obtained highest ηqη-value of 0.094 corresponds to
a QD which has the highest quantum efficiency among
the measured QDs. Assuming the highest possible

ηq-value of 100%, they estimated a lower limit for
channeling efficiency to be 9.4 ± 3.0%.

5.1.2. Measurement of channeling efficiency For ap-
plications in quantum information science, channeling
the single photons from a single quantum emitter into
a single-mode fiber would be crucial requirement. In
this line, optical nanofibers can be particularly promis-
ing due to their ability to directly channel fluorescence
photons into a single-mode fiber. It has been theoret-
ically predicted that it is possible to channel fluores-
cence photons into the nanofiber guided-modes with
an efficiency of more than 20% [31, 64], by placing the
emitter on the surface of the nanofiber.

As described in the previous section, two groups
have reported the photon-counting measurements
from semiconductor QDs deposited on nanofibers
[39, 40]. However the channeling efficiency (η) was
not inferred conclusively. Yalla et al demonstrated
a rather straightforward method to estimate the
channeling efficiency by comparing the photon-count
rates through the guided and radiation modes [43].
They obtained the maximum channeling efficiency to
be 22.0±4.8% at a fiber diameter of 350 nm at an
emission wavelength of 780 nm.

The experiments were performed using a similar
setup described in Fig. 34(a). Nanofibers with
diameter ranging from 300-800 nm were used for the
experiment. The QDs on the nanofiber, were excited
by focusing a continuous wave laser at a wavelength
of 640 nm, using a microscope objective lens (OL)
(40X, NA= 0.6). Regarding the fluorescence photons
channeled into the guided modes, in order to guarantee
observation of coupling to just the fundamental mode
(HE11), a single-mode fiber with cut-off wavelength of
557 nm was fusion-spliced to the tapered fiber. The
fluorescence photons through the guided modes were
then detected with a fiber-coupled APD1 as shown
in Fig. 34(a). Regarding the radiation modes, the
fluorescence photons were collected by the OL, coupled
into a multi-mode fiber, and detected by a fiber-
coupled APD (APD3) as shown in Fig. 34(a). Photon-
counting measurements for both guided and radiation
modes and spectrum measurements were carried out
simultaneously for each deposited QD.

The channeling efficiency η into the nanofiber
guided modes can be expressed as follows:

η =
ng

ng + nr
=

1
1 + nr/ng

(40)

where ng and nr are photon emission rates into the
guided and radiation modes, respectively. Observable
photon-count rates by APD1 and APD3 are expressed
as follows:

n(obs)
g =

1
2
ηAPD1κgng, n(obs)

r = ηAPD3κrηrnr (41)
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Nanofiber quantum photonics 31

where κg and κr are light-transmission efficiencies for
the paths of guided and radiation modes, respectively.
The factor 1/2 for n

(obs)
g implies that fluorescence

photons into the guided modes are detected at one end
of the nanofiber. ηAPD1 and ηAPD3 are the quantum
efficiencies of APD1 and APD3, respectively, and are
assumed to be the same. ηr is an effective collection
efficiency for the radiation modes. Thus, the ratio
nr/ng can be written as follows:

nr

ng
=

n
(obs)
r

n
(obs)
g

× κg

2κrηr
=

n
(obs)
r

n
(obs)
g

× ζ (42)

where ζ= κg/2κrηr.
κg and κr-values were measured to be 49.6±2.1%

and 23.5±1.3% respectively. The measurement
procedures can be found in Ref [43]. The effective
collection efficiency ηr for the radiation modes,
depends on two factors. One is due to the numerical
aperture (NA) of the OL. The collection efficiency of
the OL is estimated to be 10% from the NA-value of
0.6. The other factor arises from the lensing effect
of the nanofiber. The QDs were deposited on the
upper surface of nanofiber and the OL collected the
fluorescence photons from the lower side of nanofiber.
Therefore, the nanofiber acts as a cylindrical lens
and may enhance the collection efficiency of the
OL. The calculation of enhancement factor due to
this lensing effect is detailed in Ref. [150, 151].
Based on this formalism, the average enhancement
factor was estimated by assuming a random azimuthal
distribution of QDs on the upper surface of the
nanofiber. For the fiber diameters used in this
experiment, it was found that the average enhancement
factor could be assumed to be constant with a value
of 1.48±0.03. This average enhancement factor was
used to obtain the effective collection efficiency ηr.
Using this method, they obtained the ηr-value to
be 14.8±0.3% and consequently the ζ-value to be
7.13±0.84 by combining the values of κg, κr , and ηr.

Typical fluorescence photon-count rates from QDs
on a 400 nm diameter nanofiber are shown in Fig.
36(a). The photon-count rates through the guided and
radiation modes are denoted by black and red traces,
respectively. It may readily be seen that the two traces
exactly match each other apart from their amplitudes.
A clear single step blinking behavior is observed,
revealing that the number of deposited QDs was one.
This was further confirmed by measuring the anti-
bunching dip in the normalized photon-correlations,
and the dip-value was measured to be 0.035 <<1. As
described in Ref. [43], they obtained n

(obs)
g and n

(obs)
r

to be 44.3±5.4 and 24.8±3.7 kcps, respectively. Using
the relation of Eq. (42), the ratio nr/ng was found to
be 3.99±1.55. Thus, using Eq. (40) η was found to be
20.0± 6.2%.

Time [s] 
0 20 40 60 80 100

Ph
ot

on
 c

ou
nt

 r
at

e 
[k

cp
s]

0

10

20

30

40

50

60 a)

b)

Fiber size parameter [k0a] 
1 1.4 1.8 2.0 2.21.2 1.6 2.6 2.8 3.0 3.22.4

C
ha

nn
el

in
g 

E
ffi

ci
en

cy
  η

 [
%

]

5

20

0

10

15

25

30

Figure 36. (a) Typical fluorescence photon-count rate from a
single QD as a function of time. Black and red traces correspond
to fluorescence photon-count rates observed through guided and
radiation modes, respectively. (b) Channeling efficiency as a
function of fiber size parameter (k0a= 2πa/λ). The red curve
shows the theoretical prediction. Measured values are marked
by black squares with error bars. Adapted from [43].

Using the same procedure, η-values were obtained
at various fiber diameters. The channeling efficiency
η as a function of the fiber size parameter (k0a=
2πa/λ) is shown in Fig. 36(b). For each deposited
position, the size parameter was calculated from the
measured fiber-diameter 2a and the observed emission-
wavelength λ. The theoretical prediction for the
channeling efficiency into the HE11-mode is shown by
the red trace. For the theoretical calculations the
refractive-index of nanofiber material was assumed
to be 1.45. All measured values are plotted versus
the size parameter as black squares. Vertical error
bars denote the fluctuation of photon counts at each
deposited position. Horizontal error bars denote
the ambiguity of the fiber-diameter measurements.
The enhancement due to the nanofiber lens effect
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Nanofiber quantum photonics 32

creates an additional ambiguity. For the experimental
analysis, the average enhancement factor was used
assuming random azimuthal distribution of deposition,
but the enhancement factor for each deposited position
is expected to be different from the average value.
Although experimental ambiguities still exist, the
measured results reproduced the theoretical prediction
within the experimental error. The estimated
maximum channeling efficiency into the guided modes
was found to be 22.0±4.8%, by averaging for data
points around the fiber size parameter of 1.4, which
corresponds to the fiber diameter of 350 nm for the
emission wavelength of 780 nm.

5.2. Interfacing nitrogen vacancy centers in
nano-diamonds with nanofibers

Schroder et al demonstrated the coupling of a single
nitrogen vacancy in a nanodiamond (NV/ND) to an
optical nanofiber [41]. They used a dip coating
technique to deposit NV/NDs on the nanofiber. A
schematic of the deposition technique is shown in Fig.
37(a). The deposition procedure is as follows: a
thin glass rod was then dipped into an aqueous ND
solution to create a small droplet of ND solution. The
nanofiber region was dipped into this small droplet of
ND solution. Scattered light was observed through a
microscope objective lens while sending a laser through
the nanofiber guided modes in order to confirm ND
deposition, as shown in the top panel of Fig. 37(b).

a) b)

c)

Nanodiamonds

Dip coating

Glass rod

Nano!ber

Figure 37. (a) Schematic of the dip coating technique to deposit
NV/NDs on the nanofiber. (b) Top: Microscope image of the
nanofiber, while sending a laser through the nanofiber guided
modes. Bottom: fluorescence scan of the same region. (c) shows
the emission spectrum of a single neutral NV/ND. The black
and red traces correspond to the fluorescence observed through
the objective lens and nanofiber guided modes, respectively.
Adapted from [41].

The NDs were excited through a microscope

objective lens (NA = 0.8) with a laser wavelength of
532 nm. The fluorescence was collected through the
same objective lens. Simultaneously the fluorescence
channeled into guided modes of the nanofiber was
measured at the ends of the single-mode fiber.
To identify NV/NDs on the nanofiber, confocal
fluorescence imaging was performed by scanning the
position of the focused excitation laser spot. A typical
scan is shown in the bottom panel of Fig. 37(b).
To further confirm the presence of NV/NDs, the
fluorescence emission spectrum was observed through
the guided modes and objective lens. The measured
emission spectra of a single NV/ND, observed through
the nanofiber guided modes (red trace) and objective
lens (black trace) are shown in Fig. 37(c). Sharp peaks
in the spectra around 575 nm may be clearly seen,
indicating the zero-phonon line of a neutral NV/ND.
The broad peak in the red side corresponds to the
phonon sideband.

a) b)

c) d)

Figure 38. (a) shows the measured normalized photon
correlations for a single neutral NV/ND measured through the
objective lens, confirming the presence of a single NV/ND. (b)
shows the photon correlation measurements between the two
nanofiber ends, confirming the presence of a single NV/ND
on the nanofiber. (c) and (d) show the measured fluorescence
photon count rates from a single neutral NV/ND through the
objective lens and one end of the nanofiber, respectively. Red
solid lines are fitting results as described in Ref. [41]. Adapted
from [41].

A typical photon correlation data for the single
neutral NV/ND measured through the objective lens
is shown in Fig. 38(a). The measured anti-
bunching dip value was 0.11, indicating the presence
of a single NV/ND. Photon correlations were also
performed between the fluorescence signals from both
ends of the nanofiber guided modes. A typical
result is shown in Fig. 38(b), where the anti-
bunching dip value of 0.61 indicated the presence of a
single NV/ND. They also investigated the fluorescence
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Nanofiber quantum photonics 33

photon count rate dependence on the excitation laser
power. Figure 38(c) and (d) show the fluorescence
photon count rate at various excitation powers as
measured through the objective lens and nanofiber
guided modes, respectively. The observed saturated
photon count rates through the objective lens and
nanofiber guided modes (single end) were 74±2 kcps
and 104±1 kcps, respectively.

b)

c)

a)

Figure 39. (a) Schematic of the technique for deterministic
deposition of single NV/NDs on the nanofiber.(b) and (c) are
typical florescence scans and AFM images of a single NV/ND
before pick-up, after pick-up, and after depositing onto the
nanofiber (from left to right), respectively. Adapted from [42].

Liebermeister et al demonstrated a sophisticated
technique for deterministic deposition of a single
NV/ND onto a nanofiber using a confocal microscope
combined with an atomic force microscope (AFM)
[42, 152]. A schematic of the deposition technique
is shown in Fig. 39(a). They used the following
three-step procedure: First, NV/NDs (mean diameter
of 25 nm) were found on a fused silica substrate by
performing the fluorescence imaging and confirming
single photon emission from the NV/ND using a
standard photon correlation technique. Second, the
pre-characterized NV/ND was imaged with the AFM
tip and consequently picked up by the AFM tip. Third,
this NV/ND was deposited onto the nanofiber by
placing the nanofiber on a clean substrate and touching
it with the AFM tip. Typical confocal scans and
AFM images of the above process are shown in Fig.
39(b) and (c), respectively. Finally, the nanofiber
was removed from the substrate for further optical
experiments.

The NV/ND deposited on the nanofiber was
excited through a microscope objective lens (NA=0.75)
with a laser at a wavelength of 532 nm. The
fluorescence was collected with the same microscope
objective lens and through the nanofiber guided
modes. They measured photon correlations at various
excitation laser powers through the objective lens as
well as through the nanofiber guided modes. The

observed anti-bunching of the fluorescence photons
confirmed the deterministic deposition of a single
NV/ND. Moreover, by comparing the saturated
fluorescence photon count rates for the nanofiber
guided modes and the objective lens (free-space
modes), they obtained lower and upper bounds for
the channeling efficiency of 9.5±0.6% and 10.4±0.7%,
respectively.

Some key requirements for implementing solid-
state emitters as a single photon source are to
realize narrower emission lines and higher quantum
efficiencies. In recent years there have been significant
research and developments in finding better solid-
state emitters. One example is silicon vacancy (SiV)
center in nanodiamonds, which can have a strong
and narrow zero-phonon line at room temperature
[153, 154]. On the other hand cooling the QDs or NDs
to cryogenic temperatures will be essential. Recent
reports on cooling NDs [155] and molecules [156] on
a nanofiber to cryogenic temperatures have opened
promising possibilities in this direction.

6. Cavity QED on a nanofiber

6.1. New prospects for cavity QED using nanofibers

Efficient quantum state transfer between single atoms
and photons is a rudimentary requirement for the
realization of quantum networks [4]. The interaction
of a single atom with strongly confined photons in an
optical cavity leading to cavity QED (cQED) effects, is
a promising approach to realize a quantum interface.
There has been extensive research and development on
coupling single atoms to free-space Fabry-Perot (FP)
cavities [8, 9, 10, 11]. Below, we briefly summarize the
key parameters for cQED. The interaction dynamics
is mainly governed by the competition between the
coherent atom-photon coupling rate (2g0 = single
photon Rabi-frequency) and the incoherent decay rates
i.e. atomic spontaneous emission rate (γ0) and cavity
decay rate (κ). The coupling rates are given by

g0 =

√
µ2ωc

2~ε0Vm
; κ =

ωc

Qm
=

πc

FL
; γ0 =

8π2µ2

3~ε0λ3
(43)

where µ is the transition dipole moment, ωc = 2πc
λ

is the atomic transition frequency that corresponds to
wavelength λ, ~ is the reduced Planck’s constant, ε is
the free-space permittivity, c is the speed of light in
vacuum, F is the finesse of the cavity mode, L is the
optical length of the cavity, Qm is the quality factor
of the cavity mode and Vm is the cavity mode volume.
The atom-field interaction can be strongly enhanced
when the cavity is resonant to the atomic transition
and the atom is placed at an antinode of the cavity
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Nanofiber quantum photonics 34

mode. The figure of merit of the atom-field coupling is
defined by a cooperativity parameter (C), given by

C =
(2g0)2

κγ0
=

3Qm

4π2
(

λ3

Vm
) (44)

The spontaneous emission of the atom is strongly
modified in the presence of a cavity, giving rise to the
well known Purcell effect. The Purcell enhancement
factor P is given by

P =
γc

γ0
=

(2g0)
2

κ + γ0

γ0
= C + 1 (45)

where γc is the total decay rate of the atom in the
prensence of cavity.

A crucial requirement to achieve strong interaction
between single photons and single atoms, is that
C >> 1 which requires large Qm (or F ) and small
Vm comparable to λ3. Even with C >> 1, there are
two regimes with different dynamics: a) the Purcell
regime, when κ > 2g0, γ0 and b) the strong-coupling
regime, when 2g0 > κ, γ0.

There have been various efforts to design micro-
cavities to realize smaller mode volumes and high fi-
nesse. In the strong-coupling regime, quantum phe-
nomena such as single-atom lasing and vacuum Rabi
oscillations have been demonstrated using free-space
FP cavities. Extremely high finesses of 40,000 to
400,000 are required to achieve the strong-coupling
regime in a conventional free-space FP cavity. Al-
though high quality mirrors with transmission and
scattering loss less than 2 ppm have been reported,
the overall cavity transmission may drop to 10-20%
[11]. On the other hand, cavity QED experiments in
the Purcell regime have been invetigated using various
designs of nanophotonic cavities [15, 12, 13, 14, 18].
In particular, the designs have focused on applications
like single photon generation, single photon switching
and quantum nonlinear optics, where high transmis-
sion and fast response of the cavity is essential.

The typical design principle for nanophotonic
cavities has focused on minimizing the mode volume
and maximizing the Q-value (finesse). However by
defining the cQED parameters in terms of mode
volume, the transverse and longitudinal dimensions are
grouped together. In fact, the mode volume is inversely
proportional to energy density (photon flux) and can
be written as a product of effective mode area (Aeff)
at the atom position and optical length (L) of the
cavity. As a result the atom-field coupling rate and
the cooperativity can be written as

g0 =
√

cγ

L
× σAtom

Aeff
(46)

C =
4
π

(
σAtom

Aeff
)F (47)

where σAtom = 3λ2

2π is the single atom absorption
cross-section. From the above equations it may be
seen that the transverse (σAtom

Aeff
) and longitudinal (F )

confinements can be treated independently and C is
independent of the cavity length. In particular, this is
a striking feature of cQED on a nanofiber.

In the context of a quantum network, efficient
integration of the quantum interface to the existing
fiber network will be a major technical requirement.
In this context, optical nanofibers offer a flexible
alternative platform. As discussed in Section 3,
using the adiabatic tapering condition, efficient mode
coupling to the nanofiber region can be realized. This
will enable efficient integration to fiber networks. As
discussed in the previous sections, the optical nanofiber
has proven to be a promising platform for quantum
optics experiments. In order to further extend
the nanofiber method for implementing single atom
based quantum nonlinear processes, the longitudinal
confinement of the guided field in a nanofiber-based
cavity will be essential.

In order to gain insight about the interaction
dynamics in a nanofiber based cavity we follow the
formalism developed in Ref. [48]. Based on this
formalism, the cQED parameters are given by

g0 =
√

cγg

L
=

√
cγη

L
(48)

C =
(2g0)2

κγ0
=

4
π

η
γ

γ0
F =

4
π

ηP (0)F (49)

where γ = γg + γrad is the total decay rate,
γg is the decay rate into the guided mode, γrad

is the decay rate into the radiation mode, P (0) is
the Purcell factor and η is the channeling efficiency
of spontaneous emission of the atom near the bare
nanofiber in the absence of the cavity. It should be
noticed that C is independent of L. C mainly depends
on the longitudinal confinement through F and the
transverse confinement of the optical mode through
η (∝1/ω2

0, where ω0 is the effective mode waist).
The effective mode waist of the nanofiber or other
nanophotonic structures can be less than 1 µm which
is one order smaller compared to the typical mode
waist of 10 - 30 µm for free space FP cavities. This
leads to two orders improvement in cooperativity for
nanofiber cavities. In other words, high cooperativity
can be achieved even for moderate finesse of 50 -
100. Furthermore, in the case of nanofiber cavities,
it is possible to independently control the cavity
length without affecting the transverse confinement.
Therefore the cavity length can be controlled to reach
the strong-coupling regime, since κ reduces faster than
2g0 as the cavity length increases. In fact, based on
the achievable finesse range, one can select the cavity
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Nanofiber quantum photonics 35

length and fiber diameter to enable both regimes of
cavity QED.

Additionally the spontaneous emission of atoms
can be strongly modified near the nanofiber cavity and
the channeling efficiency into the guided modes can
be significantly enhanced. The Purcell factor (P ) and
channeling efficiency (η(c)) for the nanofiber cavity can
be written as

P =
γ(c)

γ0
=

γg(1 + (2g0)
2

κγg
) + γrad

γ0
= P (0) + C (50)

η(c) =
γg(1 + (2g0)

2

κγg
)

γg(1 + (2g0)2

κγg
) + γrad

=
η(1 + 4

π F )
1 + 4

π ηF
(51)

where γ(c) is the total atomic decay rate in the
presence of nanofiber cavity. It may be seen that the
decay rate into the guided modes is enhanced by a
factor (1 + 4F

π ). The expressions for the Purcell factor
and channeling efficiency clearly show the separate
effect of the nanofiber and the cavity. As discussed
in previous sections, the channeling efficiency can be
η ' 0.2 for a randomly polarized atom on the nanofiber
surface. From this, the above equation can easily be
used to estimate that for a moderate finesse of 30 the
channeling efficiency into the guided modes can be
enhanced to > 90%. Such high channeling efficiency
in a moderate finesse cavity is well-suited for a fiber-
based single photon source.

6.2. Cavity formation on nanofibers

In the last decade various techniques have been
proposed and developed to realize a nanofiber cavity.
Nanofiber cavities can be broadly divided into two
categories: one in which the cavity is fabricated
directly on the nanofiber, and the other in which
a fiber inline cavity includes a tapered fiber with a
nanofiber waist. First we will discuss various methods
to fabricate cavities directly on the nanofiber.

In order to fabricate a cavity structure on the
nanofiber a crucial requirement is to realize efficient
fiber Bragg grating (FBG) mirrors. To achieve this
periodic index modulation of the nanofiber guided
modes is essential. In conventional techniques for
making FBGs on single-mode optical fibers, the
core refractive index is modified by irradiating the
fiber with a high power ultraviolet (UV) laser light.
These techniques rely on the photosensitivity of the
Ge/GeO2 doped core of fibers. However, nanofibers
are fabricated by tapering the single-mode optical fiber
down to diameters much smaller than the core-mode
cutoff diameter. As a result the core of the original
single-mode fiber might be almost vanishing at the
nanofiber region and the nanofiber is essentially made

of pure silica (cladding material of the original fiber).
Hence, standard UV irradiation techniques may not be
useful to make FBGs directly near the nanofiber region.

a)

e)

b) c)

d)

Figure 40. (Color online) (a)The SIM image of a typical
part of NFBG, showing periodic nano-grooves drilled on the
nanofiber using the FIB milling technique. (b) and (c) The
experimentally measured transmission spectrum of a 100 µm
nanofiber cavity for two orthogonal input polarizations x- and
y-polarization, respectively. The orientations of the polarization
axes are indicated in (a). (d) and (e) The theoretically calculated
spectra for input polarizations perpendicular and parallel to the
plane of the grooves, respectively. From Ref. [49].

Nayak et al have demonstrated fabrication of FBG
mirrors and cavities on a nanofiber using focused ion
beam (FIB) milling to produce periodic nano-grooves
on the nanofiber [49]. Such periodic structures on the
nanofiber induce strong modulation of the refractive
index and act as FBG mirrors for the nanofiber guided
modes. Using such FBG structures on the nanofiber
they realized nanofiber cavities as described below.

The scanning ion microscope (SIM) image of
a typical section of the fabricated nanofiber Bragg
grating (NFBG) is shown in Fig. 40(a). The nanofiber
diameter is ∼ 560 nm, each groove has a depth of ∼
100 nm and width of ∼ 150 nm. The grating period is
ΛG ∼ 360nm. Nayak et al fabricated two such NFBGs
each consisting 120 periods and separated by 100 µm
on the nanofiber axis to realize a nanofiber cavity.

Figures 40(b) and (c) show the measured
transmission spectra of the nanofiber cavity for
two orthogonal polarizations x- and y-polarization,
respectively. The orientations of the polarization axes
are as indicated in Fig. 40(a). The broad dip in the
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center of the spectra correspond to the reflection bands
of the NFBGs and the equispaced peaks appearing
within the reflection band correspond to the cavity
modes. The width of the reflection band for the x-
pol is ∼ 170 cm−1 (∼ 12 nm) which is much broader
than that of a typical FBG. The observed free spectral
range (FSR) for the x-polarization is ∼27 cm−1 (810
GHz). The cavity modes marked as A, B and C
have a finesse of 42, 96 and 117 respectively and
the corresponding transmission values are 55, 41 and
25% respectively. The finesse increases towards the
center of the reflection band indicating the increase
in the reflectivity of the NFBGs. A reflectivity of
∼ 97% was estimated for the highest finesse value
of F = 117 at around the center of the reflection
band, assuming equal reflectivity for both the NFBGs.
The Q-value for this mode is approximately 50,000.
The reflection band for the y-pol is narrower and blue
shifted relative to the x-pol which was understood
as being due to the reduced effective index along
the nano-grooves. The theoretical calculations almost
reproduced the observed spectral shapes except for
the transmission values for the cavity modes. The
observed reflection side bands may correspond to
additional Fourier components resulting from non-
sinusoidal modulation of the refractive index.

Several other groups have produced similar
cavities, although with shorter spacing between the
Bragg mirrors. Schell et al reported a Q-factor of
250 for a structure with N = 80 periods in each
Bragg mirror [157, 158]. Here, a defect cavity was
used in which the cavity separation was negligible
compared with the length of the Bragg mirrors. Li
et al demonstrated a Q factor of nearly 800 for only 20
periods in each Bragg mirror with a spacing of 2.2 µm
between Bragg mirrors [159].

Although FIB allows the creation of arbitrary
cavity structures, it is time-consuming and requires
that the nanofiber be mounted in special machinery.
Additionally, there are various technical limitations
in FIB fabrication such as contamination from the
substrate or the ion beam itself and mechanical
instability of the nanofiber due to charging up effects.
Given these limitations, fabrication of nanofiber Bragg
gratings using an optical method might be a better
approach.

Nayak et al have demonstrated fabrication
of photonic crystal cavities on nanofibers using
femtosecond laser induced ablation [51, 160, 161, 162].
They have shown that thousands of periodic nano-
craters are fabricated on an optical nanofiber following
irradiation with just a single femtosecond laser pulse.
A schematic of the fabrication setup is shown in Fig.
41(a). A femtosecond laser with a 400 nm center
wavelength and 120 fs pulse width, was used for

(a)

(b)(b)

(c)(c)

Figure 41. (Color online) (a) Schematic of the femtosecond
laser fabrication setup. From Ref.[160]. (b) SEM image of a
typical part of a sample fabricated using single-shot irradiation.
The inset shows the enlarged view. The periodic nano-crater
structures are observed on the shadow side of the nanofiber. (c)
The cross-sectional image of the nanofiber sample at a typical
nano-crater position measured by tilting the nanofiber at an
angle of 33◦. From Ref. [51].

the fabrication. A two-beam interference technique
was used to create periodic intensity pattern on the
nanofiber using a phase mask as the beam splitter and
two folding mirrors. A cylindrical lens is used to line
focus the femtosecond laser along the nanofiber. A
zero-order block is used to avoid any residual zero order
light in the interference region.

The SEM image of a typical segment of the
fabricated nanofiber sample is shown in Fig. 41(b).
It may be seen that periodic nano-craters are formed
on the nanofiber. The period is 350 nm, which
corresponds well to the interference pattern. It should
be noted that the nano-craters were formed on the
shadow side of the nanofiber. The inset shows an
enlarged view of the sample. The nano-craters look
circular in shape and the diameter of a typical nano-
crater is around 210 nm. The cross-sectional image of
the nanofiber at a typical nano-crater position is shown
in Fig. 41(c). The image was measured by tilting the
nanofiber at an angle of 33◦. The nano-crater has a
bowl-like shape and the depth is ∼120 nm.

For a typical sample, thousands of such periodic
nano-craters are fabricated on a nanofiber with
diameter around 450 - 550 nm. The diameter
profile of the nano-crater array follows the Gaussian
intensity profile of the femtosecond laser beam giving
an apodized profile with diameter gradually varying
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from 50 - 250 nm over a length of 1 mm. One key aspect
of the technique is that the nano-craters occur on the
fiber’s underside relative to the incident beam. This
fact, along with the essentially perfect positioning of
the craters in the nanofiber’s center demonstrates that
the nanofiber itself acts as a cylindrical lens for the
light pulse, focusing it to the center of the shadow side
of the nanofiber. Moreover, the single-shot fabrication
makes it immune to mechanical instabilities and other
fabrication imperfections. Such periodic nano-craters
on the nanofiber, act as a 1-D PhC and enable
strong and broadband reflection while maintaining
high transmission out of the stopband.

Figure 42. (Color online) Transmission spectrum of an
apodized PhC nanofiber cavity fabricated using femtosecond
laser ablation technique, for (a) x-pol and (b) y-pol. The parts
of the spectra, marked by blue boxes are enlarged and shown in
the insets. From Ref. [160].

Figures 42(a) and (b) show the transmission
spectra of an apodized PhC nanofiber cavity fabricated
using the femtosecond laser ablation technique for x-
pol and y-pol (as denoted in Fig. 41), respectively. The
spectra for both the polarizations show wide stopband
regions, where more than 98% of the input light is
reflected and transmission drops to a few percent. The
stopband for the x-pol extends from 793.7 to 798.8 nm.
The stopband for the y-pol is much broader compared
to that of the x-pol and is red-shifted. The stopband
is well understood as the Bragg reflection from the
periodic nanocraters on the nanofiber. The sharp
peaks observed in the red-side of the stopbands are
the cavity modes due to the apodized index variation.

The cavity modes for the x-pol marked as 1, 2
and 3 have a finesse of 71, 39 and 16 respectively
with a corresponding transmission of 33, 87 and 93%
respectively. The effective cavity length of ∼ 0.54 mm
is estimated from the mode spacing which corresponds
well to the Gaussian width of the diameter profile of
the nano-crater array. The cavity modes for the y-pol
marked as 1, 2 and 3 have a finesse of 500, 27 and 11
respectively with corresponding transmissions of 21, 30
and 73% respectively. The transmission away from the
stopband is around 100% ensuring that the fabrication
does not induce significant loss and maintains the
optical quality of the nanofiber. Additionally, we

note that the observed high-finesse cavity modes inside
the stop band provide evidence of the quality of the
fabrication.

Nayak et al have also demonstrated fabrication of
a defect induced photonic crystal cavity on nanofiber
by placing an absorber in the center of the femtosecond
laser beam [160]. The typical cavity length realized was
around 1.3 mm and cavity modes with finesse as high
as 200 were measured.

The femtosecond laser ablation technique has also
been used to create cavities with effective lengths
an order of magnitude longer than those considered
above. Keloth et al have reported the fabrication of a
centimeter-scale cavity directly on a nanofiber [161].
A schematic of the cavity is shown in Fig. 43(a).
They have fabricated two photonic crystal structures
separated by 1.2 cm on a 1.7 cm long nanofiber
using femtosecond laser ablation, thus forming a long
nanofiber cavity. A crucial technical requirement
for this appraoch was to fabricate long nanofibers
with highly uniform waist and maintaining high
transmission. The nanofiber used in this experiment
had a diameter of 500 ± 2 nm over the entire length of
1.7 cm and the total transmission of the tapered fiber
was > 99%. They showed that such a cavity is suitable
for operation in both the Purcell and strong-coupling
regimes of cavity QED.

The cavity QED parameters for the cavity are
summarized in Fig. 43(b). Assuming a single atom
trapped 200 nm away from the fiber surface they
estimated 2g0 ' 52 MHz, shown by the red dashed line
in Fig. 43(b). The κ and on-resonance transmission
(T0) values for different modes are shown by green
and blue circles respectively. The κ values for the
cavity modes with finesse in the range of 200 to 400,
are smaller than the estimated 2g0. Therefore they
can enable the strong-coupling regime of cavity QED,
with high cooperativity of 10 20. Moreover the on-
resonance transmission values for such cavity modes
can be as high as 40% to 60%, suggesting a one-pass
intracavity transmission of 99.5%. The cavity modes
with finesse below 200, are suitable for applications in
the Purcell regime, such as fiber-based single-photon
sources and quantum nonlinear optics. They can
enable cooperativity in the range of 310 and show high
transmission over 60% to 85%.

In the above methods the nanofiber Bragg mirror
cavities are realized by periodic modulation of the core
refractive index. In principle similar effects can be
realized by modulating the cladding refractive index.
Sadgrove et al have demonstrated a photonic crystal
nanofiber created by bringing an optical nanofiber into
optical contact with a nanostructure grating [163].
They call such a device a composite photonic crystal
nanofiber. This method has been used to realize a so-
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Figure 43. (Color online) (a) Schematic diagram of the
nanofiber cavity. (b) The green and blue circles show the
measured cavity linewidths (κ) and on-resonance transmission
(T0), respectively, vs the finesse (F ) values for the typical
cavity modes. The red dashed line shows the estimated single
photon Rabi frequency (2g0). The corresponding single atom
cooperativity (C) is shown in the top axis. From Ref. [161].

Figure 44. (Color online) (a) Schematic depiction of a
composite photonic crystal nanofiber cavity. (b) Scanning
electron microscope image of an experimentally realized
composite photonic crystal cavity device. (c,d) Experimentally
measured and theoretically predicted transmission spectra
respectively for the composite photonic crystal cavity discussed
in the text. In both cases, the blue line shows the x-polarized
mode and the red line shows the y-polarized mode. From Ref.
[52].

called “defect” cavity in which the periodicity of the

grating is disrupted at the grating center to create a
relatively small mode volume cavity [52]. The device
is depicted schematically in Fig. 44(a) and a scanning
electron microscope image is shown in Fig. 44(b). The
grating creates a periodic index modulation which is
experienced by the fundamental mode in the nanofiber.
This leads to Bragg reflection of the fundamental mode
at the Bragg resonant frequency determined by the
grating period and the effective refractive index of the
nanofiber/grating combination.

Figures 44(c) and (d) show the transmission
as a function of wavelength for x-polarized (blue
line) and y-polarized (red line) nanofiber fundamental
modes from FDTD simulations and experimental
measurements respectively. It may be seen that
for either polarization a broad stop-band is created
and a single narrow cavity mode appears at the
center of the stop-band. This is a clear signature of
photonic crystal cavity formation. The simulation and
experimental observations were found to be in good
correspondence. The separation between the x- and y-
mode resonance peaks are 1.3 nm (simulations) and
1.4 nm (experiments). The minimum transmission
values for the stopbands of x- and y-polarizations
and the peak transmission value for x-mode agreed
with the simulation values within the experimental
error, while the experimental transmission value of
y-mode was found to be less than the simulation
value by 16%. Regarding the quality factors (Q-
factors) the simulation (measured) values for x- and
y-mode were 1410 (1270 ± 20) and 2590 (2310 ± 80),
respectively [52]. The simulation (measured) x- and y-
mode transmissions were 81% (85±6) and 59% (50±4).
From the simulations they estimated an effective cavity
length of L ∼ 33 µm. Using this value for cavity length,
they estimated a finesse of 28 for the measured y-mode.

We note that the composite method can be useful
in settings where enhanced photoluminescence from
solid state quantum emitters is required. A key
advantage is that due to the composite nature of
the setup the emitter can be quasi-deterministically
positioned to the cavity center. Additionally, as
mentioned earlier, one application uses the sensitivity
of the Bragg resonance wavelength to the exact fiber
diameter to make sensitive measurements of nanofiber
diameters [97]. A proposal has also been made to
use the composite method to realize a sophisticated
atom trapping scheme in which the grating structure is
illuminated to produce arrays of trapping sites whose
positions coincide with antinodes of the cavity mode
induced by the grating [164].

A different approach for realizing a cavity on a
nanofiber is to use a fiber-inline cavity which includes
a tapered fiber with a nanofiber waist. A fiber-
inline cavity can be realized by splicing commercial
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a)

b)

Tapered !ber segment
with nano!ber waist

Figure 45. (Color online) (a) Schematic depiction of a FBG
based fiber-inline nanofiber cavity. From Ref. [50]. (b)
Schematic depiction of a fiber ring cavity with a nanofiber
segment. From Ref. [53].

fiber Bragg gratings (FBGs) to the tapered fiber. A
schematic diagram of the cavity is shown in Fig. 45(a).
Wuttke et al have demonstrated such a FBG based
cavity with a cavity length of 10.2 cm [50]. A typical
finesse of 85 is realized in such settings and the cavity
transmission was limited to 11% owing to the loss in
the tapering region. Kato et al have implemented a
similar cavity to demonstrate strong-coupling regime
of cavity QED with single trapped atoms [54].

Another approach is to use a fiber-inline ring
cavity with nanofiber segment. This can be realized
by splicing the tapered fiber to a fiber splitter. The
schematic diagram of the cavity is shown in Fig. 45(b).
Jones et al have demonstrated a fiber ring resonator
comprised of a relatively long loop of standard single-
mode fiber with a nanofiber segment [165]. The
cavity finesse was limited to 4. Later Schneeweiss
et al improved this technique to realize a finesse of
75 for a cavity length of 2.35 m [53]. Rudell et al
have implemented such a cavity to demonstrate strong-
coupling with multiple emitters [111].

The cavity QED parameters for different types of
nanofiber cavities are summarized in Table 1. The 2g0

and C values are estimated using Eqs. (48) and (49),
respectively. For the estimation we have taken η = 0.04
assuming the D2-line transition for a single Cs-atom,

trapped 200 nm from the surface of a nanofiber with
500 nm diameter. It should be noted that solid state
emitters can be placed on the fiber surface which will
further enhance the 2g0 and C values by 2.5 and 5
times, respectively.

It may be seen from Table 1 that for the composite
nanofiber cavity the effective cavity length is around a
few tens of microns, and the estimated finesse is around
28. The κ values can be as high as 100 GHz while
the cooperativity can still be 5-10 for an emitter on
the surface. Moreover a high transmission value of
50-60% can be realized for the cavity mode. Similar
short cavities can also be realized using FIB fabrication
[157, 159]. However the reported Q-values are not
as high as the composite cavity. The FIB fabricated
cavity mentioned in the second row of Table 1, has a
cavity length of a few hundred microns. But the finesse
is 4 times better than composite cavity leading to 4
times higher cooperativity. Such cavities are suitable
for solid state quantum emitters and fast generation of
single photons.

For cavity lengths on the order of a few mm,
as realized by femtosecond laser ablation, a high
cooperativity of >25 can be realized with κ values of
several hundreds of MHz. Such cavities are suitable for
quantum nonlinear optics in the ”Purcell” regime, with
single atoms trapped 200 nm from fiber surface. The
cavity with length on the order of one cm is particularly
interesting as it can support both the Purcell and
strong-coupling regimes of cavity QED with high
cooperativity and high transmission. The FBG based
cavities have lengths of a few tens of centimeters.
Such cavities allow the strong-coupling regime of cavity
QED to be achieved in a relatively simpler settings,
without the need for sophisticated nanofabrication
techniques. However, the cooperativity and cavity
transmission are reduced, due to the inclusion of the
tapered section. The ring cavities have even longer
lengths of a few meters. As a result, the finesse is
further reduced and hence the cooperativity reduces
to below 1, which means that multiple emitters are
necessary to achieve strong atom-photon coupling.

6.3. Demonstration of Purcell enhancement using a
nanofiber cavity

Purcell enhancement of the spontaneous emission from
a single QD into the nanofiber guided modes was first
demonstrated using the composite photonic crystal
nanofiber cavity discussed in the preceding section
[52]. The experiments were performed by depositing
colloidal quantum dots (QDs) with an 800 nm center-
wavelength on the nanofiber by brushing a droplet of
QD solution on the nanofiber surface. QD number was
estimated from blinking statistics and by performing
photon correlation measurements using a Hanbury-
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Table 1. Summary of nanofiber cavity.

No. Type of cavity L (mm) F Q κ (MHz) 2g0 (MHz) C T (%)
1 Composite Method [52] 0.033 28 2.2×103 162×103 1.1×103 1.43 50-60
2 FIB Fabricated [49] 0.18 117 49.5×103 7.1×103 470 6 25
3 Femto Ablation (short) [160] 1.27 500 1.5×106 236 177 25.5 21
4 Femto Ablation (Long) [161] 14.4 175 5.9×106 59.5 52.5 9 65
5 Femto Ablation (Long) [161] 14.4 314 10.6×106 33.2 52.5 16 46
6 Two FBG Cavity [50] 102 85 20.4×106 17.3 19.7 4.3 11
7 Ring Cavity [53] 3407 75 300×106 1.17 2.4 0.95

BrownTwiss setup. The details of these techniques
are discussed in Section 5. The QDs were excited
by using a 640 nm wavelength laser of power 35 µW
focused by an objective lens. Using a nanopositioning
stage, the QD was positioned in the center of the
excitation spot to better than ±1 µm by monitoring
the QD fluorescence. The defect position of the
grating was aligned to within ±1.5 µm of the excitation
spot center. The enhancement of QD emission was
measured through the nanofiber after making optical
contact between the grating and the nanofiber in order
to form the composite cavity.

Figure 46(a) shows the photoluminescence spec-
trum for 3-5 quantum dots (as estimated from observa-
tion of blinking in the raw photoluminescence measure-
ments) deposited on the nanofiber and near the cavity
center, measured at the output of the nanofiber. Two
enhancement peaks are clearly visible with λres = 787.3
nm and λres = 788.5 nm corresponding to the x- and
y-polarizations respectively. The x-mode FWHM was
0.5 ± 0.2 nm and that of the y-mode was 0.4 ± 0.1
nm [52].

The enhancement factor (EF) E for a given
polarization is defined as the ratio of the on-resonant
photoluminescence in the presence of a cavity to the
photoluminescence at the same wavelength in the
absence of the cavity. Experimentally, the value in the
absence of the cavity was estimated by measuring the
off-resonant photoluminescence. Specifically,

E = γ(c)
g /3〈γ(0)

g 〉, (52)

where γ
(c)
g is the decay rate into the guided modes

of the CPCC, and 〈γ(0)
g 〉 is the polarization averaged

decay rate into the bare nanofiber guided modes.
Note that all the polarizations contribute to the
background PL intensity, but only the x- or y-
polarization contributes to the enhancement peak. The
decay rate in the CPCC may be written γ

(c)
g =

(γ(c)
g /Γ)(Γ/Γ0)Γ0, where the first bracketed term is

the channeling efficiency ηc, the second bracketed
term is the Purcell factor P , Γ is the total decay
rate of the QE, and Γ0 is the free-space decay
rate of the QE. Note that the enhancement factor
is not in general equal to the Purcell factor. As

Figure 46. (Color online) (a) Photoluminescencemeasurements
from several quantum dots coupled to a composite photonic
crystal cavity device. The left-hand (right hand) peak shows
the x-polarized (y-polarized) mode. (b) Photoluminescence
measurements for three different single quantum dots coupled
a composite photonic crystal cavity. In each case, a sharp
enhancement peak was seen on top of the broad emission
background. (c) EFs for single QDs in the composite photonic
crystal cavity and cavity Q-factors. Red diamonds and green
squares with error bars show measured EFs, while black circles
show corrected EFs. Measured Q-factors for the y-mode cavity
peaks are shown in the inset, with the solid line showing a linear
fit to the data. From Ref. [52].

seen in Fig. 46(a), the experimentally determined
ratio between the enhancement peak heights and
wavelength separation between x- and y-polarization
modes was found to exhibit good correspondence with
the simulation values.

Figure 46(b) shows examples of Purcell enhance-
ment peaks in the photoluminescence of three different
single quantum dots deposited on nanofibers of differ-
ent radii and near the cavity center. The inset shows
a typical antibunching signal confirming the presence
of a single quantum dot. The different radii of the
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nanofibers lead to different values of neff for the fiber
mode and therefore different resonant frequencies of
the composite photonic crystal cavity. Additionally,
since the exact position of the quantum dots in the
cavity is effectively random with respect to the cavity
antinodes, the amplitude of the enhancement peak is
different in each case. Although the x- and y-mode
peaks were not resolved at the OMA resolution (1.5
nm) used in the measurement, the observed PL inten-
sity peak was asigned to the y-polarized dipole compo-
nent since the y-mode peak is larger (see Fig. 46(a)).
The measured EFs were 2.7±0.2, 3.9±0.3, and 3.0±0.2
at λres = 782.0 nm, 795.0 nm, and 799.0 nm (black, red
and blue curves respectively) [52].

Enhancement results for a number of different
conditions, along with numerically estimated y-
polarization Q-factors, are shown in Fig. 46(c). For
a QD randomly placed with respect to the cavity
antinodes and the QD azimuthal position randomly
distributed between 0◦ and 90◦, the EF was expected
to lie within the gray shaded region. The simulated
EF was found to increase as λres became shorter due
to the associated rise in the Q-factor (blue triangles in
the inset of Fig. 46(c)).

The red and green points in Fig. 46(c) show the
measured EF as a function of λres for 11 different
single QDs with estimated error bars, for resolutions
of 1.5 nm and 3.3 nm respectively. Most of the
measured points lie below the shaded region because
the resolution limit of the OMA did not allow the
true peak amplitude to be measured leading to an
underestimate of the EF.

The true EF was estimated by performing an
effective deconvolution with the instrument response
function of the OMA, as explained in Ref. [52]. The
black circles in Fig. 46(c) show the estimated true
EFs. It should be noted that essentially all the points
lie inside the shaded region within the experimental
errors.

The good agreement between numerical simula-
tions and experiments allowed the use of numerical
results to estimate the experimental Purcell factor.
As in Ref. [52], they perform two different estimates.
The maximum measured EF as seen in Fig. 46(c) is
E = 15 ± 3 for a wavelength of λres = 785 nm. From
the simulation results this value of EF corresponds to
a Purcell factor for a y-polarized dipole emitter F y

P

and the channeling efficiency into the nanofiber guided
modes ηy

c of 7 and 0.65 respectively.
The second estimate was made as follows [52]:

In the Purcell regime the Purcell factor may be
approximated as FP ≈ (4/π)PFc, where P = γ

(0)
g /Γ0

and where Fc is the cavity finesse. Taking P = 0.2 at
λres = 785 nm, as calculated by simulations, and Fc =
28± 1 as calculated from the experimentally measured

y-mode FWHM, the simulation value for cavity length
and assuming a nanofiber effective refractive index of
1.19, they found a value F y

P = 6.9± 0.2 [52]. This is in
good agreement with the simulation results discussed
in the previous paragraph.

Purcell enhancement of a quantum emitter
coupled to a nanofiber cavity was also realized by Schell
et al in reference [157] using an FIB fabricated, defect
mode nanofiber cavity as discussed in the previous
subsection. In that work, EFs of up to 3 were
measured.

6.4. Demonstration of the strong-coupling regime
using a nanofiber cavity

We now consider the use of nanofiber cavities to achieve
the strong coupling regime of cavity QED. Unlike the
results in the previous subsection, the strong coupling
regime has so far been demonstrated in relatively long
cavities (cavity lengths of 10-200 centimeters) using
either standard fiber Bragg gratings with a nanofiber
region spliced in between [54] or a ring cavity [111].
We review these results below.

First, Kato and Aoki used the above-mentioned
FBG cavity system to reach the strong coupling regime
for a single atom trapped near an optical nanofiber
[54]. They realized a cavity of 33 cm by splicing
commercial FBGs to a tapered optical fiber with
nanofiber waist of 400 nm diameter. Using such a
cavity they realized a finesse of 40 for a cavity mode
with linewidth 6.4 MHz. Further they implemented
a two-color magic wavelength trap for laser-cooled Cs
atoms using guided modes of the nanofiber. The atoms
were trapped around 170 nm from the nanofiber surface
in a potential of depth 210 µK. By controlling the
density of laser cooled atoms around the nanofiber they
realized a trapped atom number down to the single
atom level.

In order to probe the atom-cavity coupling they
measured the transmission spectrum using a weak
probe field. However the single atom events were
probabilistic and atoms were trapped at random
positions within the cavity relative to the cavity
antinodes. For this reason, they used a two step
probing technique and post-processing data analysis to
determine the atom-cavity coupling. After the loading
sequence they sent two probe pulses with power <
1 pW and pulse width of several milliseconds. The
first probe pulse (detection probe) was resonant to
the atom and the second probe pulse had a variable
detuning (spectroscopy probe). When the cavity is
resonant with the atom and the atom is positioned
at the antinode the resonant probe pulse transmission
will strongly reduce due to the normal mode splitting.
Therefore the transmission of the detection probe
determined the coupling condition for the spectroscopy
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probe.
Using data post-processing, based on the attenua-

tion of the detection probe, they delineated six regimes
i)-vi) corresponding to the strength of coupling to the
cavity, as shown in the left pannel of Fig. 47(a). The
corresponding transmission spectra are shown in the
right pannel of Fig. 47(a). The observed absorption
spectrum in each regime has different behavior. In the
strongest probe attenuation regime vi), clear splitting
associated with the strong coupling regime of cavity
QED was observed. In this regime the atom-photon
coupling parameter was found to be 7.8 MHz. In or-
der to confirm the observed splitting was due to a
single atom, they measured the spectrum for different
trap loading times. By reducing the trap loading time
the probability of the events reduced but the splitting
remained the same. From this they concluded that
the observed normal mode splitting was due to single
atoms. They measured a trap lifetime of 11 ms under
these settings.

Second, Ruddell et al used a 1.4 meter length
fiber ring cavity with a nanofiber portion to realize
strong coupling of multiple atoms to a nanofiber
cavity [111]. The ring cavity mode resonant with
the atomic resonance was found to have a finesse
of 35 and a linewidth of 2.17 MHz. They achieved
thermal tuning of the cavity by sending an off-
resonant laser at 780 nm through the nanofiber and
used this technique to stabilize the cavity mode to
the atom resonance. By overlapping a laser-cooled
atom cloud with the nanofiber cavity they probed
the transmission spectrum of the atom-cavity system.
The measured transmission spectra for different probe
powers are shown in Fig. 47(b). For low probe powers
they observed a large splitting (∼ 20 MHz) of the
cavity resonance. They attributed the splitting to
the collective enhancement by an ensemble of atoms
interacting with the cavity mode, as the average
single-atom-cavity coupling rate was not high enough
to cause the splitting alone in this setting. For
higher probe powers the splitting was reduced and
after a certain power threshold was exceeded, the
response became the same as that of an empty cavity
Fig. 47(b)(iv). From this saturation behavior they
estimated an effective atom-photon coupling rate of
0.6 MHz and a net cooperativity of 1.5 for an effective
atom number of 64.

The two realizations of strong coupling of Cs
atoms to a nanofiber cavity discussed above involve
cavities with large length which are typically suited
to strong coupling applications. From the preceding
section, we may expect higher cooperativities and
couplings both in the strong and Purcell regime if
atoms are coupled to cavities with cavities fabricated
in the nanofiber region itself.

(i) (ii)

(iii) (iv)

(a)

(b)

Figure 47. (Color online) (a) (Adapted from Ref. [54] with
permission). Left Pannel: Histogram of the transmission
intensity of the detection probe with (blue) and without (gray)
the optical molasses. Right Pannel: Transmission spectra
through the nanofiber Bragg cavity for the regimes (i)-(vi)
as discussed in the text. (b) (Adapted from Ref. [111] with
permission). In each case, red lines show transmission spectra
through the nanofiber ring cavity in the presence of atoms, while
blue lines show the transmission spectra for the same condition
but without atoms. The panels correspond to probe powers of
(i) 30 pW, (ii) 60 pW, (iii) 750 pW, and (iv) 2.3 nW.

7. Summary and outlook

For more than one decade, optical nanofiber technology
has experienced significant development and wide
ranging popularity in various fields including quantum
optics. This is principally due to the technical
simplicity, scientific elegance and practical significance
of the technique. In particular, optical nanofibers have
opened promising new avenues for quantum photonics.

Detailed theoretical investigations, promptly fol-
lowed by (or motivated by) experimental demonstra-
tions have formed a strong foundation for understand-
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ing the atom-photon interaction around the nanofiber.
High quality nanofibers are now routinely fabricated
in various groups using fiber tapering technology. Inte-
grating laser-cooled atoms and various solid-state emit-
ters with nanofibers is also well established. Single
quantum emitters on nanofibers have been well inves-
tigated using photon correlation and laser spectroscopy
techniques. Fabrication of high quality nanofiber cav-
ities of various types has also been achieved.

In the context of quantum photonics the key is-
sues are single photon generation, storage and ma-
nipulation. The measurement of channeling efficiency
into nanofiber guided modes and demonstration of Pur-
cell enhancement using a nanofiber cavity are essential
rudimentary steps towards efficient single photon gen-
eration. Further developments are necessary to real-
ize solid-state emitters with narrow emission lines and
high quantum efficiency. Extension of nanofiber-based
cavity QED experiments with an efficient solid-state
emitter under a cryogenic environment is an essential
requirement for fiber-inline single photon sources.

The demonstration of EIT-based single photon
storage in nanofiber-trapped atoms is a major step
toward quantum nonlinear optics with multiple emit-
ters. However, the storage time and retrieval efficien-
cies are far below the practical requirements. The stor-
age and retrieval efficiencies can be further improved
by implementing nanofiber cavities. However, a major
challenge is to improve the coherence properties of the
trapped atomic ensemble.

On the other hand, demonstration of the strong-
coupling regime with trapped single-atoms in a
nanofiber cavity has opened a promising approach
for quantum nonlinear optics with single emitters.
However, the observed single atom events are quite
rare. Deterministic preparation of single atoms
trapped at the antinode of the nanofiber cavity is
an essential requirement for this approach. In this
direction, an optical tweezer based side-illuminated
nanofiber trap may provide a better solution.

Based on the above developments, it is possible
to demonstrate a single photon switch and two-qubit
quantum gates to create atom-photon and photon-
photon entanglement in a nanofiber based system. In
order to extend such a system as a quantum node,
demonstration of atom-atom entanglement connecting
two quantum nodes is essential. Additionally, atom-
atom entanglement distributed over multiple atoms
in the same quantum node will further enhance the
capabilities of the node.

In this context, nanofiber mediated long-range
dipole-dipole interaction between atoms may offer
promising possibilities to implement collective superra-
diance and many-body effects. The recent demonstra-
tion of Bragg reflection from nanofiber trapped atoms

and collective strong-coupling in nanofiber cavities are
preliminary steps in this direction. Furthermore the re-
cent demonstrations of the chiral nature of light-matter
interaction in nanofibers may offer unprecedented func-
tionality for complex quantum networks.

In only a decade, the field of nanofiber quantum
photonics has shown significant development and
popularity. However, we believe that this is just the
beginning and the field awaits a vast expansion in
the near future. We hope this review will be a good
starting point for the new players in this field.

Appendix A. Light propagation in step-index
optical fibers

2b

2a

n(r)

n1

n2

(a) (b)

r

ϕ
zr

y

x

Figure A1. a) Geometry of a standard glass fiber and b) the
profile of its refractive index as a function of the radial distance
r. In practice, we have b � a.

A typical step-index optical fiber has a cylindrical
doped silica core of radius a and and refractive index
n1 and a cylindrical silica cladding of radius b and
refractive index n2, where n2 < n1 (figure A1). We
use the Cartesian coordinates (x, y, z) as well as the
cylindrical coordinates (r, ϕ, z), where r and ϕ are the
polar coordinates in the fiber transverse plane and z is
the coordinate along the fiber axis. We consider a light
field of wavelength λ, frequency ω and free-space wave
number k = 2π/λ = ω/c propagating in the fiber. We
assume that the cladding radius b is large as compared
to the core radius a and the light wavelength λ. Then,
we can use the limit b = ∞ and write the refractive
index n = n(r, ϕ, z) of the medium as

n(r, ϕ, z) = n(r) =
{

n1 if r < a,
n2 if r > a.

(A.1)

The dielectric constant ε is related to the refractive
index n as ε = n2ε0, where ε0 is the dielectric
constant of free space. Since the materials of optical
waveguides are normally nonmagnetic, we assume that
the magnetic permeability is equal to the free-space
value µ0. In addition, we assume that the medium is
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source-free. In view of the very low losses of silica in
the wavelength range of interest, we neglect material
absorption. Under these conditions, the Maxwell’s
equations for the electric field E and the magnetic field
H take the form [166]

∇× E = − µ0
∂H
∂t

,

∇× H = ε
∂E
∂t

,

∇ · (εE) = 0,

∇ ·H = 0. (A.2)

When the refractive index n does not vary with
distance z along the fiber axis, it is convenient
to express the electric and magnetic fields as a
superposition of fields in modes with the separable
form [57, 58, 59]
[

E(r, ϕ, z, t)
H(r, ϕ, z, t)

]
=

1
2

[
E(r, ϕ)
H(r, ϕ)

]
e−i(ωt−βz)+c.c.,(A.3)

where ω and β are the frequency and propagation
constant of a mode, respectively, and E and H are
the complex amplitudes of the electric and magnetic
components, respectively, of the field in the mode.

We use the notations[
E
H

]
=

[
e
h

]
exp(ilϕ). (A.4)

We decompose the mode amplitudes into radial,
azimuthal and axial components denoted by subscripts
r, ϕ and z, respectively. Then, we have ez = AJl(hr)
and hz = BJl(hr) for the inside of the core (r < a)
and ez = CKl(qr) and hz = DKl(qr) for the outside
of the core (r > a). Here the parameters

h = (n2
1k

2 − β2)1/2 (A.5)

and

q = (β2 − n2
2k

2)1/2 (A.6)

characterize the fields inside and outside the fiber,
respectively. The transverse components er , eϕ, hr and
hϕ can be expressed in terms of ez and hz. The results
are summarized below:

For r < a, we find

er =
β

h

[
iAJ ′

l (hr) − ωµ0l

β
B

Jl(hr)
hr

]
,

eϕ = −
β

h

[
lA

Jl(hr)
hr

+
iωµ0

β
BJ ′

l (hr)
]

,

ez = AJl(hr), (A.7)

and

hr =
β

h

[
iBJ ′

l (hr) +
ωε1l

β
A

Jl(hr)
hr

]
,

hϕ = − β

h

[
lB

Jl(hr)
hr

− iωε1
β

AJ ′
l (hr)

]
,

hz = BJl(hr), (A.8)

where J ′
l (x) = dJl(x)/dx is the derivative of J(x)

with respect to the argument x and ε1 = n2
1ε0 is the

dielectric constant for the core.
For r > a, we obtain

er = − β

q

[
iCK ′

l(qr) −
ωµ0l

β
D

Kl(qr)
qr

]
,

eϕ =
β

q

[
lC

Kl(qr)
qr

+
iωµ0

β
DK ′

l (qr)
]

,

ez = CKl(qr), (A.9)

and

hr = − β

q

[
iDK ′

l (qr) +
ωε2l

β
C

Kl(qr)
qr

]
,

hϕ =
β

q

[
lD

Kl(qr)
qr

− iωε2
β

CK ′
l(qr)

]
,

hz = DKl(qr), (A.10)
where K ′

l (x) = dKl(x)/dx is the derivative of K(x)
with respect to the argument x and ε2 = n2

2ε0 is the
dielectric constant for the cladding.

The normalization constants A, B, C and D as
well as the propagation constant β are related to each
other by the boundary conditions. The tangential
components eϕ,z and hϕ,z are continuous at the core-
cladding boundary. These conditions together with
(A.7)–(A.10) yield the fiber eigenvalue equation[

J ′
l (ha)

haJl(ha)
+

K ′
l(qa)

qaKl(qa)

][
n2

1J
′
l (ha)

haJl(ha)
+

n2
2K

′
l (qa)

qaKl(qa)

]

= l2
(

1
h2a2

+
1

q2a2

)2
β2

k2
, (A.11)

which determines the propagation constant β for each
guided mode. The coefficients B, C and D are related
to the coefficient A as
C

A
=

Jl(ha)
Kl(qa)

,

B

A
=

iβl

ωµ0

(
1

h2a2
+

1
q2a2

) [
J ′

l (ha)
haJl(ha)

+
K ′

l (qa)
qaKl(qa)

]−1

,

D

A
=

C B

A2
. (A.12)

The coefficient A can be determined by accounting for
the energy flux in the z direction.

The index l = 0,±1,±2, . . . in the above equations
stems from the ansatz (A.4) for the mode functions in
the cylindrical coordinates. The sign + or − of l refers
to the solution with left- or right-handed circulation
of the transverse field around the fiber axis. For
convenience, we can label two different modes of the
opposite orders l and −l by using the same index l
and adding a polarization index p = +1 or −1. The
solution for a quasilinearly polarized light Elin can be
composed as a superposition of left- and right-handed
circular fields Eleft and Eright, that is,

Elin =
1√
2
(Elefte−iϕ0 + Erighteiϕ0 ). (A.13)

Page 44 of 57AUTHOR SUBMITTED MANUSCRIPT - JOPT-105027.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Nanofiber quantum photonics 45

Here the angle ϕ0 specifies the direction of the
polarization vector.

We now discuss the solutions of the fiber eigen-
value equation (A.11) for the propagation constant
β and the properties of the associated modes. We
solve (A.11) for J ′

l (ha)/haJl(ha) and use the relation
J ′

l (x) = −Jl+1(x) + (l/x)Jl(x) = Jl−1(x) − (l/x)Jl(x)
to rearrange the result. Then, we obtain two sets of
eigenvalue equations, namely,

HE modes:
Jl−1(ha)
haJl(ha)

= −n2
1 + n2

2

2n2
1

K ′
l (qa)

qaKl(qa)
+

l

h2a2
− R, (A.14)

EH modes:
Jl+1(ha)
haJl(ha)

=
n2

1 + n2
2

2n2
1

K ′
l(qa)

qaKl(qa)
+

l

h2a2
− R, (A.15)

with

R =

[(
n2

1 − n2
2

2n2
1

)2 (
K ′

l (qa)
qaKl(qa)

)2

+
(

lβ

n1k

)2 (
1

q2a2
+

1
h2a2

)2
]1/2

. (A.16)

Equations (A.14) and (A.15) can be solved graphically
by plotting each side as a function of ha using qa =√

(n2
1 − n2

2)(ka)2 − (ha)2. When l 6= 0, equations
(A.14) and (A.15) correspond to the HE and EH
modes, respectively. If the eigenvalues for HE (EH)
modes with a given value l 6= 0 are βm, where m =
1, 2, 3, . . ., then the modes are designated as HElm

(EHlm). In the special case where l = 0, equations
(A.14) and (A.15) correspond to the TE and TM
modes, respectively. If the eigenvalues for TE (TM)
modes are βm, where m = 1, 2, 3, . . ., then the modes
are designated as TE0m (TM0m).

Confined modes require that q be real to achieve
an exponential decay of the field in the cladding.
Therefore, we need to consider only ha in the range
0 ≤ ha ≤ V , where

V = ka
√

n2
1 − n2

2. (A.17)

At the point ha = V , we have qa = 0 and hence
Kl(qa) = ∞. Consequently, the point ha = V is
the position of the singularity of the right-hand sides
of (A.14) and (A.15). For a given l, the number
of solutions is determined by the position of the
singularity of the right-hand sides of (A.14) and (A.15),
that is, by the point ha = V . The parameter V is hence
the characteristic size parameter for the fiber.

We note that the HE11 mode always exists
regardless of the value of V . This means that the
HE11 mode does not have a cut-off. However, all
other modes have cut-off values. At the cut-off for a
mode, the propagation constant of the mode β takes
the value β = kn2, yielding q = 0. As the mode

approaches its cut-off, the field penetrates deeply into
the cladding medium and the mode is poorly confined
and poorly guided. Below the cut-off value Vc

∼= 2.405
only the mode HE11, called the fundamental mode,
can propagate. Thus, the single-mode condition is
V ≡ ka

√
n2

1 − n2
2 ≤ Vc

∼= 2.405.
For many applications requiring a well-defined

phase front of the propagating light (e.g. telecommu-
nication, interferometry etc.), single-mode operation is
compulsory. In nanofiber photonics, we are interested
in the situations where the fields are tightly confined in
the fiber transverse plane. Such situations may occur
only in the singe-mode regime. Therefore, below we
discuss only the HE11 mode.

We consider a fundamental mode with quasicircu-
lar polarization. In the cylindrical coordinates, the so-
lutions of Maxwell’s equations for the cylindrical com-
ponents of the electric field amplitude E in such a mode
are given by [57, 58, 59]

Er = ere±iϕ,

Eϕ = ± eϕe±iϕ,

Ez = eze±iϕ. (A.18)

Here the functions ej (j = r, ϕ, z) describe the radial
dependences of the field components. They are defined,
for r < a, as

er = iA
β

2h
[(1 − s)J0(hr) − (1 + s)J2(hr)],

eϕ = − A
β

2h
[(1 − s)J0(hr) + (1 + s)J2(hr)],

ez = AJ1(hr), (A.19)

and, for r > a, as

er = iA
β

2q

J1(ha)
K1(qa)

[(1 − s)K0(qr) + (1 + s)K2(qr)],

eϕ = − A
β

2q

J1(ha)
K1(qa)

[(1 − s)K0(qr) − (1 + s)K2(qr)],

ez = A
J1(ha)
K1(qa)

K1(qr). (A.20)

The upper (lower) sign in (A.18) corresponds to
the counterclockwise (clockwise) circulation of the
azimuthal phase around the z axis. It is clear that the
total intensity |E|2 of the electric field is independent
of the azimuthal angle ϕ. We note that the complex
quadratures Er and Eϕ have a difference of π/2 between
their phases. Therefore, the polarization of the total
transverse component of the field is elliptical (or
circular).

The normalized profile functions for quasilinearly
polarized guided modes are given as

e(ωfx) =
√

2(r̂er cos ϕ + iϕ̂eϕ sin ϕ + f ẑez cos ϕ),

e(ωfy) =
√

2(r̂er sin ϕ − iϕ̂eϕ cos ϕ + f ẑez sin ϕ).(A.21)
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Appendix B. Radiation modes of a nanofiber

We present the electric component of the field in the
form E = (1/2)(Ee−iωt +c.c.), where E is the envelope.
For a radiation mode with a propagation constant β
in the range −kn2 < β < kn2 and a mode order
m = 0,±1,±2, . . ., we can write E = eeiβz+imϕ , where
e is the mode profile function. The characteristic
parameters for the field in the inside and outside of
the fiber are h =

√
k2n2

1 − β2 and q =
√

k2n2
2 − β2,

respectively.
The mode functions of the electric parts of the

radiation modes ν = (ωβmp) [57, 58, 59] are given, for
r < a, by

e(ν)
r =

i
h2

[
βhAJ ′

m(hr) + im
ωµ0

r
BJm(hr)

]
,

e(ν)
ϕ =

i
h2

[
im

β

r
AJm(hr) − hωµ0BJ ′

m(hr)
]

,

e(ν)
z = AJm(hr), (B.1)

and, for r > a, by

e(ν)
r =

i
q2

∑

j=1,2

[
βqCjH

(j)′
m (qr) + im

ωµ0

r
DjH

(j)
m (qr)

]
,

e(ν)
ϕ =

i
q2

∑

j=1,2

[
im

β

r
CjH

(j)
m (qr) − qωµ0DjH

(j)′
m (qr)

]
,

e(ν)
z =

∑

j=1,2

CjH
(j)
m (qr). (B.2)

Here A and B as well as Cj and Dj with j = 1, 2 are
coefficients. The coefficients Cj and Dj are related to
the coefficients A and B as [63]

Cj = (−1)j iπq2a

4n2
2

(ALj + iµ0cBVj),

Dj = (−1)j−1 iπq2a

4
(iε0cAVj − BMj), (B.3)

where

Vj =
mkβ

ah2q2
(n2

2 − n2
1)Jm(ha)H(j)∗

m (qa),

Mj =
1
h

J ′
m(ha)H(j)∗

m (qa) − 1
q
Jm(ha)H(j)∗′

m (qa),

Lj =
n2

1

h
J ′

m(ha)H(j)∗
m (qa) − n2

2

q
Jm(ha)H(j)∗′

m (qa).

(B.4)

We specify two polarizations by choosing B = iηA and
B = −iηA for p = + and p = −, respectively. We take
A to be a real number. The orthogonality of the modes
requires
∫ 2π

0

dϕ

∫ ∞

0

n2
ref

[
e(ν)e(ν′)∗

]
β=β′,m=m′

rdr

= Nνδpp′δ(ω − ω′). (B.5)

This leads to

η = ε0c

√
n2

2|Vj|2 + |Lj|2
|Vj|2 + n2

2|Mj|2
. (B.6)

The constant Nν is given by

Nν =
8πω

q2

(
n2

2|Cj|2 +
µ0

ε0
|Dj|2

)
. (B.7)

Appendix C. Theoretical formulation of
optical trapping potential using guided modes
of nanofiber

The guided modes of an optical nanofiber can have
very different properties compared with simple beams
in free space for which the paraxial approximation
holds. For example, the appearance of a longitudinal
component of the field (also present in strongly focused
laser beams) is one of the most striking features of
tightly confined light. Experiments in both non-
paraxial dipole traps [167, 168] and traps formed
in the evanescent field of a nanofiber [37, 38] have
led to important discussions regarding the coherence
properties of atoms in such tight optical traps.

In this subsection, we give a theoretical back-
ground of trapping atoms. We present the scattering
rate and dipole force in the near-resonance and far-of-
resonance cases. We discuss two-level atoms, multilevel
atoms, the AC-Stark shift and the surface–atom inter-
action. We also calculate numerically optical potentials
in a nanofiber-based trap.

Appendix C.1. Interaction of a classical dipole
oscillator with a light field

The interaction of a monochromatic light field and a
neutral atom is well described by the Lorentz model
[166]. In this model, the atom is reduced to a
classical harmonic oscillator consisting of an electron
(mass me, charge −e) bound to a massive core by a
harmonic potential. In the presence of a light field, the
displacement r of the electron from its mean position
is governed by the equation [166]

r̈(t) + γṙ(t) + ω2
0r(t) = − e

me
E(t), (C.1)

where ω0 is the angular frequency of the oscillator,
E is the electric component of the field, and γ =
e2ω2

0/6πε0mec
3 is the energy dissipation rate due to

classical dipole radiation. In the above equation, we
have neglected the magnetic force, which is small for
non-relativistic motion of the electron in the atom.

We consider a monochromatic driving field E =
(Ee−iωt + c.c.)/2. Here ω and E are the angular
frequency and complex amplitude of the field. We
write r = (ue−iωt + c.c.)/2, where u is the complex
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displacement amplitude. In the stationary regime, the
solution for u is

u = −α

e
E , (C.2)

where

α =
e2

me

1
ω2

0 − ω2 − iγω
(C.3)

is the complex polarizability of the atom. It is clear
that the complex amplitude ℘ = −eu of the induced
dipole moment d = −er = (℘e−iωt + c.c.)/2 is
determined by the expression ℘ = αE.

The time-averaged power absorbed by the atom is
the work that the field does on the induced dipole and
is given by

P = ḋ(t) ·E(t) =
ω|E|2

2
Im[α]. (C.4)

In the classical picture, the energy of the driving field
is dissipated continuously. However, in the quantum
mechanical picture the photons in the driving field are
scattered by the atom. The scattering rate is

Γscatt =
P

~ω
=

|E|2

2~
Im[α]. (C.5)

For a classical dipole oscillator, we find

Γscatt =
e2

cε0~me

γω

(ω2
0 − ω2)2 + γ2ω2

I. (C.6)

The time-averaged optical potential of the induced
dipole moment d interacting with the driving electric
field E is given by

U = −1
2
d(t) ·E(t) = −1

4
|E|2Re[α]. (C.7)

Here the first factor of 1/2 accounts for the fact that
the dipole moment is induced and another 1/2 for the
cycle average of the squared electric field modulus. The
optical dipole force exerted on the atom is given by the
well-known classical formula

F = −∇U (r). (C.8)

For a classical dipole oscillator, we find

U (r) = − e2

2cε0me

ω2
0 − ω2

(ω2
0 − ω2)2 + γ2ω2

I(r). (C.9)

Appendix C.2. Interaction of a two-level atom with a
near-resonant field

Note that the classical dipole oscillator is not a
quantum system. Moreover, a quantum harmonic
oscillator has an infinitely large number of equidistant
energy levels. In a semiclassical approach, the atom is
considered as a two-level quantum system interacting
with a classical field. We denote the upper and
lower levels of the atom by the notations |2〉 and
|1〉, respectively. The quantum state of the atom is
described by the density matrix ρij = 〈i|ρ̂|j〉, where

i, j = 1, 2. We use the dipole and rotating-wave
approximations. The time evolution of the atomic
population difference w = ρ22 − ρ11 and the atomic
coherence ξ = ρ21eiωt is governed by the optical Bloch
equations [169]

ẇ = − γ(w + 1) + i(Ωξ∗ − Ω∗ξ),
ξ̇ = (i∆ − γ/2)ξ − (iΩ/2)w, (C.10)

where Ω = d‖E/~ is the Rabi frequency, ∆ = ω − ω0

is the detuning of the field and γ = ω3
0d

2/3πε0~c3

is the decay rate of the excited state. Here d is the
magnitude of the dipole moment of the atom and d‖ is
the magnitude of the projection of the atomic dipole
moment onto the polarization vector of the electric field
component.

The positive frequency component of the induced
dipole moment is ℘ = 2d∗

‖ξ = αE , where α is the
polarizability of the atom. In the stationary regime,
we have [169]

α = −
2|d‖|2

~γ2

2∆− iγ
1 + I/I0 + (2∆/γ)2

, (C.11)

where I = cε0|E|2/2 is the intensity of the field and
I0 = cε0~2γ2/4|d‖|2 is the saturation intensity.

For a two-level quantum atom, the scattering rate
is found to be

Γscatt =
γ

2
I/I0

1 + I/I0 + (2∆/γ)2
. (C.12)

Near to resonance (∆ � γ) and at strong saturation
(I � I0), the scattering rate of single atoms
can achieve substantial values Γscatt

∼= γ/2 (∼
107photons/s for alkali-metal atoms).

For a two-level quantum atom, the optical
potential is found to be

U (r) =
~∆
2

I(r)/I0

1 + I(r)/I0 + (2∆/γ)2
. (C.13)

It is clear from the above formula that a red detuning
(∆ = ω−ω0 < 0) creates an attractive potential while a
blue detuning (∆ = ω−ω0 > 0) creates a repulsive one.
That is, for a red detuning, atoms will be attracted to
intensity maxima, while for a blue detuning, they will
be repelled from intensity maxima.

When we compare (C.12) and (C.13), we find a
simple relation

Γscatt =
γ

~∆
U. (C.14)

In typical trapping applications, we wish to avoid
heating of atoms due to scattering while maximizing
the trap depth. Such a regime can be realized by using
far detuned fields (|∆| � γ) at high intensity.
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Appendix C.3. Interaction of a two-level atom with a
far-off-resonant field

We assume that the detuning ω−ω0 is large compared
to the atomic decay rate γ = ω3

0d
2/3πε0~c3 and the

Rabi frequency Ω = d‖E/~. In this case, the rotating-
wave approximation is not valid and, therefore, we
need to take into account counter-rotating terms in the
interaction Hamiltonian [170]. The polarizability α of
the atom is found to be

α = −
|d‖|2

~

(
1

ω − ω0 + iγ/2
− 1

ω + ω0 + iγ/2

)
.(C.15)

The scattering rate and the optical potential are given
as

Γscatt =
|d‖|2γω

2cε0~2ω0

(
1

ω0 − ω
+

1
ω0 + ω

)2

I,

U = −
|d‖|2

2cε0~

(
1

ω0 − ω
+

1
ω0 + ω

)
I. (C.16)

Appendix C.4. Scalar theory for the polarizability of a
multilevel atom

When the detuning of the field is large enough, the
two-level model for the atom is not valid anymore.
In this case, we need to take into account the
multilevel structure of real atoms. In a scalar theory
for a multilevel atom with dipole-allowed transitions
between the ground state and excited levels, each
transition can be approximated as an independent
harmonic oscillator. The polarizability of the atom
can be constructed as a sum of the contributions of
all individual transitions, yielding

α =
∑

j

fjαj. (C.17)

Here j denotes the transition between the ground state
|g〉 and an excited state |e〉 and fj is the oscillator
strength of the transition. The relation between the
linewidth (decay rate) γj and the oscillator strength fj

is

fj = γj
2πε0mec

3

e2ω2
j

ge

gg
, (C.18)

where ωj denotes the transition frequency of the j
transition and ge and gg are the degeneracies of the
excited and ground states, respectively.

Let us use the fine structure of levels of an alkali
atom. Let J and J ′ be the total angular quantum
numbers of the ground state and an excited level,
respectively. Then, we have gg = 2J + 1 and ge =
2J ′ + 1. Hence, expression (C.17) for the complex
polarizability of the atom becomes

α = 2πε0c
3
∑

j

2J ′ + 1
2J + 1

γj/ω2
j

ω2
j − ω2 − iγjω

. (C.19)

When we insert the above expression into equations
(C.5) and (C.7), we obtain the following expressions
for the scattering rate and the optical dipole potential
of an alkali atom in the ground state:

Γscatt =
πε0c

3

~
|E|2

∑

j

2J ′ + 1
2J + 1

γ2
j ω/ω2

j

(ω2
j − ω2)2 + γ2

j ω2
,

U = − πε0c
3

2
|E|2

∑

j

2J ′ + 1
2J + 1

(ω2
j − ω2)γj/ω2

j

(ω2
j − ω2)2 + γ2

j ω2
.

(C.20)

Note that the above calculations do not take into
account the tensor nature of the atomic energy levels.

Appendix C.5. Tensor theory for the ac-Stark shift

For atom trapping, far-off-resonance lasers are used
because they ensure low scattering rates and thus
provide a long coherence time. The presence of
an intense far-detuned light field shifts the energy
levels of the atom. In strongly confining traps the
differential light shift of a pair of atomic states leads
to a strong position-dependent ac-Stark shift of the
atomic transition frequency. We follow [171, 172] to
present a general formula for the ac-Stark shift of a
multilevel atom interacting with a light field of an
arbitrary polarization.

Let us evaluate the energy shifts for the fine-
structure state |nJ〉. The hfs interaction operator V hfs

and the Stark interaction operator V EE (expressions
for which follow later) shift the atomic energy levels
according to the total interaction Hamiltonian

Hint = V hfs + V EE . (C.21)

Because level mixing may occur, it is necessary to
diagonalize Hint to find the energy level shifts and thus
the optical potential.

The hfs interaction between the electron angular
momentum J and the nuclear spin I is given by the
operator [169]

V hfs = ~Ahfs I·J+~Bhfs
6(I · J)2 + 3I · J− 2I2J2

2I(2I − 1)2J(2J − 1)
,(C.22)

where Ahfs and Bhfs are the hfs constants depending
on the fine structure level.

Due to the hfs interaction, the projection Jz of
the total electronic angular momentum J onto the
quantization axis z is not conserved. However, in the
absence of the external light field, the projection Fz of
the total angular momentum of the atom, described
by the operator F = J + I, onto the quantization
axis z is conserved. We use the notation |nJFM 〉
for the atomic hfs basis (F basis) states, where F is
the quantum number for the total angular momentum
F of the atom, M is the quantum number for the
projection Fz of F onto the quantization axis z, J is the

Page 48 of 57AUTHOR SUBMITTED MANUSCRIPT - JOPT-105027.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t
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quantum number for the total angular momentum J of
the electron, and n is the set of the remaining quantum
numbers {nLSI}, with L and S being the quantum
numbers for the total orbital angular momentum and
the total spin of the electrons, respectively. In the hfs
basis {|nJFM 〉}, the operator V hfs is diagonal.

The hfs interaction leads to non-conservation
of Jz (The projection of J onto the quantization
axis). However, the projection of the total angular
momentum Fz (where F = J + I) is conserved, in
the absence of an external field. The hfs basis, or F
basis, is denoted by the states |nJFM 〉, where F is
the quantum number for the total angular momentum
F of the atom, M is the quantum number for the
projection Fz of F onto the quantization axis z, J is the
quantum number for the total angular momentum J of
the electron, and n is the set of the remaining quantum
numbers {nLSI}, with L and S being the quantum
numbers for the total orbital angular momentum and
the total spin of the electrons, respectively. In the hfs
basis {|nJFM 〉}, the operator V hfs is diagonal.

Next, let us consider an atom interacting with a
classical electromagnetic field due to the Stark effect.
The light field is given by

E =
1
2
Ee−iωt + c.c. =

1
2
Eue−iωt + c.c., (C.23)

where ω is the angular frequency, E = Eu is the
positive-frequency electric field envelope, and E and u
being the field amplitude and the polarization vector,
respectively. Note that E is a complex scalar and u is
a complex unit vector in general.

If we assume far-detuning of the light relative to
the atomic resonance, and that the Stark energy is
small relative to the fine structure splitting, then J is
a good quantum number, and we can write the Stark
operator as follows

V EE =
∑

FMF ′M ′

V EE
FMF ′M ′ |(nJ)FM 〉〈(nJ)F ′M ′|,(C.24)

where V EE
FMF ′M ′ ≡ 〈(nJ)FM |V EE |(nJ)F ′M ′〉 are the

matrix elements and are given as [171]

V EE
FMF ′M ′ =

1
4
|E|2

∑

K=0,1,2
q=−K,...,K

α
(K)
nJ {u∗ ⊗ u}Kq

× (−1)J+I+K+q−M
√

(2F + 1)(2F ′ + 1)

×
(

F K F ′

M q −M ′

){
F K F ′

J I J

}
, (C.25)

where |(nJ)FM 〉 ≡ |nJFM 〉.
Here we have introduced the notations

α
(K)
nJ = (−1)K+J+1

√
2K + 1

×
∑

n′J ′

(−1)J ′
{

1 K 1
J J ′ J

}
|〈n′J ′‖d‖nJ〉|2

× 1
~

Re
(

1
ωn′J ′nJ − ω − iγn′J ′nJ/2

+
(−1)K

ωn′J ′nJ + ω + iγn′J ′nJ/2

)
, (C.26)

with K = 0, 1, 2, for the reduced dynamical scalar
(K = 0), vector (K = 1), and tensor (K = 2)
polarizabilities of the atom in the fine-structure level
|nJ〉. The angular frequency and linewidth of the
transition between fine-structure levels |n′J ′〉 and |nJ〉
are denoted by ωn′J ′nJ = ωn′J ′ − ωnJ and γn′J ′nJ =
γn′J ′ + γnJ respectively. Note that the above-defined
polarizabilities are the real parts of the complex
polarizabilities, with the imaginary parts being related
to the scattering rate of the atom [166].

The compound tensor components {u∗ ⊗ u}Kq in
Eq. (C.25) are defined as

{u∗ ⊗ u}Kq =
∑

µ,µ′=0,±1

(−1)q+µ′
uµu∗

−µ′

×
√

2K + 1
(

1 K 1
µ −q µ′

)
. (C.27)

Here u−1 = (ux − iuy)/
√

2, u0 = uz, and u1 =
−(ux +iuy)/

√
2 are the spherical tensor components of

the polarization vector u in the Cartesian coordinate
frame {x, y, z}.

We note that the Stark interaction operator (C.24)
with the matrix elements (C.25) can be written in the
form [171, 173]

V EE = −1
4
|E|2

{
αs

nJ − iαv
nJ

[u∗ × u] · J
2J

+ αT
nJ

3[(u∗ · J)(u · J) + (u · J)(u∗ · J)] − 2J2

2J(2J − 1)

}
.(C.28)

Here αs
nJ , αv

nJ , and αT
nJ are the conventional

dynamical scalar, vector, and tensor polarizabilities,
respectively, of the atom in the fine-structure level
|nJ〉. They are given as [171]

αs
nJ =

1√
3(2J + 1)

α
(0)
nJ ,

αv
nJ = −

√
2J

(J + 1)(2J + 1)
α

(1)
nJ ,

αT
nJ = −

√
2J(2J − 1)

3(J + 1)(2J + 1)(2J + 3)
α

(2)
nJ . (C.29)

For the ground states of alkali-metal atoms (J =
1/2) the tensor polarizability is zero. Furthermore, for
linearly polarized light, u is real, and [u∗×u] vanishes,
so that the vector polarizatbility makes no contribution
to the ac Stark shift. Additionally, γn′J ′nJ can be
omitted from the denominators in Eq. (C.26) in the
large detuning limit.

In general, V EE is not diagonal neither in F
and nor in M . Therefore, in order to find the new
eigenstates and eigenvalues, one has to diagonalize
the Hamiltonian (C.21), which includes both the hfs
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splitting and the ac Stark interaction. However, in
the case where the Stark interaction energy is small
compared to the hfs splitting, we can neglect the
mixing of atomic energy levels with different quantum
numbers F . In this case, the Stark operator V EE

for the atom in a particular hfs level |nJF 〉 can be
presented in the form [174]

In the most general case, V EE is not diagonal in
either the F or M bases. It is therefore necessary to
diagonalize the Hamiltonian of Eq. (C.21) to find the
new eigenstates and eigen-energies. Nonetheless, if the
Stark interaction energy is sufficiently small compared
to the hfs splitting, energy level mixing among levels
with different F can be neglected allowing the Stark
operator for a given hfs level |nJF 〉 to be written in
the form [174]

V EE = −1
4
|E|2

{
αs

nJF − iαv
nJF

[u∗ × u] ·F
2F

+ αT
nJF

3[(u∗ ·F)(u ·F) + (u ·F)(u∗ ·F)] − 2F2

2F (2F − 1)

}
,(C.30)

where

αs
nJF = αs

nJ =
1√

3(2J + 1)
α

(0)
nJ ,

αv
nJF = (−1)J+I+F

√
2F (2F + 1)

F + 1

{
F 1 F
J I J

}
α

(1)
nJ ,

αT
nJF = − (−1)J+I+F

√
2F (2F − 1)(2F + 1)
3(F + 1)(2F + 3)

×
{

F 2 F
J I J

}
α

(2)
nJ . (C.31)

The coefficients αs
nJF , αv

nJF and αT
nJF are the

conventional scalar, vector, and tensor polarizabilities
of the atom, respectively, in a particular hfs level.
Note that the scalar polarizability αs

nJF does not
depend on F . This statement holds true only in the
framework of our formalism, where the hfs splitting
is omitted in the expression for the atomic transition
frequency ωn′J ′F ′nJF in the calculations for the
atomic polarizability, that is, where the approximation
ωn′J ′F ′nJF = ωn′J ′nJ is used. We emphasize that Eq.
(C.30) is valid only when the coupling between different
hfs levels |nJF 〉 is negligible. Thus, Eq. (C.30) is less
rigorous than Eq. (C.28).

It is clear from Eqs. (C.28) and (C.30) that the
effect of the vector polarizability on the Stark shift is
equivalent to that of a magnetic field with the induction
vector

Bfict =
αv

nJ

8µBgnJJ
i[E∗×E ] =

αv
nJF

8µBgnJF F
i[E∗×E].(C.32)

Here µB is the Bohr magneton and gnJ and gnJF are
the Landé factors for the fine-structure level |nJ〉 and
the hfs level |nJF 〉, respectively. The nonrelativistic

value of the Landé factor gnJ is given by [169]

gnJ = gL
J(J + 1) + L(L + 1) − S(S + 1)

2J(J + 1)

+ gS
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
. (C.33)

Here gL = 1 and gS ' 2.0023193 are the orbital and
spin g-factors for the electron, respectively. When
the contribution of the nuclear magnetic moment is
neglected, the Landé factor gnJF is

gnJF = gnJ
F (F + 1) + J(J + 1) − I(I + 1)

2F (F + 1)
. (C.34)

The direction of the light-induced fictitious
magnetic field Bfict is determined by the vector i[E∗ ×
E ], which is a real vector. The fictitious magnetic field
has the following points in common with real magnetic
fields: i) It is a pseudovector (i.e. it does not flip under
a spatial reflection). ii) It flips under time reversal, the
same as a real magnetic field. Note that creation of
the fictitious magnetic field requires ellitically polarized
light since [E∗ × E] = 0 for linear polarizations.
Additionally, we note that the middle expression in
Eq. (C.32) shows that Bfict is independent of F .
Specifically, Bfict is the same for all hfs levels |nJF 〉 of
a fine-structure level |nJ〉. Furthermore, comparison
between the middle and last expressions in Eq. (C.32)
shows that the factor αv

nJF/gnJF F does not depend on
F .

Appendix C.6. Surface interaction

Atoms experience a potential when they are close to a
material surface. It is important to note that despite a
large amount of research into this topic, the complexity
of surface physics along with a lack of data mean
that the form of this potential is still not rigorously
known in general [175]. One useful form which may
be approximately true in many cases is that of the
potential induced by a flat surface [175]

V (x) = Ae−αx − C3

x3
, (C.35)

where x is the distance from the atom to the surface, C3

is the van der Waals coefficient, and A and α determine
the height and range, respectively, of the short-range
repulsion, and depend on both the material and the
atom. Note that typical magnitudes of A and α are
A = 1018 Hz and α = 50 nm−1 and for atoms a
few nanometers away from the surface, the shot-range
repulsion potential Ae−αx can be neglected.

Now, the van der Waals coefficient for a cesium
atom in its ground state near a perfect metal surface
is C

(metal)
3 = 4.5 a.u. = 4.39 kHz µm3 [176]. On

the other hand, in the case of a dielectric medium
with refractive index n, an approximate expression is
C3 = (n2 − 1)/(n2 + 1)C(metal)

3 [175]. In the case
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we are interested, where the material is pure fused
silica, and for a broad region around the cesium D2-
line wavelength λ0 = 852 nm, C3g = 1.56 kHz µm3 for
cesium in the 6S1/2 ground state. We note that the
van der Waals coefficient C3e for the cesium excited
state 6P3/2 has not yet been accurately calculated in
the manner of Ref. [176]. However, from the results
of Refs. [177, 178] the ratio of excited to ground state
values can be inferred to be C3e/C3g = 1.98.

The van der Waals potential depends on the
curvature of the surface of the dielectric medium. The
van der Waals potential of an atom near the surface of
a cylindrical dielectric rod is given by [179, 180]

V (r) =
~

4π3ε0

∞∑

n=−∞

∫ ∞

0

dk [k2K ′2
n (kr)

+ (k2 + n2/r2)K2
n(kr)]

∫ ∞

0

dξ α(iξ)Gn(iξ),

(C.36)

where

Gn(ω) =
[ε(ω) − ε0]In(ka)I ′n(ka)

ε0In(ka)K ′
n(ka) − ε(ω)I ′n(ka)Kn(ka)

. (C.37)

Here ε(ω) is the dynamical dielectric function and In

is the modified Bessel function of the first kind.
Let us now use the above formulae to evaluate

the van der Waals potential of a ground-state cesium
atom near the surface of a silica fiber. The dynamical
dielectric function of silica is given by [181]

ε(ω)
ε0

= 1 +
0.6961663 λ2

λ2 − 0.06840432
+

0.4079426 λ2

λ2 − 0.11624142

+
0.8974794 λ2

λ2 − 9.8961612
, (C.38)

where λ is in units of micrometers. Using the
following approximate expression for the polarizability,
α(ω) = 2πε0c

3
∑

j 6=0 gjAj0/[g0ω
2
j0(ω

2
j0 − ω2)], we can

evaluate the integral (C.36). We take into account four
dominant lines of the atom, namely, λ10 = 852.113
nm, λ20 = 894.347 nm, λ30 = 455.528 nm, and
λ40 = 459.317 nm (see [182]). The emission transition
probabilities of these lines are A10 = 3.276 × 107 s−1,
A20 = 2.87 × 107 s−1, A30 = 1.88 × 106 s−1, and
A40 = 8 × 105 s−1. The statistical weights of the four
corresponding upper states are g1 = 4, g2 = 2, g3 = 4,
and g4 = 2. The statistical weight of the ground state
is g0 = 2.

Note that for a fiber radius a which is small
compared to the atom-to-surface distance x, the
van der Waals potential V is, in general, different
from the flat-surface bulk-medium van der Waals
potential Vflat = −C3/x3. In the flat surface
case, C3 was determined by [183] to be C3 =
(~/16π2ε0)

∫∞
0

dξ α(iξ)[ε(iξ) − ε0]/[ε(iξ) + ε0]. For
cesium atoms and flat silica surfaces, this coefficient

is estimated to be C3
∼= 5.6× 10−49 J m3 ∼= 4.1× 10−5

mK µm3 ∼= 0.85 kHz µm3.
When the atom-to-surface distance x is compara-

ble to or much larger than the light wavelength λ, due
to the retardation effect, the surface-induced potential
V reduces and is given as the retarded Casimir-Polder
potential V = −C4/x4. The Casimir-Polder coefficient
C4 for the cesium-silica interaction can be estimated
from the formula C4 = Cmetal

4 [(n2 − 1)/(n2 + 1)]φ(n),
where Cmetal

4 = 6579 a.u. is the Casimir coefficient
for the cesium-metal interaction [184], n = 1.45 is the
refractive index of silica, and φ(n) is a tabulated func-
tion [185, 186]. Using the value φ(n = 1.45) = 0.76
[185, 186], we find C4 = 1787 a.u. = 92 Hz µm4.

The attractive part of the surface-induced poten-
tial contains the van der Waals potential and the re-
tarded Casimir-Polder potential in two different lim-
its, and can be effectively described by the potential
V = −C4/[x3(x + C4/C3)]. The exact shape of the
attractive part of the potential can be numerically cal-
culated from the Lifshitz formula [187]. Such calcula-
tions have been performed for the interaction between
a cesium atom in a ground or excited state and a silica
dielectric with a planar or cylindrical surface [188]. For
the ground-state atom and the planar dielectric, their
calculation gives C3 = 1178 Hz µm3 and C4 = 154 Hz
µm4.

Appendix C.7. Two-color trapping potential

The two-color trap [29, 74] stands as the only nanofiber
trapping scheme (among many proposed [75, 29, 74,
118]) to have been implemented experimentally so
far. In two-color trapping, atoms are confined near
a nanofiber by balancing the respective attraction
and repulsion of red- and blue-detuned guided fields.
Although such a scheme provides only transverse
confinement relative to the nanofiber axis, axial
confinement can be implemented rather simply by
introducing a counterpropagating red-detuned field,
as in Vetsch et al [37] (Fig. C1). It is important
to note that the ellipticity of the blue-detuned,
running-wave guided mode field (due to the non-zero
longitudinal component) gives rise to a vector light
shift dependent on the Zeeman sublevel of the atom.
This shift can be compensated by using a standing
wave configuration for the blue-detuned field [76], as
realized experimentally in [38].

Let us consider the scheme used by Vetsch et
al [37] in more detail. Nanofiber fundamental modes
E1 and E2 with red- and blue-detuned frequencies ω1

and ω2, respectively, were introduced to the nanofiber
producing a trap minimum away from the nanofiber
surface. More specifically, E1 was formed by counter-
propagating, x-polarized fields while E2 was a single y-
polarized field. The combined field of the two counter
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nanofiber

x

yz

y-polarized blue-detuned light

x-polarized red-detuned light

x-polarized red-detuned light

atom

Figure C1. Illustration of the two-color trapping setup used
in [37]. The counter-propagating x-polarized fields are red-
detuned, and the y-polarized running-wave field is blue-detuned.
From Fam Le Kien et al [189].

propagating, x-polarized red-detuned beams is

E1 = A1{[x̂(er cos2 ϕ − ieϕ sin2 ϕ) + ŷ(er + ieϕ)
× sin ϕ cos ϕ] cos βz + iẑez cos ϕ sin βz}. (C.39)

Note that here, we have assumed that z = 0 is an
antinode of the field’s transverse component. We note
that the total field is linearly polarized. For the y-
polarized, blue-detuned field, we have

E2 = A2[x̂(er + ieϕ) sin ϕ cos ϕ

+ ŷ(er sin2 ϕ − ieϕ cos2 ϕ) + ẑez sin ϕ]eiβz .(C.40)

Note that in the expressions above, A1 and A2 can be
calculated from the power in the fields. Eqs. (C.39)
and (C.40) can be used to calculate the two-color trap
potential as we show below.

To calculate the potential experienced by an atom
in a two-color trap, both the optical potential Uopt and
the potential induced by the nanofiber surface Usurf

must be taken into account. That is, we must evaluate
the potential

U = Uopt + Usurf . (C.41)

The optical potential is caused by the light shifts
induced in the atom by the total field at each point
in space, and can be obtained by diagonalizing the
interaction Hamiltonian

Hint = V hfs + V EE
R + V EE

B . (C.42)

In the above equation, V EE
R and V EE

B are the operators
for the Stark interaction caused by the red- and blue-
detuned light fields, respectively. Note that the mutual

Atom-to-surface distance r-a (nm)

6P     F=43/2
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K
)

6S      F=3 and 41/2

Figure C2. Radial potentials for ground and excited states of
a cesium atom in a two-color nanofiber trap. Results for the
sublevels of the excited-state hfs level 6P3/2 F = 4 are shown as
solid blue curves, and those for the sublevels of the ground-state
hfs levels 6S1/2 F = 3 and 6S1/2 F = 4 are shown as dashed
black and solid red curves, respectively. Parameters are as given
in the text, and he atom is located at azimuthal angle ϕ = 0 and
z = 0.

detuning of the red-detuned and blue-detuned fields
allows us to treat them separately, i.e., interference
terms between the fields are ignored.

Figures C2, C3, and C4 show the radial,
azimuthal, and axial dependences of the potentials,
respectively, for hfs levels F = 3 (dashed black curves)
and F = 4 (solid red curves) of the ground state
6S1/2 and for hfs level F = 4 (blue curves) of the
excited state 6P3/2 of the atom [37]. The trap depth is
about 0.43 mK, 1.75 mK, and 0.87 mK in the radial,
azimuthal, and axial directions, respectively. Note that
the potential for the excited state does not give a trap.
Additionally, the axial trapping potential shows the
expected array of trapping sites due to the standing-
wave nature of the red-detuned field.

Detail of the potential for the ground-state hfs
levels is shown in Fig. C3(b) for a region around the
trap minimum at ϕ = 0. Degeneracy of the sublevels
is lifted away from the points ϕ = 0,±π, and the
energy separation between sublevels is seen to vary
azimuthally. This is due to the azimuthal dependence
of the vector Stark shift which is caused by the blue-
detuned running wave field.

Note that the slight azimuthal displacement of the
local minimum for the ground-state hfs sublevels is due
to the change of sign of the longitudinal component,
and the resulting change in sign of the differential shifts
experienced by the Zeeman sublevels. Interestingly,
this phenomenon can be understood as being due to a
fictitious magnetic field, as discussed in more detail in
Ref. [189].
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Figure C3. (a) Azimuthal potentials for ground and excited
states of a cesium atom in a two-color nanofiber trap. Results
for the sublevels of the excited-state hfs level 6P3/2 F = 4 are
shown as solid blue curves, and those for the sublevels of the
ground-state hfs levels 6S1/2 F = 3 and 6S1/2 F = 4 are shown
as dashed black and solid red curves, respectively. Parameters
are as given in the text, and the atom is located at azimuthal
angle ϕ = 0 and z = 0. (b) Expanded view of the ground
state potentials shown in Fig. C3(a) around the trap minimum
at ϕ = 0. From Fam Le Kien et al [189].
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Figure C4. Axial dependence of the potentials of the ground
and excited states of a cesium atom in the nanofiber-based trap.
The sublevels of the excited-state hfs level 6P3/2 F = 4 are
shown as solid blue curves, and the sublevels of the ground-state
hfs levels 6S1/2 F = 3 and 6S1/2 F = 4 are shown as dashed
black and solid red curves, respectively. The radial distance and
azimuthal position of the atom are r − a = 224 nm and ϕ = 0,
respectively. For parameters of the trap, see the text. From Fam
Le Kien et al [189].
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