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ABSTRACT:  

Macrocyclic ligand conformational behavior in solution, solid-state structures and photophysical 

properties of Cu(I) cationic and neutral mononuclear complexes supported by tetradentate N,N’-

dialkyl-2,11-diaza[3.3](2,6)-pyridinophane ligands 
R
N4 (R = H, Me, 

i
Bu, 

sec
Bu, 

neo
Pent, 

i
Pr, Ts) 

were investigated in detail. Steric properties of the alkyl group at the axial amine in the 
R
N4 

mailto:juliak@oist.jp
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ligand were found to strongly affect the conformational preferences and dynamic behavior in 

solution. Several types of conformational exchange processes were revealed by VT NMR and 

EXSY, including degenerative exchange in a pseudotetrahedral species as well as exchange 

between two isomers with different conformers of a tri- and tetra-coordinate 
R
N4 ligand. These 

exchange processes are slower for the complexes containing bulky alkyl groups at the amine as 

compared to less sterically demanding analogs. A clear correlation is also observed between the 

steric bulk of the alkyl substituents and photoluminescent properties of the derived complexes, 

with less dynamic complexes bearing bulkier alkyl substituents exhibiting higher absolute 

photoluminescence quantum yield (PLQY) in solution and in the solid state: PLQY in solution 

increases in the order Me < 
neo

Pent < 
i
Bu < 

sec
Bu ≈ 

i
Pr < 

t
Bu. The electrochemical properties of 

the cationic complexes [(
R
N4)Cu

I
(MeCN)]X (X = BF4, PF6) were also dependent on the steric 

properties of the amine substituent. 

 

INTRODUCTION 

During the past decades, photoluminescent materials have been widely utilized in sensors, an 

electroluminescent display, and probes of biological systems.
1-17

 Among these materials, d
6
 and 

d
8
 transition metal complexes such as Ir

III
, Ru

II
, Os

II
, Re

I
 and Pt

II
 are extensively used because of 

their stability, tunability and high efficiencies.
18-29

 Another important class of photoluminescent 

compounds contain d
10

 coinage metal such as Ag
I
, Au

I
 and Cu

I
.
30-36

 Among these compounds, 

Cu
I
 complexes are of considerable interest due to their low price and availability as an alternative 

to more expensive precious metal-based photoluminescent materials.
32, 37-39

 Over the last several 

decades, a great variety of Cu
I
 photoluminescent complexes have been developed that include 

copper clusters, halide-bridged complexes, mono- and polynuclear phosphine complexes, homo- 
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or heteroleptic species with di-imine-type ligands, as well as recently developed N-heterocyclic 

carbene and amide complexes.
40-52

 A variety of strategies were developed to control the emissive 

properties of Cu
I 

complexes, mostly based on variation of the supporting ligand electronic 

properties
42, 53, 54

 or, in some cases, controlling configurational changes using steric properties of 

the ligand. 
45, 55, 56

 However, one of the common problems that can limit practical application of 

Cu
I
 complexes is their lability in solution leading to dissociation of polynuclear species or, in 

case of heteroleptic mononuclear complexes, ligand dissociation and exchange.
53, 57-59

  

We have recently reported a series of solution-stable, photoluminescent mononuclear Cu
I
 

complexes supported by the tetradentate ligand, N,N’-dialkyl-2,11-diaza[3.3](2,6)-pyridinophane, 

R
N4.

60
 These N-donor ligands are synthetically easily accessible and allow for various structural 

modifications by varying the nature of the amine substituent, while the macrocycle coordination 

to a Cu center leads to the formation of well-defined mononuclear complexes.
61

 In particular, 

complexes A and B (Scheme 1, a) were found to be emissive in the solid state with the absolute 

photoluminescence quantum yield (PLQY) reaching 0.78 for complex A, but only 0.08 for 

complex B. Moreover, complex A also shows emission in dichloromethane solution at 25 °C, 

while complex B was not emissive.  

Another notable feature of these complexes was the conformational flexibility of the 

macrocyclic ligand in solution
62, 63

 leading to the formation of two isomeric complexes (Scheme 

1, b). In particular, we have reported that the cationic complexes [(
R
N4)Cu

I
(MeCN)]

+
 and the 

neutral complexes A and B exist as two isomers in solution, in which the 
R
N4 ligand binds to the 

Cu center with three N-donors or with all four N-donors coordinating in a κ
3
 or κ

4
-fashion, 

respectively.
60

 Comparison of solution behavior of A and B studied by NMR spectroscopy 

showed that the 
t
Bu-substituted complex A exists only as a tetracoordinate species in solution 
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with a κ
3
-bound 

tBu
N4 ligand, while complex B exists in an equilibrium between two isomers 

with κ
3
- and κ

4
-bound ligands in a 61:39 ratio, respectively, at -35 °C. We hypothesized that this 

is due to the difference in steric bulk of the alkyl substituents at the axial amine donor rather than 

their electronic properties. Moreover, the greater flexibility of complex B could contribute to the 

absence of emission in solution in contrast to the tert-butyl-substituted complex A. However, the 

effect of the ester functional group in complex B could not be completely excluded as the length 

of the ester-containing substituent is sufficiently long to allow “wrapping around” the metal 

center resulting in weak interaction of the metal with the ester functional group and “exciplex” 

quenching. 
38, 51, 64, 65

 Therefore, comparison over a more diverse range of ligands is required to 

elucidate the role of structural factors in determining photophysical properties of the derived 

complexes.  

Scheme 1. Previously reported (
R
N4)Cu

I
I complexes.

60
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We recently reported that 
R
N4 ligand dynamic behavior in Cu

I
 complexes has an important 

implication in the development of mechanoresponsive polymer materials. We showed that the 

analogous 
R
N4-based Cu

I
 complexes containing bulky alkyl group at the amine can be covalently 

attached to the polyurethane linear chain, acting as a stress-responsive photoluminescent probe 

showing fast and reversible emission intensity changes in response to tensile stress in 

polyurethane films.
66

 Further studies showed that this is likely due to suppression of the non-

radiative decay pathway in samples subjected to stress, likely reflecting dynamics within the 

macrocyclic ligand.
66

  

In order to better design mechanoresponsive materials, we decided to carry out a systematic 

study into the main factors that affect the photophysical properties of complexes similar to the 

ones used in the Cu
I
 incorporated polyurethane study.  



 7 

In the current work, we investigated in detail the solid-state structures, redox and 

photophysical properties, solution dynamic behavior and conformational equilibria in a series of 

cationic and neutral Cu
I
 complexes supported by the tetradentate pyridinophane-type ligands. We 

assessed the steric effect of the amine substituents on the conformational preference and 

dynamics in the series of cationic [(
R
N4)Cu

I
(MeCN)]

+
 and neutral (

R
N4)Cu

I
I complexes where R 

= H, Me, 
i
Bu, 

sec
Bu, 

neo
Pent, and 

i
Pr (Chart 1). In addition, the strength of the Cu

I
 interaction with 

axial amine donors was varied using electron-poor tosyl-substituted complexes 

[(
Ts

N4)Cu
I
(MeCN)]

+
 and (

Ts
N4)Cu

I
I (Chart 1). The comparison of these complexes demonstrates 

that the steric properties of the amine substituent are the main factors controlling conformational 

preference and dynamic in solution as well as photophysical properties of the derived complexes. 

2D Exchange Spectroscopy (EXSY) and variable temperature (VT) NMR spectroscopic studies 

also revealed several types of exchange processes involved in the conformational equilibria in 

solution. For both cationic and neutral complex series, increasing steric hindrance is associated 

with greater preference for the tetracoordinate complexes in solution. Moreover, steric hindrance 

was found to affect redox properties of the cationic complexes. The current study demonstrates 

that a synthetically simple modification of the axial amine steric properties leads to significant 

variation of emissive properties. This can be used as a strategy to design solution-stable 

mononuclear Cu
I
 complexes with macrocyclic N-donor ligands, by contrast to many other 

transition metal-based system where synthetically demanding variation of the electronic 

properties of the surrounding ligands is needed. 
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Chart 1. Ligands studied in this work.  

EXPERIEMENTAL DETAILS 

General specifications. All manipulations were carried out under an argon atmosphere using 

standard Schlenk and MBRAUN glove box techniques if not indicated otherwise. All reagents 

for which the synthesis is not given were commercially available from Sigma-Aldrich, TCI, 

Nacalai Tesque and were used as received without further purification. Anhydrous solvents were 

dispensed from an MBRAUN solvent purification system and degassed prior to use. Anhydrous 

deuterated solvents were purchased from Euriso-top and stored over 4Å molecular sieves.  

Ligand N,N’-di-iso-propyl-2,11-diaza[3,3](2,6)pyridinophane (
iPr

N4), 
67

 N,N’-di-methyl-2,11-

diaza[3,3](2,6)pyridinophane (
Me

N4),
68

 2,11-diaza[3,3](2,6)pyridinophane (
H
N4),

68
 N,N’-di-

tosyl-2,11-diaza[3,3](2,6)pyridinophane (
Ts

N4),
68 

were prepared according to the literature 

procedures. [Cu(MeCN)4]
+
 precursors were prepared by dissolving Cu2O in acetonitrile solvent 

in the presence of aqueous HBF4 or HPF6 followed by two consecutive recrystallizations from 

cold acetonitrile.
69

 NMR spectra were recorded on a JEOL ECZ400S 400MHz and ECZ600R 

600MHz spectrometer. Chemical shifts are referenced internally to the residual solvent signals. 

2D EXSY experiments were performed using NOESY pulse sequence; SST experiments were 

performed according to literature procedure.
70, 71

 Full spectra and complete characterization data 

for all complexes are available in the Supporting Information. The signal abbreviation is as 
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follows: s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; sept, septet; m, multiplet; br, 

broad; Ar−H, aromatic proton; quaternary, quat. Elemental analyses were performed using an 

Exeter Analytical CE440 instrument. UV-vis spectra were recorded on an Agilent Cary 60 

spectrophotometer and FT-IR spectra were recorded on a Cary 630 with ATR module. The 

photoluminescence measurements at varying concentrations were performed using a Hamamatsu 

Quantaurus-QY plus apparatus; the measurements at 298 K were performed in degassed 

dichloromethane solutions and at liquid nitrogen temperature in 2-methyl tetrahydrofuran. 

Photoluminescence lifetime was measured using the second harmonics of Spectra-Physics Mai 

Tai pulsed laser and a Hamamatsu Photonics Streak Scope camera. The decay data were fitted 

with a single exponential decay function unless specified otherwise. The quantum yield was 

measured using a Hamamatsu Photonics Quantaurus-QY system that established the variations in 

absolute QY to be within 5% for solid and solution samples (CH2Cl2, c = 1-5 μM) at 298 K and 

77K. Cyclic voltammetry (CV) experiments were performed using ALS/CHI Electrochemical 

Analyzer 660E and 760E. Electrochemical grade 
n
Bu4NPF6 and 

n
Bu4NBF4 (Fluka) were used the 

supporting electrolyte. Electrochemical measurements were performed in an Ar-filled glove box. 

A Pt disk electrode (d = 1.6 mm) was used as the working electrode, and a Pt wire as the 

auxiliary electrode. The non-aqueous Ag-wire reference electrode assembly was filled with 0.01 

M AgNO3/0.1 M 
n
Bu4NClO4/MeCN solution was used as a reference electrode and was 

calibrated against Cp2Fe (Fc).  

X-ray structure determination. The X-ray diffraction (XRD) data for the single crystals 1-10 

were collected on a Rigaku XtaLab PRO instrument (ω-scan mode) with a PILATUS3 R 200K 

hybrid pixel array detector and a MicroMax
TM

-003 microfocus X-ray tube using MoKα (0.71073 

Å) radiation at low temperature. Images were indexed and integrated using the CrysAlis
Pro

 data 
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reduction package. Data were corrected for systematic errors and absorption using the 

ABSPACK module: Numerical absorption correction based on Gaussian integration over a 

multifaceted crystal model and empirical absorption correction based on spherical harmonics 

according to the point group symmetry using equivalent reflections. The GRAL module and the 

ASSIGN SPACEGROUP routine of the WinGX suite
72

 were used for analysis of systematic 

absences and space group determination. The structures were solved by the direct method using 

SHELXT
73

 and refined by the full-matrix least-squares on F
2
 using SHELXL.

74
 Non-hydrogen 

atoms were refined anisotropically. The hydrogen atoms were inserted at the calculated positions 

and refined as riding atoms. The positions of the hydrogen atoms of methyl groups were found 

using rotating group refinement with idealized tetrahedral angles. Complex 6 crystallizes with 

two molecules A and B in the asymmetric cell (Z' = 2); complex 9 crystallizes with the molecule 

bisected by a mirror plane (Z' = 0.5). N4B-Pivot 
neo

Pent (symmetrically independent molecule B) 

and N3-pivot 
i
Bu substituents of 6 and 8, respectively, are disordered into two positions. In the 

case of 7, 
sec

Bu fragment at atom N3 and N4-
 sec

Bu moiety are involved in substitutional 

disordering with different configuration of chiral carbon atoms; the racemic composition of the 

whole unit cell is provided by crystallographic inversion symmetry. Interestingly, as a result of 

the mentioned disorder, non-coordinated nitrogen atom N4 shows either distorted pyramidal 

(N41) or almost planar (N42) configuration. The disorder was resolved using free variables and 

reasonable restraints on geometry and anisotropic displacement parameters. Achiral complexes 1 

and 3 crystallize in the Sohncke space group P212121 and the absolute structure of the crystals 

were determined by means of the Flack parameter.
75

 All the compounds studied have no unusual 

bond lengths and angles. Section VI of the Supporting Information contains full experimental 

details regarding data collection and structure determination. 
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Synthesis of N,N’-di-iso-butyl-2,11-diaza[3,3](2,6)pyridinophane (
iBu

N4). (a) Synthesis of 

2,6-bis-(iso-butylaminomethyl)pyridine: To a solution of 2,6-bis-bromomethyl pyridine (2.1 g, 

7.8 mmol, 1 equiv.) in acetonitrile (10 mL) was added dropwise the solution of iso-butyl amine 

(5.74 g, 78.5 mmol, 10 equiv.) in acetonitrile (10 mL) over 25 minutes at room temperature. The 

mixture was stirred at room temperature for 17 hours. Acetonitrile was then removed on rotary 

evaporator and residual waxy oil was dissolved in dichloromethane and washed with 

concentrated aqueous potassium carbonate. The organic phase was collected, dried with sodium 

sulfate and concentrated to dryness. The resulting oil was distilled under vacuum at 65 °C (120 

mTorr) to give diamine product that was used in the next step without additional purification. 

Yield: 1.23 g (63%). 
1
H NMR (600 MHz, 25°C, CDCl3): δ 7.58 (t, 

3
JHH = 7.6 Hz, p-HPy, 1H), 

7.16 (d, 
3
JHH = 7.7 Hz, m-HPy, 2H), 3.88 (s, -Py-CH2-NH-, 4H), 2.46 (d, 

3
JHH = 6.9 Hz, -NH-

CH2-CH-, 4H), 1.87 (s, NH-, 2H), 1.84-1.74 (m, -CH2-CH-(CH3)2, 2H), 0.93 (d, 
3
JHH = 6.6 Hz, -

CH-(CH3)2-, 12H). 
13

C NMR (151 MHz, 25°C, CDCl3): δ 159.7 (quat. CPy), 136.9 (p-CPy), 120.5 

(m-CPy), 57.9 (-NH-CH2-CH), 55.6 (-Py-CH2-NH-), 28.7 (-CH2-CH-(CH3)2-), 20.9 (-CH-(CH3)2-

). 

(b) Synthesis of N,N’-di-iso-butyl-2,11-diaza[3,3](2,6)pyridinophane, (
iBu

N4): 2,6-bis-(iso-

butylaminomethyl)pyridine (1.23 g, 4.93 mmol, 1.05 equiv.) was placed in a round bottom flask 

containing 20 mL benzene and 30 mL of 10% Na2CO3 aqueous solution. The mixture was heated 

to 80 °C and the solution of 2,6-bis-bromomethylpyridine (1.24 g, 4.69 mmol, 1 equiv.) was 

added dropwise to the hot reaction mixture over the period of 30 minutes. The reaction mixture 

was heated at 80 °C for 16 hours. After cooling to room temperature, the organic phase was 

collected using a separatory funnel. Evaporation of the solvent furnished white waxy solid 

containing the target compound. The crude was then extracted three times with 10 mL of 
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dichloromethane/hexane = 1/1 vol. mixture. The extracts were then evaporated to dryness to 

furnish the target macrocycle. Combined yield 1.03 g (58%). 
1
H NMR (600 MHz, 25 °C, 

CDCl3): δ 7.10 (t, 
3
JHH = 7.5 Hz, p-HPy, 2H), 6.76 (d, 

3
JHH = 7.6 Hz, m-HPy, 4H), 3.86 (s, -Py-

CH2-N-, 8H), 2.56 (d, 
3
JHH = 7.2 Hz, -N-CH2-CH-, 4H), 1.98 (m, -CH2-CH-(CH3)2, 2H), 1.08 (d, 

3
JHH = 6.6 Hz, -CH-(CH3)2-, 12H). 

13
C NMR (151 MHz, 25 °C, CDCl3): δ 158.4 (quat. CPy), 

135.5 (p-CPy), 122.8 (m-CPy), 69.0 (-N-CH2-CH), 64.9 (-Py-CH2-N-), 27.4 (-CH2-CH-(CH3)2-), 

21.1 (-CH-(CH3)2-). ESI-HRMS (m/z): calculated for [C22H32N4·H
+
:]: 353.2705; Found 

C22H32N4·H
+
: 353.2702. 

Synthesis of N,N’-di-sec-butyl-2,11-diaza[3,3](2,6)pyridinophane, (
secBu

N4): 2,11-

diaza[3,3](2,6)pyridinophane (0.200 gm, 0.83 mmol, 1.0 equiv.), sec-butyl bromide (5.7 gm, 

41.6 mmol, 50.0 equiv.; used as racemate), anhydrous K2CO3 (1.38 gm, 9.96 mmol, 12.0 equiv.) 

and dry MeCN (50 mL) were charged  into 100 mL round-bottom flask with a magnetic stirring 

bar. The reaction mixture was refluxed under N2 for 3 days. The solution was coOLED to RT 

and the solvent removed under reduced pressure. The residue was suspended in 50 mL of CH2Cl2 

and then washed with 1M NaOH and water. The CH2Cl2 layer was isolated, dried over 

anhydrous K2CO3, evaporated and further dried under vacuum to give pale yellow powder. 

Yield: 208 mg (71%). 
1
H NMR (400 MHz, 25 °C, CDCl3): δ 7.08 (t, 

3
JHH = 7.7 Hz, p-HPy, 2H), 

6.74 (d, 
3
JHH = 7.7 Hz, m-HPy, 4H), 3.96 (d, 

2
JHH = 12.2 Hz, Py-CH2-N-, 4H), 3.81 (d, 

2
JHH = 12.2 

Hz, Py-CH2-N-, 4H), 2.95-2.87 (m, -N-CH-(CH3)(CH2CH3), 2H), 1.83-1.72 (m, -CH-CHH-CH3, 

2H), 1.52-1.41 (m, -CH- CHH-CH3, 2H), 1.19 (d, 
3
JHH = 6.4 Hz, N-CH-CH3, 6H), 1.10 (t, 

3
JHH = 

7.3 Hz, -CH2-CH3, 6H). 
13

C NMR (100 MHz, 25 °C, CDCl3): δ 159.3 (quat. CPy), 135.8 (p-CPy), 

122.9 (m-CPy), 65.70 (-N-CH-(CH3)(CH2CH3)), 65.67 (-N-CH-(CH3)(CH2CH3)-), 60.9 (br, Py-

CH2-N-), 28.1 (-CH-CH2-CH3-), 28.0 (-CH-CH2-CH3), 15.81 (-CH-CH3), 15.76 (-CH-CH3), 12.5 
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(-CH2-CH3); two sets of signals were observed in equal ratio for N-CH carbon atom of the sec-

butyl group and adjacent carbons due to the presence of two diastereomers. ESI-HRMS (m/z): 

calculated for [C22H32N4·H
+
:]: 353.2700; Found C22H32N4·H

+
: 353.2700. 

Synthesis of N,N’-di-neo-pentyl-2,11-diaza[3,3](2,6)pyridinophane (
neoPent

N4). (a) 

Synthesis of 2,6-bis-(neo-pentylaminomethyl)pyridine: 2,6-Bis-bromomethyl pyridine (1.20 g, 

4.53 mmol, 1.0 equiv.) was added slowly to the neo-pentyl amine (7.90 g, 90.6 mmol, 20.0 

equiv.) at RT with stirring. The mixture was stirred at room temperature for 17 hours. Extra neo-

pentyl amine was then removed on a rotary evaporator and the residual waxy oil was dissolved in 

dichloromethane and washed with concentrated aqueous potassium carbonate. The organic phase 

was collected, dried with sodium sulfate and concentrated to dryness. The resulting waxy solid 

was used in the next step without additional purification. Yield: 1.24 g (98%). 
1
H NMR (600 

MHz, 25 °C, CDCl3): δ 7.61 (t, 
3
JHH = 7.6 Hz, p-HPy, 1H), 7.21 (d, 

3
JHH = 7.7 Hz, m-HPy, 2H), 

3.96 (s, Py-CH2-NH-, 4H), 2.84 (br s, 2H), 2.43 (s, -NH-CH2-C-, 4H), 0.96 (s, -CH2-C(CH3)3-, 

18H). 
13

C NMR (151 MHz, 25 °C, CDCl3): δ 158.9 (quat. CPy), 137.4 (p-CPy), 120.9 (m-CPy), 

62.1 (Py-CH2-NH-), 55.7 (-NH-CH2-C-), 31.9 (-CH2-C(CH3)3), 28.2 (-CH2-C(CH3)2). 

(b) Synthesis of N,N’-di-neo-pentyl-2,11-diaza[3,3](2,6)pyridinophane, (
neoPent

N4): 2,6-bis-

(neo-pentylaminomethyl)pyridine (1.24 g, 4.47 mmol, 1.0 equiv.) was placed in a round-bottom 

flask containing benzene (20 mL) and of 10% Na2CO3 (30 mL) aqueous solution. The mixture 

was heated to 80 °C and the solution of 2,6-bis-bromomethylpyridine (1.13 g, 4.25 mmol, 0.95 

equiv.) was added dropwise to the hot reaction mixture over a period of 30 minutes. The reaction 

mixture was heated at 80 °C for 16 hours. After cooling to room temperature, the organic phase 

was collected using a separatory funnel. Evaporation of the solvent furnished a white, waxy solid 

containing the target compound. The crude was then treated with acetonitrile (15mL) and filtered 
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to remove insoluble white solid. The acetonitrile filtrate was extracted with hexane. The hexane 

layer was concentrated to give the target product as a white powder. Combined yield: 0.129 g 

(7 %) (combined yield). 
1
H NMR (400 MHz, 25 °C, CDCl3): δ 7.11 (t, 

3
JHH = 7.6 Hz, p-HPy, 2H), 

6.90 (d, 
3
JHH = 7.7 Hz, m-HPy, 4H), 3.97 (s, -Py-CH2-N-, 8H), 2.58 (s, -N-CH2-C-, 4H), 1.09 (s, -

C-(CH3)3, 18H). 
13

C NMR (100 MHz, 25 °C, CDCl3): δ 158.4 (quat. CPy), 135.5 (p-CPy), 122.8 

(m-CPy), 72.5 (-N-CH2-C-), 67.7 (Py-CH2-N-), 34.2 (-C(CH3)3), 28.1 (-C-(CH3)3-). ESI-HRMS 

(m/z): calculated for [C24H37N4·H
+
:]: 381.3013; Found C24H37N4·H

+
: 381.3010. 

General procedure for the synthesis of [(
R
N4)Cu

I
(MeCN)]X (X = PF6 or BF4): To a stirred 

solution of the ligand (1.0 equiv.) in acetonitrile was added [Cu(MeCN)4]PF6 or 

[Cu(MeCN)4]BF4 (1.0 equiv.), which immediately produces red-orange solution. The reaction 

was stirred for 30 min, filtered through a celite plug, then recrystallized by slow diffusion of 

diethyl ether vapour over 1-2 days at room temperature. Crystalline solids were collected, 

washed with ether, hexane and dried under vacuum. Crystals suitable for X-ray analysis were 

obtained by diethyl ether vapor diffusion into acetonitrile solution of the complex. The details 

are given below for individual complexes and full characterization is given in the Supporting 

Information. 

[(
iPr

N4)Cu
I
(MeCN)]PF6 (1). Orange crystalline solid, isolated yield: 111 mg (63%). At -30 

o
C 

[(κ
4
-
iPr

N4)Cu
I
(MeCN)]PF6 and [(κ

3
-
iPr

N4)Cu
I
(MeCN)]PF6 isomers were present in CD3CN 

solution 93.5:6.5 ratio by NMR integration. κ
4
-1, major isomer:

 1
H NMR (600 MHz, -30 °C, 

CD3CN): δ 7.32 (t, 
3
JHH = 7.7 Hz, p-HPy, 2H), 6.77 (d, 

3
JHH = 7.6 Hz, m-HPy, 4H), 4.14 (d, 

2
JHH = 

15.3 Hz, -Py-CH2-N-, 4H), 3.60-3.53 (m, -N-CH-(CH3)2-, 2H), 3.54 (d, 
2
JHH = 15.3 Hz, -Py-

CH2-N-, 4H), 1.96 (s, CH3CN, 3H), 1.31 (d, 
3
JHH = 6.6 Hz, -CH-(CH3)2-, 12H). 

13
C NMR (151 

MHz, -30 °C, CD3CN): δ 157.2 (quat. CPy), 137.3 (p-CPy), 122.8 (m-CPy), 58.0 (-CH-(CH3)2-), 
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57.7 (-Py-CH2-N-), 18.9 (-CH-(CH3)2-). κ
3
-1, minor isomer: 

1
H NMR (600 MHz, -30 °C, 

CD3CN): δ 7.40 (t, 
3
JHH = 7.7 Hz, p-HPy, 2H), 6.99 (d, 

3
JHH = 7.7 Hz, m-HPy, 2H), 6.82 (d, 

3
JHH = 

7.7 Hz, m-HPy, 2H), 4.29 (d, 
2
JHH = 15.2 Hz, -Py-CH2-N-, 2H), 4.22 (d, 

2
JHH = 12.4 Hz, -Py-

CH2-N-, 2H), 4.02 (d, 
2
JHH = 12.4 Hz, -Py-CH2-N-, 2H), 3.74 (d, 

2
JHH = 15.2 Hz, -Py-CH2-N-, 

2H), 1.39 (d, 
3
JHH = 6.5 Hz, -CH-(CH3)2-, 6H), 1.22 (d, 

3
JHH = 6.6 Hz, -CH-(CH3)2-, 6H). -CH-

(CH3)2- peaks could not be observed because of its low intensity. 
13

C NMR (151 MHz, -30 °C, 

CD3CN): δ 159.2 (quat. CPy), 155.3 (quat. CPy), 138.3 (p-CPy), 124.9 (m-CPy), 122.4 (m-CPy), 

62.5 (-Py-CH2-N- or -CH-(CH3)2-), 60.2 (-CH-(CH3)2- or -Py-CH2-N-), 59.6 (-Py-CH2-N- or -

CH-(CH3)2-), 19.0 (-CH-(CH3)2-), 18. 7 (-CH-(CH3)2-). Anal. Found (calcd for C22H31CuF6N5P): 

C 45.68 (46.03), H 5.30 (5.44), N 11.99 (12.20). 

[(
Me

N4)Cu
I
(MeCN)]BF4 (2). Orange crystalline solid; isolated yield: 55 mg (65 %). At -26 

o
C, 

[(κ
4
-
Me

N4)Cu
I
(MeCN)]BF4 and [(κ

3
-
Me

N4)Cu
I
(MeCN)]BF4 isomers were present in CD3CN 

solution 96.6:3.38 ratio by NMR integration. κ
4
-2, major isomer: 

1
H NMR (600 MHz, -26 °C, 

CD3CN): δ 7.31 (t, 
3
JHH = 7.5 Hz, p-HPy, 2H), 6.73 (d, 

3
JHH = 7.7 Hz, m-HPy, 4H), 4.04 (d, 

2
JHH = 

15.1 Hz, -Py-CH2-N-, 4H), 3.54 (d, 
2
JHH = 15.1 Hz, -Py-CH2-N-, 4H), 2.91 (s, -N-CH3, 6H), 

1.97 (s, CH3CN, 3H). 
13

C NMR (151 MHz, -26 °C, CD3CN): δ 156.7 (quat. CPy), 137.7 (p-CPy), 

122.8 (m-CPy), 64.6 (-Py-CH2-N-,), 49.0 (-N-CH3). κ
3
-2, minor conformer: 

1
H NMR (600 MHz, -

30 °C, CD3CN): δ 7.45 (t, 
3
JHH = 7.5 Hz, p-HPy, 2H), 7.00 (d, 

3
JHH = 7.9 Hz, m-HPy, 2H), 6.89 (d, 

3
JHH = 7.3 Hz, m-HPy, 2H), 4.34 (d, 

2
JHH = 13.5 Hz, -Py-CH2-N-, 2H), 4.29 (d, 

2
JHH = 15.6 Hz, -

Py-CH2-N-, 2H), 4.19 (d, 
2
JHH = 13.5 Hz, -Py-CH2-N-, 2H), 3.76 (d, 

2
JHH = 15.6 Hz, -Py-CH2-

N-, 2H), 3.03 (s, -N-CH3, 6H). The 
13

C peaks of [(κ
3
-
Me

N4)Cu
I
(CH3CN)]BF4 could not be 

detected due to low intensity. Anal. Found (calcd for C18H23CuF4N5B): C 46.60 (47.02), H 4.93 

(5.04), N 14.76 (15.23). 
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[(
H

N4)Cu
I
(MeCN)]PF6 (3). Orange crystalline solid, isolated yield: 35 mg (17 %). At -30 

o
C, 

[(κ
4
-
H
N4)Cu

I
(MeCN)]PF6 and [(κ

3
-
H
N4)Cu

I
(MeCN)]PF6 isomers were present in CD3CN 

solution 87.3:12.7 ratio by NMR integration. κ
4
-3, major isomer: 

1
H NMR (600 MHz, -30 °C, 

CD3CN): δ 7.33 (t, 
3
JHH = 7.7 Hz, p-HPy, 2H), 6.81 (d, 

3
JHH = 7.7 Hz, m-HPy, 4H), 4.27 (2 

doublets, 
2
JHH = 15.9 Hz, -Py-CH2-N-, 4H), 3.64 (d, 

2
JHH = 15.9 Hz, -Py-CH2-N-, 4H), 3.60 (br. 

m, -CH2-NH, 2H), 1.96 (s, CH3CN, 3H). 
13

C NMR (151 MHz, -30 °C, CD3CN): δ 157.4 (quat. 

CPy), 137.1 (p-CPy), 122.6 (m-CPy), 55.8 (-Py-CH2-N-). κ
3
-3, minor conformer: 

1
H NMR (600 

MHz, -30 °C, CD3CN): δ 7.47 (t, 
3
JHH = 7.6 Hz, p-HPy, 2H), 7.06 (d, 

3
JHH = 7.8 Hz, m-HPy, 2H), 

6.91 (d, 
3
JHH = 7.7 Hz, m-HPy, 2H), 4.42 (d, 

2
JHH = 14.3 Hz, -Py-CH2-N-, 2H), 4.41 (d, 

2
JHH = 

16.1 Hz, -Py-CH2-N-, 2H), 4.18 (d, 
2
JHH = 14.3 Hz, -Py-CH2-N-, 2H), 3.80 (d, 

2
JHH = 16.1 Hz, -

Py-CH2-N-, 2H). 
13

C NMR (151 MHz, -30 °C, CD3CN): δ 155.7 (quat. CPy), 138.8 (p-CPy), 

124.1 (m-CPy), 122.4 (m-CPy), 57.6 (-Py-CH2-N-). Second inequivalent resonance of quat. CPy 

and –Py-CH2-N group could not be detected in 
13

C NMR due to overlap with other peaks and 

small intensity. Anal. Found (calcd for C16H19CuF6N5P): C 39.02 (39.23), H 3.71 (3.91), N 13.79 

(14.30). 

[(
Ts

N4)Cu
I
(MeCN)]PF6 (4). Yellow crystalline solid, isolated yield: 29 mg (20 %, Low yield 

because product was sparingly soluble in acetonitrile). Complex 4 remains fluxional in CD3CN 

solution even when coOLED down -30 
o
C. The effective symmetry of the ligand is C2v, which 

could be due to the presence of only the κ
4
 isomer or due to a fast, unresolved exchange 

processes. 
1
H NMR (600 MHz, -30 °C, CD3CN): δ 7.89 (d, 

3
JHH = 7.8 Hz, -(SO2)-C-CH-CH-Ar, 

4H), 7.66-7.42 (br. m, p-HPy and -CH-C-CH3-Ar, 6H), 7.08-6.83 (br. m, m-HPy, 4H), 5.29 (br s, -

Py-CH2-N-, 4H), 3.59 (br s, -Py-CH2-N-, 4H), 2.50 (s, CH3-Ar, 6H), 1.96 (s, CH3CN, 3H). 
13

C 

NMR (151 MHz, -30 °C, CD3CN): δ 153.9 (quat. CPy), 146.2 (-CH-C-CH3-Ar), 140.2 (-(SO2)-C-
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CH-Ar), 138.9 (p-CPy), 131.1 (CH-C-CH3-Ar), 129.1 (-(SO2)-C-CH-CH-Ar), 124.6 (m-Cpy), 56.8 (-

Py-CH2-N-), 21.5 (CH3-Ar). Anal. Found (calcd for C30H31CuF6N5O4PS2): C 44.67 (45.14), H 

3.88 (3.91), N 8.60 (8.77). 

General procedure for the synthesis of (
R
N4)Cu

I
I (5-10): To a stirred solution of the 

R
N4 

(1.0 equiv.) in dry tetrahydrofuran was added CuI
 
(0.95 equiv.) to immediately produce a bright 

yellow suspension. Within 10 minutes the suspended solids dissolved and after 2-5 h, bright 

yellow solid appeared. The tetrahydrofuran was removed by vacuum evaporation and 

dichloromethane (for 
R
N4 complexes; R = Me, 

i
Bu, 

sec
Bu, 

neo
Pent, 

i
Pr) or dichloromethane-

methanol solution (for 
Ts

N4 complex) was added to dissolve all the reaction mixture. The 

solution was passed through a celite plug and allowed to crystallize by diethyl ether vapor 

diffusion over 1-2 days. Crystalline solids were collected, washed with ether, hexane and dried 

under vacuum. Crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl 

ether vapors into dichloromethane (5-9) or dichloromethane-methanol (10) solution.  

(
iPr

N4)Cu
I
I (5). Bright yellow crystalline solid, isolated yield: 120 mg (76 %). At -30 

o
C, [(κ

3
-

iPr
N4)Cu

I
I] and [(κ

4
-
iPr

N4)Cu
I
I] isomers were present in CD2Cl2 solution 91.2:8.8 ratio by NMR 

integration. κ
3
-5, major isomer: 

1
H NMR (600 MHz, -30 °C, CD2Cl2,): δ 7.27 (t, 

3
JHH = 7.7 Hz, 

p-HPy, 2H), 6.89 (d, 
3
JHH = 7.8 Hz, m-HPy, 2H), 6.68 (d, 

3
JHH = 7.8 Hz, m-HPy, 2H), 4.85 (d, 

2
JHH 

= 12.9 Hz, -Py-CH2-N-, 2H), 4.32 (d, 
2
JHH = 14.8 Hz, -Py-CH2-N-, 2H), 3.94 (d, 

2
JHH = 12.9 Hz, 

-Py-CH2-N-, 2H), 3.66-3.62 (m, -CH-(CH3)2-, 1H), 3.56 (d, 
2
JHH = 14.8 Hz, -Py-CH2-N-, 2H), 

3.26-3.21 (m, -CH-(CH3)2-, 1H), 1.46 (d, 
3
J HH = 6.7 Hz, -CH-(CH3)2, 6H), 1.23 (d, 

3
J HH = 6.7 

Hz, -CH-(CH3)2, 6H). 
13

C NMR (151 MHz, -30 °C, CD2Cl2): δ 159.8 (quat. CPy), 154.6 (quat. 

CPy), 136.7 (p-CPy), 124.4 (m-CPy), 121.4 (m-CPy), 60.1 (-Py-CH2-N-), 59.9 (-Py-CH2-N-), 59.4 (-

CH-(CH3)2-), 59.1 (-CH-(CH3)2-), 19.4 (-CH-(CH3)2), 19.2 (-CH-(CH3)2). κ
4
-5, minor isomer: 

1
H 
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NMR (600 MHz, -30 °C, CD2Cl2,): δ 7.22 (t, 
3
JHH =7.7 Hz, p-HPy, 2H), 4.14 (d, 

2
JHH = 14.8 Hz, -

Py-CH2-N-, 4H), 3.74-3.70 (m, -CH-(CH3)2-, 2H), 3.42 (d, 
2
JHH = 14.8 Hz, -Py-CH2-N-, 4H), 

1.32 (br.d, -CH-(CH3)2, 12H). The peak of the meta-protons of pyridine cannot be detected due 

to their low intensity. 
13

C NMR (151 MHz, -30 °C, CD2Cl2): δ 156.9 (quat. CPy), 135.9 (p-CPy), 

121.9 (m-CPy), 56.1 (-CH-(CH3)2-). Py-CH2-N- and Methyl peaks might be merging with another 

isomer peaks. Anal. Found (calcd for (CH2Cl2).3C20H28CuIN4): C 44.82 (44.96), H 5.17 (5.32), 

N 10.12 (10.31). 

(
neoPent

N4)Cu
I
I (6). Bright orange crystalline solid, isolated yield: 99 mg (66 %). Complex 6 

exists as a single isomer (κ
3
-
neoPent

N4)Cu
I
I in CD2Cl2 solution at -30 C. κ

3
-6: 

1
H NMR (600 

MHz, -30 °C, CD2Cl2): δ 7.27 (t, 
3
JHH = 7.5 Hz, p-HPy, 2H), 7.01 (d, 

3
JHH = 7.5 Hz, m-HPy, 2H), 

6.66 (d, 
3
JHH = 7.5 Hz, m-HPy, 2H), 4.94 (d, 

2
JHH = 12.8 Hz, -Py-CH2-N-, 2H), 4.45 (d, 

2
JHH = 

14.9 Hz, -Py-CH2-N-, 2H), 4.08 (d, 
2
JHH = 14.9 Hz, -Py-CH2-N-, 2H), 4.01 (d, 

2
JHH = 12.8 Hz, -

Py-CH2-N, 2H), 3.48 (s, -N-CH2-C(CH3)-, 2H), 2.55 (s, -N-CH2-C(CH3)3-, 2H), 1.12 (s, -C-

(CH3)3, 9H), 0.99 (s, -C-(CH3)3, 9H). 
13

C NMR (151 MHz, -30 °C, CD2Cl2): δ 158.4 (quat. CPy), 

155.5 (quat. CPy), 136.7 (p-CPy), 124.6 (m-CPy), 121.7 (m-CPy), 75.7 (-N-CH2-C-), 71.2 (-N-CH2-

C-), 67.7 (-Py-CH2-N), 63.7 (-Py-CH2-N), 36.4 (-CH2-C-(CH3)3), 34.2 (-CH2-C-(CH3)3), 30.3 (-

C-(CH3)3), 27.7 (-C-(CH3)3). Anal. Found (calcd for (C22H32N4CuI): C 50.49 (50.48), H 6.22 

(6.35), N 9.56 (9.81). 

(
secBu

N4)Cu
I
I (7). Bright yellow crystalline solid, isolated yield: 64 mg (42%). Complex 7 

exists as a single isomer (κ
3
-
secBu

N4)Cu
I
I in CD2Cl2 solution at -30 C. κ

3
-7: 

1
H NMR (600 MHz, 

-30 °C, CD2Cl2): δ 7.26 (t, 
3
JHH = 7.6 Hz, p-HPy, 2H), 6.91 (d, 

3
JHH = 7.6 Hz, m-HPy, 1H), 6.85 (d, 

3
JHH = 7.9 Hz, m-HPy, 1H), 6.7-6.6 (m, two overlapping m-HPy, 2H), 5.02 (dd, 

2
JHH = 2.4, 13.0 

Hz, -Py-CH2-N-, 1H), 4.76 (d, 
2
JHH = 13.0 Hz, -Py-CH2-N-, 1H), 4.32-4.24 (m, two overlapping 
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CH2-N, 2H), 3.96-3.87 (m, two overlapping CH2-N, 2H), 3.60 (vd, 
2
JHH = 15.0 Hz, two 

overlapping CH2-N, 2H), 3.28-3.23 (m, -N-CH-(CH3)(CH2CH3), 1H), 2.91-2.85 (m, -N-CH-

(CH3)(CH2CH3)-, 1H), 2.54-2.48 (m, -CH-CH2-CH3, 1H), 1.74-1.67 (m, -CH-CH2-CH3, 1H), 

1.47-1.35 (m, -CH-CH2-CH3, 2H), 1.42 (d, 
3
JHH = 6.7 Hz, -CH-CH3, 3H), 1.20 (d, 

3
JHH = 6.5 Hz, 

-CH-CH3-, 3H), 1.01 (t, 
3
JHH = 7.4 Hz, -CH2-CH3, 3H), 1.00 (t, 

3
JHH = 7.3 Hz, -CH2-CH3, 3H); 

four partially overlapping signals of meta-H of Py and eight signals for PyCH2-arms are 

observed due to asymmetric environment caused by the presence of sec-butyl and κ3
-

coordination of the ligand. 
13

C NMR (151 MHz, -30 °C, CD2Cl2): δ 159.97, 159.92 and 159.88 

(quat. CPy; two signals are not resolved due to overlap), 154.79, 154.70, 154.65 and 154.56 (quat. 

CPy), 136.69 (p-CPy), 124.60, 124.53, 124.46 and 124.39 (m-CPy), 121.57, 121.49, 121.41 and 

121.33 (m-CPy), 66.39 and 65.52 (-N-CH-CH3), 62.94, 62.82, 60.89 (br), 59.53 (br), 58.25 and 

58.12 (-Py-CH2-N), 27.63 and 27.62 (-CH2-CH3), 15.83 and 15.61 (-CH-CH3), 11.87 (-CH2-

CH3); due to asymmetric environment caused by sec-butyl groups and the presence of two 

diastereomers, four sets of signals were observed for meta- and para-protons of Py and several 

overlapping sets of signals for aliphatic protons. Anal. Found (calcd for (C22H32N4CuI): C 48.30 

(48.67), H 5.80 (5.94), N 10.02 (10.32). 

 (
iBu

N4)Cu
I
I (8). Bright yellow crystalline solid, isolated yield: 78 mg (51 %). Complex 6 

exists as a single isomer (κ
3
-
iBu

N4)Cu
I
I in CD2Cl2 solution at -30 C. κ

3
-8: 

1
H NMR (600 MHz, -

30 °C, CD2Cl2): δ 7.30 (t, 
3
JHH = 7.6 Hz, p-HPy, 2H), 6.84 (d, 

3
JHH = 7.6 Hz, m-HPy, 2H), 6.73 (d, 

3
JHH = 7.5 Hz, m-HPy, 2H), 4.94 (d, 

2
JHH = 13.5 Hz, -Py-CH2-N-, 2H), 4.35 (d, 

2
JHH = 15.1 Hz, -

Py-CH2-N-, 2H), 4.05 (d, 
2
JHH = 13.5 Hz, -Py-CH2-N-, 2H), 3.85 (d, 

2
JHH = 15.1 Hz, -Py-CH2-

N-, 2H), 3.30 (d, 
3
JHH = 6.3 Hz, -N-CH2-CH-, 2H), 2.41 (d, 

3
JHH = 7.3 Hz, -N-CH2-CH-, 2H), 

2.32-2.26 (m, -CH2-CH-(CH3)2, 1H), 2.01-1.95 (m, -CH2-CH-(CH3)2, 1H), 1.09 (d, 
3
J HH = 6.8 
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Hz, -CH-(CH3)2, 6H), 0.99 (d, 
3
J HH = 6.6 Hz, -CH-(CH3)2, 6H). 

13
C NMR (151 MHz, -30 °C, 

CD2Cl2): δ 156.9 (quat. CPy), 155.0 (quat. CPy), 136.4 (p-CPy), 124.0 (m-CPy), 121.3 (m-CPy), 71.3 

(-N-CH2-CH-), 63.7 (-N-CH2-CH-) and (-Py-CH2-C), 63.3 (-Py-CH2-C), 26.9 (-CH2-CH-(CH3)2), 

26.1 (-CH2-CH-(CH3)2), 22.8 (-CH-(CH3)2), 20.4 (-CH-(CH3)2). Anal. Found (calcd for 

(C23H34N4CuI): C 48.72 (48.67), H 5.89 (5.94), N 10.35 (10.32). 

(
Me

N4)Cu
I
I (9). Bright yellow crystalline solid, isolated yield: 101 mg (59 %). At -30 

o
C, [(κ

4
-

Me
N4)Cu

I
I] and [(κ

3
-
Me

N4)Cu
I
I] isomers were present in CD2Cl2 solution 63.5:36.5 ratio by 

NMR integration. κ
4
-9, major isomer: 

1
H NMR (600 MHz, -30 °C, CD2Cl2,): δ 7.20 (t, 

3
JHH = 7.9 

Hz, p-HPy, 2H), 6.61 (d, 
3
JHH = 7.4 Hz, m-HPy, 4H), 4.03 (d, 

2
JHH = 14.8 Hz, -Py-CH2-N-, 4H), 

3.40 (d, 
2
JHH = 14.8 Hz, -Py-CH2-N-, 4H), 2.90 (s, -N-CH3, 6H). 

13
C NMR (151 MHz, -30 °C, 

CD2Cl2): δ 156.2 (quat. CPy), 136.0 (p-CPy), 121.8 (m-CPy), 64.5 (-Py-CH2-N-), 50.1 (-N-CH3). 

κ
3
-7, minor conformer: δ 7.32 (t, 

3
JHH = 7.7 Hz, p-HPy, 2H), 6.88 (d, 

3
JHH = 7.4 Hz, m-HPy, 2H), 

6.75 (d, 
3
JHH = 7.4 Hz, m-HPy, 2H), 4.92 (d, 

2
JHH = 13.6 Hz, -Py-CH2-N-, 2H), 4.29 (d, 

2
JHH = 

15.3 Hz, -Py-CH2-N-, 2H), 4.02 (d, 
2
JHH = 13.6 Hz, -Py-CH2-N-, 2H), 3.62 (d, 

2
JHH = 15.3 Hz, -

Py-CH2-N-, 2H), 3.02 (s, -N-CH3, 3H), 2.51 (s, -N-CH3, 3H). 
13

C NMR (151 MHz, -30 °C, 

CD2Cl2): δ 155.6 (quat. CPy), 154.8 (quat. CPy), 136.4 (p-CPy), 124.1 (m-CPy), 121.3 (m-CPy), 66.2 

(-Py-CH2-N-), 64.9 (-Py-CH2-N-), 50.7 (-N-CH3), 43.9 (-N-CH3). Anal. Found (calcd for 

(C16H20N4CuI): C 41.77 (41.89), H 4.40 (4.39), N 11.88 (12.21). 

 (
Ts

N4)Cu
I
I (10). Bright yellow crystalline solid, isolated yield: 41 mg (30 %, low yield due to 

low solubility in dichloromethane). In CD2Cl2 complex 10 remains fluxional even at -80 C. The 

effective symmetry of the ligand is C2v, which could be due to either the presence of only one 

isomer, (κ
4
-
Ts

N4)Cu
I
I or (κ

2
-
Ts

N4)Cu
I
I, or due to unresolved fast exchange. Single isomer: 

1
H 

NMR (600 MHz, -80 °C, CD2Cl2,): δ 7.71 (d, 
3
JHH = 7.7 Hz, -(SO2)-C-CH-CH-Ar, 4H), 7.38 (d, 
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3
JHH = 7.7 Hz, -CH-C-CH3-Ar, 4H), 7.32 (t, 

3
JHH = 7.3 Hz, p-HPy, 2H), 7.06 (br. s, m-HPy, 4H), 

5.01 (br d, 
2
JHH = 11.2 Hz, -Py-CH2-N-, 4H), 3.60 (br d, 

2
JHH = 11.2 Hz, -Py-CH2-N-, 4H), 2.41 

(s, CH3-Ar, 6H). 
13

C NMR (151 MHz, -80 °C, CD2Cl2): δ 154.2 (quat. CPy), 143.8 (CH-C-CH3-Ar), 

137.0 (p-CPy), 134.2 (-(SO2)-C-CH-Ar), 129.7 (-CH-C-CH3-Ar), 126.5 (-(SO2)-C-CH-CH3-Ar), 

122.8 (m-CPy), 56.0 (-Py-CH2-N-), 21.2 (CH3-Ar). Anal. Found (calcd for 

(CH2Cl2.C28H28CuIN4O4S2): C 42.17 (42.27), H 3.65 (3.67), N 6.53 (6.80).
 

 

RESULTS AND DISCUSSION 

Synthesis and solid-state structures.  

a) Cationic complexes. Cationic Cu
I
 complexes with a series of pyridinophane ligands were 

synthesized by reacting [Cu(MeCN)4]X (X = PF6, BF4) with 1 equiv. of the pyridinophane ligand 

(Scheme 2); they were isolated in an analytically pure form as orange (1-3) or yellow (4) 

crystalline solids in 17-66% yields. All these complexes were completely soluble in polar 

solvents such as CH3CN, acetone and poorly soluble in non-polar solvents. All 

[(
R
N4)Cu

I
(MeCN)]PF6/BF4 (1-4) complexes reacted slowly with chlorinated solvents, CH2Cl2 

and CHCl3, to form the respective (
R
N4)Cu

I
Cl complexes. All cationic complexes were highly 

unstable in the presence of air both in solution and in the solid state. All obtained complexes 

were characterized by elemental analysis, NMR, UV-vis and FT-IR spectroscopy, and their 

solid-state structures were determined by single crystal XRD (Figure 1). Although complex of 2 

with a PF6
-
 counter ion did not yield crystals suitable for X-ray analysis, the analogous complex 

2 with BF4
-
 as a counter ion was analyzed by XRD. The attempted preparation of the cationic 

complex with 
iBu

N4 failed to give the desired product in an analytically pure form under the 

same conditions even after multiple recrystallizations.    
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Scheme 2. Synthesis of cationic Cu
I
 complexes. 

 

 

Figure 1. ORTEP projections of acetonitrile complexes 1-4 showing anisotropic displacement 

ellipsoids at 50 % probability level. Hydrogen atoms and counter ions are omitted for clarity. 

 

The X-ray analysis reveals that the pyridinophane ligand 
R
N4 adopts a syn-boat-boat 

conformation
62, 63

 in cationic Cu
I
 complexes, featuring stronger coordination of the two pyridine 

rings and one MeCN ligand, and weaker interactions with the two axial amines. The coordination 

geometry of the Cu centers can be formally described as distorted square pyramidal
61

 with τ5 

parameter values being closer to 0 expected from ideal square pyramidal geometry; however, the 
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Cu-Namine distances are significantly elongated compared to Cu-Npy distances.  The comparison 

of bond distances in complexes [(
R
N4)Cu

I
(MeCN)]

+
 1-4 given in Table 1 shows that Cu-Npy and 

Cu-NMeCN bond distances are in a range of 1.88-2.10 Å typical for Cu
I
-N bond lengths,

60, 61, 76-78,
 

79
 while the Cu-Namine distances are significantly longer (Cu-Namine 2.35-2.49 Å). These structures 

resemble those previously reported for other 
R
N4-type pyridinophane Cu

I
 complexes.

60, 61
 The 

comparison of two analogous cationic complexes with different counter-anions, 

[(
tBu

N4)Cu
I
(MeCN)](PF6) and [(

tBu
N4)Cu

I
(MeCN)](BF4), shows that bond distances and 

coordination geometries are quite similar for both complexes. 

Table 1. Selected Cu-N bond distances and τ5 geometrical indicesa in complexes 

[(
R
N4)Cu

I
(MeCN)]X 1-4 and [(

tBu
N4)Cu

I
(MeCN)]X (X =PF6 or BF4). 

Complex Cu1-N1, Å Cu1-N2, Å Cu1-N3, Å Cu1-N4, Å Cu1-N5, Å τ5 
a
 

[(
tBu

N4)Cu
I
(MeCN)](PF6)

b
 2.089(2) 2.099(2) 2.444(2) 2.470(2) 1.901(2) 0.04 

[(
tBu

N4)Cu
I
(MeCN)](BF4)

b
 2.0920(18) 2.0819(16) 2.4249(16) 2.4570(17) 1.8957(19) 0.08 

[(
iPr

N4)Cu
I
(MeCN)](PF6) (1) 2.098(3) 2.082(3) 2.418(3) 2.400(3) 1.890(3) 0.14 

[(
Me

N4)Cu
I
(MeCN)](BF4) (2) 2.0782(10) 2.0784(10) 2.3722(10) 2.3577(10) 1.8804(10) 0.03 

[(
H
N4)Cu

I
(MeCN)](PF6) (3) 2.0892(15) 2.0937(16) 2.3510(17) 2.3653(17) 1.8824(16) 0.13 

[(
Ts

N4)Cu
I
(MeCN)](PF6) (4) 2.0641(11) 2.0749(11) 2.4219(11) 2.4902(11) 1.8828(12) 0.15 

a
The geometrical indices τ5 for pentacoordinate structures are calculated according to Refs

 

80,81,82
;
 b
From Ref 

60
; atom numbering is corresponding to the one from Figure 1. 

The comparison of Cu-Namine bond lengths (Cu1-N3 and Cu1-N4, Table 1) in complexes 

[(
R
N4)Cu

I
(MeCN)]X (1-4) as well as comparison with the published structures of 

[(
tBu

N4)Cu
I
(MeCN)]X with bulky 

t
Bu groups at the amines reveals that greater steric hindrance 

at the axial amine substituents leads to noticeable elongation of the Cu-Namine bond lengths in the 

following order: R = 
t
Bu > 

i
Pr > Me > H. At the same time, complex 4 with a tosyl-substituted 
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amine features longest Cu-axial amine distances likely due to weak interactions with poorly 

donating N-Ts groups.  

The ATR FT-IR spectra of polycrystalline samples of complexes [(
iPr

N4)Cu
I
(MeCN)]PF6 (1), 

[(
H
N4)Cu

I
(MeCN)](PF6) (3) and [(

Ts
N4)Cu

I
(MeCN)](PF6) (4) are consistent with the presence of 

a non-coordinated PF6
-
 counter ion characterized by the 820-831 cm

-1
 band, while complex 

[(
Me

N4)Cu
I
(MeCN)](BF4) (2) shows bands between 1047 and 1003 cm

-1
 that are typical for the 

BF4
-
 counter ion. The N-H stretching bands of the 

H
N4 ligand appear at 3400 cm

-1
 for complex 

[(
H
N4)Cu

I
(MeCN)](PF6) (3). For complex [(

Ts
N4)Cu

I
(MeCN)](PF6) (4), the characteristic S=O 

and N-S stretching band appear at 1088 and 992 cm
-1

, respectively.  

b) Neutral copper(I) iodide complexes.  

The neutral copper(I) iodide complexes were synthesized by mixing pyridinophane ligands with 

the anhydrous copper iodide in dry tetrahydrofuran to provide yellow (5, 7-10) or orange (6) 

colored complexes (
R
N4)Cu

I
I (Scheme 3), which were isolated in an analytically pure form in 

15-76% yields and characterized by elemental analysis, NMR and FT-IR spectroscopy. All these 

complexes were completely soluble in CH2Cl2 and acetone, and poorly soluble in non-polar 

solvents such as hexane, toluene, benzene and diethyl ether. These complexes show some limited 

stability in the crystalline state under air, but decompose in solution in the presence of oxygen. 

The ligand 
H

N4 failed to give the desired product in a pure form under the same reaction 

conditions: a mixture of several complexes was obtained. Although the presence of the desired 

product (
H
N4)Cu

I
I was confirmed by XRD, it could not be separated from undesired by-products 

and could not be fully characterized.
83

   

Scheme 3. Synthesis of neutral copper(I) iodide complexes. 
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Figure 2. ORTEP projections of iodide complexes (
R
N4)Cu

I
I 5-10 showing anisotropic 

displacement ellipsoids at 50% probability level if not indicated otherwise. For complex 6, only 

one independent molecule A is shown. For complex 7, displacement ellipsoids are shown at 30% 

probability level for clarity. Hydrogen atoms, minor components of disorder and a solvent 

molecule in the case of (
Ts

N4)Cu
I
I 10 are omitted for clarity. 
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The X-ray crystal structures of complexes (
R
N4)Cu

I
I (5-10) display distorted tetrahedral 

coordination geometry around the Cu
I
 center with the pyridinophane ligand binding in a κ

3
-

fashion (Figure 2). The τ4 and τ4’ parameters for tetracoordinate Cu centers in these complexes 

are in the range 0.53-0.68, indicative of noticeable deviation from ideal tetrahedral geometry 

where τ4 and τ4
’
 equal to 1 are expected. In all complexes, the pyridinophane ligand adopts a syn-

boat-chair conformation. These structures also resemble the previously reported tetracoordinate 

(
tBu

N4)Cu
I
I complex A (Scheme 1, a).

60
 The selected bond lengths for complexes 5-8 and a 

previously reported tetracoordinate complex (
tBu

N4)Cu
I
I with 

t
Bu-substituted pyridinophane 

ligand are summarized in Table 2. The Cu-axial amine distances in the solid state vary from 

2.065 to 2.155 Å; however, no clear correlation with the steric properties of the alkylamine is 

observed, which could reflect the effect of crystal packing and intermolecular interactions, 

especially in the complexes where remote steric hindrance is present, (
iBu

N4)Cu
I
I and 

(
neoPent

N4)Cu
I
I. It should be noted that 

sec
Bu and 

i
Bu fragments at atom N3 for complexes 

(
secBu

N4)Cu
I
I (7) and (

iBu
N4)Cu

I
I (8) are disordered into two positions. Similar to complexes with 

alkyl-substituted ligands, (
Ts

N4)Cu
I
I (10) features a much longer Cu-axial amine bond owing to 

weak coordination of the tosylamide nitrogen. 

Table 2. Selected Cu-N and Cu-I bond distances and geometrical indicesa (τ4 and τ4’) in 

complexes (
R
N4)Cu

I
I 5-10 and (

tBu
N4)Cu

I
I A. 

Complex Cu1-N1, Å Cu1-N2, Å Cu1-N3, Å Cu1-I1, Å τ4 and τ4’ values
a
 

τ4                              τ4’ 

(
tBu

N4)Cu
I
I (A)

b
 2.1292(16) 2.1518(15) 2.2158(16) 2.4907(3) 0.67 0.66 

(
iPr

N4)Cu
I
I (5) 2.1554(16) 2.1118(15) 2.2068(15) 2.4881(2) 0.62 0.60 

(
neoPent

N4)Cu
I
I (6A)

c
 2.1163(12) 2.1025(12) 2.2404(12) 2.46511(19) 0.63 0.62 
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(
neoPent

N4)Cu
I
I (6B)

c
 2.1136(12) 2.0688(12) 2.2560(12) 2.46202(19) 0.62 0.53 

(
secBu

N4)Cu
I
I (7) 2.120(5) 2.117(5) 2.234(5) 2.4737(8) 0.66 0.62 

(
iBu

N4)Cu
I
I (8) 2.0658(10) 2.0555(10) 2.2487(11) 2.46123(18) 0.68 0.64 

(
Me

N4)Cu
I
I (9) 2.0876(13) 2.1978(17)

d
 - 2.4755(3) 0.68 0.68 

(
Ts

N4)Cu
I
I (10) 2.0967(16) 2.0849(16) 2.3467(17) 2.4600(3) 0.65 0.61 

a
The geometrical indices τ4 and τ4

’
 for tetracoordinate structures are calculated according to 

Refs 
80,81,82

 
b
From Ref

60
; atom numbering corresponds to Figure 2. 

c
There are two molecules 

present in the asymmetric part of the unit cell.
 d

The distance is related to the Cu-Namine bond (see 

numbering in Fig. 2). Complex (
Me

N4)Cu
I
I (9) crystallizes with the molecule bisected by a 

mirror plane, hence the asymmetric cell contains half of a molecule. 

Macrocyclic ligand conformational flexibility in solution and NMR studies.  

a) Cationic complexes. The dynamic behavior of the complexes was investigated by variable 

temperature, solution NMR study. Complexes [(
R
N4)Cu

I
(MeCN)]X (X = PF6 or BF4) where R = 

i
Pr (1), Me (2), H (3), all featured slightly broadened 

1
H resonances at room temperature (RT) 

indicative of the effective C2v symmetry in solution. However, when the temperature was 

lowered to -30 °C, two isomers could be distinguished in solution under slow exchange 

conditions with clearly resolved, sharp proton resonances, except for complex 

[(
Ts

N4)Cu
I
(MeCN)](PF6) (4), which remains fluxional (vide infra). The major isomer was 

assigned as a C2v-symmetric [(κ4
-
R
N4)Cu

I
(MeCN)]

+
, in which the 

R
N4 ligand adopts a syn-boat-

boat conformation binding to the Cu center with both pyridine and both axial amine N-atoms. 

This is evident from the presence of only one pair of doublets of the CH2 groups showing 

geminal coupling (J ≈ 15 Hz), and only one aromatic doublet of the pyridine meta-proton Hmeta 

integrating as 2:1 relative to the triplet of the para-proton of the pyridine, Hpara. The minor 

isomer was assigned as the complex [(κ3
-
R
N4)Cu

I
(MeCN)]

+
, where the ligand coordinates only 

with three N-atoms of pyridinophane, while one of the axial amines remains free. Accordingly, 

the CH2 groups feature two pairs of geminally coupled doublets, and two inequivalent pyridine 



 29 

Hmeta resonances are observed, consistent with an effective Cs symmetry of the ligand in solution. 

The ratio of [(κ4
-
R
N4)Cu

I
(MeCN)]

+
 to [(κ3

-
R
N4)Cu

I
(MeCN)]

+
 at -30 °C is dependent on the axial 

amine substituent; however, in all cases the [(κ4
-
R
N4)Cu

I
(MeCN)]

+
 isomer remains predominant 

(Scheme 4).  

Scheme 4. Isomers of [(
R
N4)Cu

I
(MeCN)]

+
 (R = 

i
Pr, Me, H) present in MeCN solution at -30 °C.  

 

The complex [(
Ts

N4)Cu
I
(MeCN)](PF6) (4) remains highly fluxional in solution even at -30 °C 

featuring broad, unresolved signals of methylene protons and pyridyl aromatic protons. This is 

consistent with fast configurational exchange due to the weak interactions of the copper center 

with poorly donating NTs axial donor groups that were observed in the solid state. 

b) Neutral copper(I) iodide complexes. The solution behavior and exchange processes were 

studied in more detail for the series of copper iodide complexes (
R
N4)Cu

I
I (R = 

t
Bu, 

i
Pr, 

neo
Pent, 

sec
Bu, 

i
Bu, Me) 5-10. In contrast to the cationic complexes, the Cu

I
 iodide series displays 

photoluminescence not only in the solid state, but also in solution. The photoluminescence 

properties are likely strongly affected by the complexes’ fluxional behavior (vide infra). 

All above mentioned complexes (
R
N4)Cu

I
I (R = 

t
Bu, 

i
Pr, 

neo
Pent, 

sec
Bu, 

i
Bu, Me) 5-10 are 

fluxional at RT featuring significantly broadened ligand resonances, which can be resolved upon 

cooling, with the coalescence temperature dependent on the substituent. The predominant isomer 
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for complexes (
R
N4)Cu

I
I (R = 

t
Bu, 

i
Pr, 

neo
Pent, 

sec
Bu, 

i
Bu) in CD2Cl2 solution was a 

pseudotetrahedral complex (κ3
-
R
N4)Cu

I
I, in which the pyridinophane ligand binds only by three 

N-atoms, while one of the amine arms remains free. In the case of iso-propyl substituted 

complex 5, the minor isomer, (κ4
-
iPr

N4)Cu
I
I, was also present in solution, with a (κ4

-
iPr

N4)Cu
I
I : 

(κ3
-
iPr

N4)Cu
I
I ratio of 8.8:91.2. By contrast, complex 9 with less sterically demanding methyl-

substituted ligand 
Me

N4 shows the opposite conformational preference, with (κ4
-
Me

N4)Cu
I
I 

complex being the predominant isomer (κ4
-
Me

N4)Cu
I
I : (κ3

-
Me

N4)Cu
I
I ratio of 63.5:36.5 

(Scheme 5). 

Scheme 5. Isomers of (κ3
-
R
N4)Cu

I
I present in CD2Cl2 solution (R = 

t
Bu, 

i
Pr, 

neo
Pent, 

sec
Bu, 

i
Bu, 

Me) at -30 °C.  

 

To further study the nature of processes involved in conformational exchange in complexes 

(
R
N4)Cu

I
I, 2D EXSY/NOESY NMR measurements were performed at low temperature under 

slow exchange conditions. Although the 
1
H spectrum of 8, (

iBu
N4)Cu

I
I, measured at -20 °C 

features only one conformer, (κ3
-
iBu

N4)Cu
I
I, the EXSY spectrum clearly reveals the exchange 

cross-peaks between two inequivalent resonances of pyridine meta-protons Hm and Hm’ that 

appear in the same phase as the diagonal peaks (Figure 3). In addition, exchange cross-peaks are 
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also present between two pairs of the methylene doublets, Ha/Hb and Ha’/Hb’ that belong to CH2 

groups of the coordinated and non-coordinated axial amines (Figure 3). Accordingly, exchange 

cross-peaks are also seen between two sets of the corresponding multiplets of the iso-butyl 

groups. This is indicative of the degenerative mutual-site exchange process involving 

coordinated and free amine arms in complex (κ3
-
iBu

N4)Cu
I
I as shown in Scheme 6. Upon 

warming, coalescence is observed between the resonances of Hm and Hm’, which merge into a 

single broad signal at ca. 23 °C (Figure 4).  

Scheme 6. Exchange process in solution of (κ3
-
R
N4)Cu

I
I (5-10) involving coordinated and non-

coordinated amines (R = 
t
Bu, 

i
Pr, 

neo
Pent, 

sec
Bu, 

i
Bu, Me).  
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Figure 3. EXSY spectrum of complex (
iBu

N4)Cu
I
I (8) at -20 °C (mixing time 0.2 s). Exchange 

cross peaks are shown in red, in the same phase as the diagonal peaks (NOE cross-peaks are 

shown in blue, in the opposite phase to the diagonal peaks). 
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Figure 4. 
1
H VT NMR spectra of complex (

iBu
N4)Cu

I
I (8) in CD2Cl2. 

Similar exchange peaks were also observed by EXSY at -20 °C in complexes (
tBu

N4)Cu
I
I (A), 

(
neoPent

N4)Cu
I
I (6), (

secBu
N4)Cu

I
I (7) and for a major isomer of (

iPr
N4)Cu

I
I (5) containing a κ3

-

bound 
iPr

N4 ligand. However, the coalescence temperature for Hm and Hm’ in these systems is 

higher when compared to the less bulky complex (
iBu

N4)Cu
I
I (6). Accordingly, in 

i
Pr-substituted 

complex 5, the coalescence temperature is ca. 35 °C, (
neoPent

N4)Cu
I
I, 6 showed the coalescence 

temperature at ca. 30 °C, at while in 
t
Bu-substituted complex A and 

sec
Bu-substituted complex 7, 

the coalescence was not observed even at 35 °C. Since the chemical shift difference between Hm 

and Hm’ remains similar (126 Hz) both for complexes (
tBu

N4)Cu
I
I (A) and (

iPr
N4)Cu

I
I (5),

84
 this 
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indicates that complex A with a more bulky 
t
Bu substituent is less fluxional in solution as 

compared to 5. 

This was further confirmed by variable temperature Spin Saturation Transfer (SST) NMR 

experiments in the case of complexes (
tBu

N4)Cu
I
I (A), (

iBu
N4)Cu

I
I (8) and (

neoPent
N4)Cu

I
I (6) 

featuring a simple mutual-site exchange process.
85

 The SST experiment was performed by 

irradiating one of the doublets of the meta-protons, which leads to the decrease in intensity of the 

signal of the second meta-proton, with the degree of suppression determined by the rate constant 

of exchange (Table 3, 4 and 5). The activation parameters are given in Table 6. The complex 

(
tBu

N4)Cu
I
I (A) was the least fluxional among the series, while complexes featuring remote steric 

hindrance in iso-butyl and neo-pentyl groups, 8 and 6, showed generally faster isomer exchange 

rates. 

Table 3. Rate constant at various temperatures for 
tBu

N4Cu
I
I (complex A) in CD2Cl2. 

Temperature (K) Rate constant (k, s
-1

) 

263 5.37 

258 3.66 

253 2.57 

248 1.61 

243 1.14 

238 0.839 

233 0.591 

 

Table 4. Rate constants at various temperatures for 
iBu

N4Cu
I
I (complex 8) in CD2Cl2. 

Temperature (K) Rate constant (k, s
-1

) 

253 12.4 
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248 8.52 

243 6.86 

240.5 5.47 

238 4.62 

235.5 3.98 

233 3.56 

230.5 3.07 

 

Table 5. Rate constants at various temperatures for 
neoPent

N4Cu
I
I (complex 6) in CD2Cl2. 

Temperature (K) Rate constant (k, s-1) 

255 7.15 

253 5.88 

251 4.73 

249 4.06 

247 3.26 

243 2.07 

241 1.74 

 

Table 6. Activation parameters for complexes (
tBu

N4)Cu
I
I A, (

iBu
N4)Cu

I
I 8 and (

neoPent
N4)Cu

I
I 6 

determined from VT SST experiments.
a
 

 (
tBu

N4)Cu
I
I (A) (

iBu
N4)Cu

I
I (8) (

neoPent
N4)Cu

I
I (6) 

H≠(kcal·mol
-1

) 8.5±0.8 6.7±0.6 11.9±0.5 

S≠(cal·mol
-1·K-1

) -23±3 -27±2 -7.4±2.1 
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G≠(kcal·mol
-1

)
b
 15.3±0.8 14.7±0.6 14.2±0.5 

EA (kcal·mol
-1

)
c
 9.0±0.8 7.2±0.6 12.4±0.5 

lnA
d
 19±2 17±1 26±1 

a
All experiments were repeated three times at each temperature; see details in the Supp. Info. 

b
As 

measurements could not be done at RT directly, G≠ was extrapolated to 298 K by using H≠
 

and S≠  values obtained above. 
c
Arrhenius activation energy. 

d
Natural logarithm of pre-

exponential factor. 

As discussed above, the complex (
Me

N4)Cu
I
I (9) features two isomers in solution, (κ4

-
Me

N4)Cu
I
I 

and (κ3
-
Me

N4)Cu
I
I, in comparable amounts, which allows for the observation of two types of 

exchange by EXSY NMR at -20 °C. First, similar to complexes (
iPr

N4)Cu
I
I (5), (

iBu
N4)Cu

I
I (8) 

and (
tBu

N4)Cu
I
I (A), the degenerative exchange between coordinated and non-coordinated 

amines is evident in (κ3
-

Me
N4)Cu

I
I isomer, with the coalescence between Hm and Hm’ observed at 

ca. 15 °C, showing that Me-substituted complex undergoes faster conformational exchange as 

compared to the bulkier 
t
Bu, 

i
Pr, 

neo
Pent, 

sec
Bu, and 

i
Bu-substituted analogs A , 5, 6, 7 and 8. The 

EXSY experiment also exhibits interconversion that occurs between the complexes with two 

different conformers of the ligand, (κ4
-
Me

N4)Cu
I
I and (κ3

-
Me

N4)Cu
I
I (Figure 5). For example, 

exchange cross peaks are observed between two para-protons of pyridines, Hp and Hp’, that 

belong to isomers (κ3
-
Me

N4)Cu
I
I and (κ4

-
Me

N4)Cu
I
I, respectively. Accordingly, both meta-

protons of pyridines in (κ3
-
Me

N4)Cu
I
I, Hm and Hm’, exchange with the signal of Hm” 

corresponding to pyridine meta-protons of the C2v-symmetrical isomer (κ4
-

Me
N4)Cu

I
I (Scheme 7). 

Similarly, exchange-cross peaks are clearly seen between N-Me groups that belong to κ3
- and κ4

-

isomers, Mea, Meb and Mec. Upon warming up, the resonances of N-Me of both isomers coalesce 

at ca. 21 °C (Figure 6). 
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Overall, qualitative comparison of solution behavior of complexes with alkylamine axial donors, 

(
R
N4)Cu

I
I indicates that the steric bulk of the alkyl group of the axial amines has a dual effect on 

the conformational behavior of the derived complexes: (i) increasing steric bulk of R substituent 

leads to higher preference towards the isomer with a κ3
-bound 

R
N4 ligand; (ii) increasing steric 

bulk of the alkyl R groups slows down conformational exchange in these systems. 

Scheme 7. Isomer interconversion involving (κ3
-

Me
N4)Cu

I
I and (κ4

-
Me

N4)Cu
I
I.  
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Figure 5. EXSY spectrum of complex (
Me

N4)Cu
I
I (9) at -20 °C (mixing time 0.2 s). Exchange 

cross peaks are shown in red, in the same phase as the diagonal peaks (NOE cross-peaks are 

shown in blue, in the opposite phase to the diagonal peaks). 

 

Figure 6. 
1
H VT NMR spectra of complex (

Me
N4)Cu

I
I (9) in CD2Cl2. 

As compared to the alkylamine analogs, the tosyl-substituted complex (
Ts

N4)Cu
I
I (10) undergoes 

much faster conformational exchange, so that slow exchange conditions could not be reached 

even at -80 °C. This is likely due to the weak coordination of the electron deficient N-Ts group to 

the Cu
I
 center, also consistent with significantly longer Cu

I
-N bond distances observed in 

complex (
Ts

N4)Cu
I
I (10) when compared to the alkyl amine derivatives (even the ones with the 

bulky 
t
Bu and 

i
Pr groups). The 

1
H NMR spectrum of (

Ts
N4)Cu

I
I at -80 °C features two 
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broadened doublets of CH2 groups and only one signal corresponding to meta-protons of 

pyridines, indicative with the effective C2v symmetry in solution. While this could be consistent 

with κ4
- (or κ2

-) coordination of the 
Ts

N4 ligand in solution, high fluxionality of this complex 

does not allow unambiguous assignment of the conformational preference as the observed 

signals could also result from exchange between several configurational isomers leading to 

effective averaging of the signals.  

Electrochemical properties. The electrochemical properties of cationic and neutral 

pyridinophane complexes were studied by cyclic voltammetry (Figure 7). The cationic 

complexes were examined by CV in MeCN solution using 
n
Bu4NPF6 (for 

[(
iPr

N4)Cu
I
(MeCN)]PF6 1, [(

H
N4)Cu

I
(MeCN)]PF6 3, and [(

Ts
N4)Cu

I
(MeCN)]PF6 4) and 

n
Bu4NBF4 (for [(

Me
N4)Cu

I
(MeCN)]BF4 2) as a supporting electrolyte: their electrochemical 

properties are summarized in Table 7. For all cationic complexes except Ts-substituted 

compound 4, the chemically reversible oxidation wave assigned to a Cu
I
/Cu

II 
oxidation event 

was observed. The separation between the forward and reverse peaks was in a range of 55-89 

mV, larger than expected for an electrochemically reversible process for majority of complexes 

except the least sterically hindered [(
H
N4)Cu

I
(MeCN)]PF6 (3).

86
 This is likely due to significant 

structural changes that occur during oxidation of the pentacoordinate Cu
I
 center to form 

hexacoordinate Cu
II
 species. According to a literature example, a similar large separation 

between the anodic and cathodic peaks was observed in complex [(
tBu

N4)Cu
I
(MeCN)]X (X = 

PF6, OTf).
61

 In this earlier work, the oxidation product, Cu
II
 complex 

[(
tBu

N4)Cu
II
(MeCN)2](OTf)2, was previously obtained and structurally characterized. Complex 

[(
tBu

N4)Cu
II
(MeCN)2](OTf)2 featured a distorted octahedral Cu

II 
center with two MeCN ligands 
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and with significantly shortened Cu-axial amine bond distances as compared to its Cu
I
 analog 

[(
tBu

N4)Cu
I
(MeCN)](OTf).

61
 

Table 7. Electrochemical properties of complexes [(
R
N4)Cu

I
(MeCN)]X 1-4 (X = PF6 or BF4).

a
 

Complex Epf (mV)
b
 Epr (mV)

c
 ΔE (mV)

d
 E1/2 (mV)

e
 

[(
iPr

N4)Cu
I
(MeCN)](PF6) (1) -163 -249 89 -206 

[(
Me

N4)Cu
I
(MeCN)](BF4) (2)

f
 -241 -316 75 -279 

[(
H
N4)Cu

I
(MeCN)](PF6) (3) -289 -344 55 -317 

[(
Ts

N4)Cu
I
(MeCN)](PF6) (4)

g
 674 -205 - - 

a 
Cyclic voltammograms for complexes for [(

R
N4)Cu

I
(MeCN)]X 1-4 (1 mM) in 0.1 M solution 

of 
n
Bu4NPF6 (for 1, 3, 4) or 

n
Bu4NBF4 (for 2) as a supporting electrolyte in acetonitrile at 23 C, 

100 mV/s scan rate, Pt disk electrode (d = 1.6 mm), all peaks were references vs. ferrocene. 
b
Potential of the forward peak. 

c
Potential of the return peak. 

d
Peak-to-peak separation ΔE is 

calculated as Epf - Epr. 
e
E1/2 estimated as 1/2·(Epf + Epr). 

f
 
n
Bu4NBF4 was used as an electrolyte. 

g 

Irreversible oxidation. 

Interestingly, the estimated E1/2 of Cu
I
/Cu

II
 oxidation wave varies depending on the substituents 

at the amine axial donors, with the most positive E1/2 being observed for the complex with the 

bulkiest 
i
Pr-substituent, [(

iPr
N4)Cu

I
(MeCN)]PF6 (1), and most negative E1/2 observed for the least 

sterically hindered complex [(
H
N4)Cu

I
(MeCN)]PF6 (3). This trend is different to what could 

have been expected based solely on the donor properties of the axial amines, and it likely reflects 

the degree of stabilization of the Cu
II
 product due to differences in the steric bulk of the axial 

donor. Since significantly shorter Cu-Namine bond distances are expected for the oxidized Cu
II
 

complex, more effective stabilization is expected from the least bulky ligands.  

As compared to complexes 1-3, the Ts-substituted complex 4 featured an irreversible oxidation 

wave at a much higher potential, which could be a result of poor stability of the Cu
II
 product in 

the presence of weakly coordinating axial NTs groups. 
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Figure 7. Cyclic voltammograms of complexes 1, 3, and 4 (1 mM) in 0.1 M 
n
Bu4NPF6/MeCN 

and 2 in 0.1 M 
n
Bu4NBF4/MeCN solution at 23 °C (scan rate 100 mVs

-1
; 1.6 mm Pt disk working 

electrode; the arrow indicates the initial scan direction).  

As compared to cationic complexes, electrochemical behavior of neutral copper(I) iodide 

complexes 
R
N4Cu

I
I (5-10) is generally more complex and is likely affected by the redox-activity 

of a free iodide ion that can be released into solution in the presence of an electrolyte, which 

prevented us from carrying out detailed electrochemical studies on the Cu iodide complex 

series.
71

  

Photophysical properties. 

The UV-Vis absorption spectra of complexes [(
R
N4)Cu

I
(MeCN)]X (1-4) in acetonitrile solution 

and complexes (
R
N4)Cu

I
I (5-10) in dichloromethane were recorded (Figure 8). All complexes 

feature an intense absorption band at 230-300 nm assigned as the ligand-centered transition. 
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Similarly, free pyridinophane ligands also show an absorption band in this region.
60

 
R
N4-

supported complexes 1-3 and 5-9 where R = H, Me, 
i
Bu, 

sec
Bu, 

neo
Pent, 

i
Pr are also characterized 

by a less intense MLCT band (ε ≈ 10
4
 M

-1
 cm

-1
) at 390-430 nm (Table 9). By contrast to 

complexes with alkyl-substituted pyridinophane ligands, the Ts-substituted analogs 

[(
Ts

N4)Cu
I
(MeCN)]PF6 (4) and (

Ts
N4)Cu

I
I (10) did not exhibit any absorption bands above 300 

nm.  
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Figure 8. UV-Vis absorbance spectra for complexes [(
R
N4)Cu

I
(MeCN)]X (1-4) in acetonitrile 

(a) and (
R
N4)Cu

I
I (5-10) in dichloromethane (b). 

The emission properties of the cationic and neutral complexes were then studied in the solid state 

and in solution to elucidate interplay between ligand steric properties and photophysical 

properties of Cu
I
 complexes in a series of containing 

t
Bu, 

i
Pr, 

neo
Pent, 

sec
Bu, 

i
Bu and Me 

substituents at the amine. While the cationic acetonitrile complexes [(
R
N4)Cu

I
(MeCN)]X (1-4) 

showed negligible emission in the solid state upon excitation at 400 nm (typically <5%), the 

neutral copper(I) iodide complexes (
R
N4)Cu

I
I 5-9 bearing alkyl substituents at the amine donors 

exhibited a broad emission band with the maximum in the range of 540-589 nm at 298 K, 

indicative of the charge-transfer character of the emissive excited states
49, 54, 57, 87

 and consistent 

with previously reported TD-DFT studies (Figure 9).
60

 The photophysical properties of 

complexes (
R
N4)Cu

I
I 5-9 as well as comparison with the previously reported complex 

(
tBu

N4)Cu
I
I (A) at room temperature are summarized in Table 8. In all cases, the average 

emission lifetimes were in the microsecond range, varying from 6.3 to 20.02 μs, indicating 

phosphorescense from the triplet excited state (Figure 10), although TADF cannot be completely 

excluded.
60, 88 

Complex (
Me

N4)Cu
I
I (9) showed only negligible emission (< 3%) under the same 

conditions. The emission decay profile could be fit with a mono-exponential curve, except for 

complex (
Me

N4)Cu
I
I (9), in which a bi-exponential fit gave two components with lifetimes of 

1.70 and 8.39 μs, with an intensity weighted average value of 6.31 μs.  
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Figure 9. Normalized emission spectra of complexes 
tBu

N4Cu
I
I (A), 

iPr
N4Cu

I
I (5), 

neoPent
N4Cu

I
I 

(6), 
secBu

N4Cu
I
I (7), 

iBu
N4Cu

I
I (8) and 

Me
N4Cu

I
I (9) in the solid state at 298 K; excitation at 400 

nm. 

 

Figure 10. Normalized photoluminescence decay profiles for complexes 5-10 (500-800 nm 

range) in the solid state at 298 K. Excitation at 400 nm. 
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Table 8. Photophysical properties of complexes (
R
N4)Cu

I
I 5-9 and (

tBu
N4)Cu

I
I A in the solid 

state at 298 K.
a
 

Complex emi 

(nm)
b
 


c
  (s)

d
 kr·10

-4
 

(s
-1

)
e
 

knr·10
-4

 

(s
-1

)
f
 

CIE color coordinates 

(x,y)
g
 

(
tBu

N4)Cu
I
I (A)

h
 585 0.78 15.79 4.94 1.39 0.514, 0.476 

(
iPr

N4)Cu
I
I (5) 576 0.58 11.66 4.97 3.59 0.487, 0.506 

(
neoPent

N4)Cu
I
I (6) 589 0.55 20.02 2.75 2.25 0.549, 0.439 

(
secBu

N4)Cu
I
I (7) 570 0.40 12.96 3.10 4.65 0.323, 0.268 

(
iBu

N4)Cu
I
I (8) 546 0.39 16.69 2.34 3.66 0.414, 0.562 

(
Me

N4)Cu
I
I (9) 570 0.02 6.31

i
 0.32 15.68 0.470, 0.512 

a
All measurements are performed with excitation at 400 nm. 

b
Emission maximum. 

c
Photoluminescence quantum yields at 298 K (excitation 400 nm). 

d
Emission lifetime at 298 K. 

e
Radiative decay rate constants were estimated as /. 

f
Non-radiative decay rate constants 

calculated as kr(1-)/. 
g
CIE 1931 chromaticity diagram coordinates.

 h
From Ref 

60
.
 i
Intensity 

weighted average value based on biexponential fit (calculated from α11 + α22/(α1 + α2); where 1 

= 1.70 and 2 = 8.39 are decay components and α1 = (A1/A1+A2) and α2 = (A2/A1+A2) are 

respective amplitudes where A1 = 0.301 and A2 = 0.668 are respective contributions)  

The comparison of PLQY in Table 8 shows that the highest PLQY was observed for most bulky 

t
Bu-substituted complex A, while the least sterically hindered complex (

Me
N4)Cu

I
I (9) showed 

lowest PLQY. Accordingly, the non-radiative decay rate constant knr was lowest for complex A 

(1.39 · 10
4
 s

-1
) and highest for complex 9 (15.68 · 10

4
 s

-1
) in this series. Complexes with 

intermediate steric hindrance at the axial amines, 5-8, exhibit PLQY in the range of 0.39-0.55 

with knr
 
falling in the intermediate range ((2.25-4.65)·10

4
 s

-1
). 

To exclude effects of crystal packing and aggregation on the photophysical properties, we 

examined the emission properties in solution at 298 K and in frozen solution at 77 K. To our 
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satisfaction, solutions of complexes bearing 
iPr

N4 (5), 
neoPent

N4 (6), 
secBu

N4 (7) and 
iBu

N4 (8) in 

CH2Cl2 at 298 K showed emission at 600-615 nm (Figure 11), and only the complex with the 

least bulky Me group (
Me

N4)Cu
I
I (9) showed negligible emission with PLQY < 0.01. In polar 

coordinating solvents such as alcohols or nitriles, the emission was negligible, while low 

solubility prevented measurements in benzene and toluene solutions. The comparison of CH2Cl2 

solution PLQY data for (
R
N4)Cu

I
I 5-9 and  (

tBu
N4)Cu

I
I (A) shows that PLQY gradually 

decreases in the order: 
t
Bu > 

i
Pr ≈ sec

Bu > 
i
Bu > 

neo
Pent > Me (Table 9), thus showing clear 

correlation with the steric bulk. 
89-92

 

.  

Figure 11. Normalized emission spectra of complexes 
tBu

N4Cu
I
I (A), 

iPr
N4Cu

I
I (5), 

neoPent
N4Cu

I
I 

(6), 
secBu

N4Cu
I
I (7) and 

iBu
N4Cu

I
I (8) in CH2Cl2 solution at 298 K; excitation at 400 nm. 
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Figure 12. Normalized Photoluminescence decay profiles for CuI complexes 5-8 (500-800 nm 

range) in CH2Cl2 solution at 298 K. Excitation at 400 nm. 
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Figure 13. Normalized emission spectra of complexes 
tBu

N4Cu
I
I (A), 

iPr
N4Cu

I
I (5), 

neoPent
N4Cu

I
I 

(6), 
secBu

N4Cu
I
I (7), 

iBu
N4Cu

I
I (8), 

Me
N4Cu

I
I (9) and 

Ts
N4Cu

I
I (10) in frozen MeTHF at 77 K; 

excitation at 400 nm. 

Table 9. Photophysical properties of complexes (
R
N4)Cu

I
I 5-10 and (

tBu
N4)Cu

I
I (A) in solution.

a
 

Complex abs (nm)b  

[, (M-1 cm-1)c] 

298 Kd 77 Kg  

(s)h 

kr·10-4 

(s-1)i 

knr·10-5 

(s-1)j 

CIE color 

coordinates 

(x,y)k emi 

(nm)e 

f emi 

(nm)e 

f 

(tBuN4)CuII (A)l 419 [2031] 600 0.28 568 0.81 4.3 6.51 1.67 0.372, 0.245 

(iPrN4)CuII (5) 415 [1190] 612 0.095 572 0.79 6.17 1.54 1.47 0.388, 0.252 

(neoPentN4)CuII (6) 434 [345] 613 0.025 567 0.91 0.70 3.57 13.9 0.377, 0.242 

(secBuN4)CuII (7) 407 [2380] 609 0.11 575 0.72 3.34 3.29 2.66 0.389, 0.258 

(iBuN4)CuII (8) 417 [811] 610 0.059 559 0.79 2.16 2.73 4.35 0.261, 0.126 

(MeN4)CuII (9) 432 [1090] n.d. <0.01 571 0.25 n.d. n.d. n.d. n.d. 

(TsN4)CuII (10) n.d. n.d. <0.01 499 0.53 n.d. n.d. n.d. n.d. 

a
All measurements are performed with excitation at 400 nm; n.d. – not determined. 

b
Absorption 

maximum. 
c
Extinction coefficient. 

d
In degassed dichloromethane at 298 K. 

e
Emission maximum. 

f
Photoluminescence quantum yield. 

g
In 2-methyl tetrahydrofuran at 77 K.

 h
Emission lifetime at 

298 K in CH2Cl2. 
i
Radiative decay rate constants were estimated as /; measured at 298 K in 

CH2Cl2. 
j
Non-radiative decay rate constants calculated as kr(1-)/; measured at 298 K in 

CH2Cl2. 
k
CIE 1931 chromaticity diagram coordinates determined for emission spectrum at 298 K 

in CH2Cl2.
 l
From Ref 

60
. 

As compared to the solid state, the emission lifetimes at 298 K are significantly shorter, falling to 

a 0.7-6 μs range (Figure 12). While the radiative rate constants remain in a similar range as in the 

solid state, the solution state knr increases by about an order of magnitude, indicative of faster 

non-radiative decay pathways in the solutions of conformationally flexible complexes (
R
N4)Cu

I
I. 

Complex (
Ts

N4)Cu
I
I (10) showed only negligible emission in the solid state (PLQY < 0.01) and 

was not emissive in solution, which could be attributed either to its high fluxionality in solution 

(vide infra) as well as a different electronic structure consistent with the lack of MLCT bands at 

ca. 400 nm region; the variation of the excitation source wavelength to higher energies also did 
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not result in any observable emission. In particular, conformation of the 
Ts

N4 ligand in complex 

(
Ts

N4)Cu
I
I in solution can differ from other alkyl-substituted complexes, although solution NMR 

studies did not allow to unambiguously confirm conformational assignment due to high 

fluxionality of this complex (vide supra).  

The frozen MeTHF solutions of complexes A and 5-10 at 77 K show dramatic increase of PLQY 

compared to RT measurements reaching 0.79-0.91 for complexes (
R
N4)Cu

I
I (R = 

t
Bu, 

i
Pr, 

neo
Pent,

 

sec
Bu and 

i
Bu) and 0.25 for (

Me
N4)Cu

I
I that was non-emissive at RT (Figure 13). This resembles 

the behavior of 2,9-disubstituted bis-phenanthroline Cu
I 

complexes with long alkyl chain 

substituents in frozen solutions, which was attributed to the ability of long alkyl chains to prevent 

significant distortions of the ground and excited states in rigid matrix.
93

  

The observed correlation between steric bulk of the amine donor and the photoluminescence 

quantum yield could be affected by the two main factors. First, as shown by the NMR studies, 

the steric bulk of the alkyl group affected the rate of the conformational exchange processes in 

solutions of (
R
N4)Cu

I
I (including degenerative exchange), with slower conformational exchange 

observed for the complexes bearing the more bulky alkyl groups at the amines (vide supra). 

Second, the steric bulk of the alkyl group also affected the relative stabilities of two different 

isomers in solution, with tetracoordinate (κ3
-
R
N4)Cu

I
I species being more favorable for more 

sterically demanding R groups. However, in the case of complexes (
tBu

N4)Cu
I
I (A), 

(
neoPent

N4)Cu
I
I (6) and (

iBu
N4)Cu

I
I (8), only one conformer, (κ3

-
R
N4)Cu

I
I, was present in solution 

in both cases, while solution quantum yield decreased drastically for less bulky and more 

fluxional complexes 6 and 8 compared to tert-butyl-substituted complex A, showing that the 

fluxionality may be the predominant factor affecting solution PLQY.  
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Similarly, the effect of the ligand steric bulk on the photophysical properties was described for a 

series of Cu
I
 complexes with phenanthroline-based ligands, Cu(NN)2

+
 and Cu(NN)(PP) (NN = 

substituted phenanthroline; PP = diphosphine). Introducing bulky substituents at the 

phenanthroline backbone lead to a significant increase in emission lifetime and PLQY. The 

detailed investigations of these systems showed that such a strong effect of the ligand steric 

properties arises due to suppression of the flattening distortion in the CT state, thus preventing 

non-radiative structural relaxation.
30, 37, 51, 56, 94-96

 Although the geometrical changes involved in 

non-radiative relaxation may differ, suppression of the ligand dynamics achieved by introducing 

bulky substituents at the weakly interacting amine donors in (
R
N4)Cu

I
I complexes is also the 

main factor that determines PLQY in this series. Although the ligand dynamic process observed 

by NMR involving degenerative exchange between two axial amines is much slower than non-

radiative decay, introduction of the steric bulk at amine substituents might affect fluxionality of 

the ligand in the excited state in a similar manner. In addition, dynamic processes in the excited 

state might feature faster rate constants due to charge build-up at the Cu center and at the 

pyridinophane ligand. 
60

 

In addition, it has been reported that in the case of tetracoordinate complex [Cu
I
(dmp)2]

+
 (dmp = 

2,9-dimethyl-1,10-phenanthroline), coordination of the Lewis basic solvent such as acetonitrile 

to the MLCT excited state leads to the “exciplex” quenching.
38,51, 64, 65

 In the present (
R
N4)Cu

I
I 

system, the free axial amine moiety can coordinate to the Cu center in the absence of 

coordinating solvents. Thus, the suppression of the nucleophilic attack by the pendant amine 

donor to the copper center in the excited state due to presence of bulky alkyl substituents could 

be another mechanism responsible for higher PLQY observed for complexes with bulky 

substituents at the amine donors. A higher propensity of complexes with less bulky substituents 
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to undergo pendant amine donor coordination is observed in the solution behavior of (
R
N4)Cu

I
I 

studied by NMR, which shows that only (
Me

N4)Cu
I
I (7) exhibits a substantial fraction of a 

pentacoordinate [(κ4-R
N4)Cu

I
I], and the isomer interconversion is faster as compared to 

t
Bu and 

i
Pr-substituted analogs. Moreover, the trend in the oxidation potentials of pentacoordinate 

complexes 1-4 also confirms that stabilization of a Cu
II
 center is favored by less bulky amine 

donors due to more efficient coordination of the axial amines (vide supra).  

Interestingly, PLQY in frozen solutions for 
t
Bu, 

i
Pr, 

neo
Pent, 

sec
Bu and 

i
Bu-substituted complexes 

is very similar, 0.72-0.91, while the Me-substituted complex (
Me

N4)Cu
I
I (7) shows a lower 

PLQY of 0.25. Similarly, Armaroli, Barigelletti and co-workers reported high emission intensity 

in frozen solution 2,9-disubstituted bis-phenanthroline Cu
I 

complexes with long alkyl chain 

substituents. 
93

 At the same time, the Me-substituted bis-phenanthroline Cu
I
 complex remained a 

weak emitter in frozen solution and it was proposed that smaller Me substituents do not prevent 

excited state distortions even in rigid matrix. By analogy, one could propose that at 77 K, 

conformational exchange and nucleophilic attack by pendant amine are essentially “frozen” and 

therefore no significant differentiation of PLQY is observed for complexes (
R
N4)Cu

I
I (R = 

t
Bu, 

i
Pr, 

neo
Pent, 

sec
Bu and 

i
Bu) all containing bulky alkyl groups that can effectively prevent 

distortions in the excited state leading to levelling off PLQY to similarly high values of 0.72-

0.91. Interestingly, even Ts-substituted complex (
Ts

N4)Cu
I
I (10) which was highly fluxional in 

solution at RT becomes emissive in frozen solution with PLQY of 0.53, which further confirms 

the importance of “freezing” conformational lability for emissive properties.  

Overall, although Cu-Namine distances are significantly longer than Cu-Npyridine distances, the 

emissive properties of (
R
N4)Cu

I
I 5-9 complexes are very sensitive to steric requirements of the 

axial amine arms, which determine dynamic properties of the macrocyclic pyridinophane ligand. 
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Such sensitivity to the subtle changes at the axial amine environment and its effect on ligand 

fluxionality are likely the key features that enabled the use of analogous, covalently 

copolymerized complexes as emissive probes for detecting stress in polymer films.  

CONCLUSION 

In summary, we have explored in detail the structure, ligand conformational behavior, redox, and 

photophysical properties of a series of copper(I) complexes with a conformationally fluxional 

R
N4 pyridinophane ligand. Steric requirements of the axial amine substituents in these 

complexes were shown to play a key role in determining solution behavior and emissive 

properties of these complexes. The solution NMR studies revealed two types of exchange 

processes that exist in solutions of (
R
N4)Cu

I
I, one involving degenerative exchange between two 

axial amino groups in a κ
3
-coordinated ligand, and another being the exchange between the κ

3
- 

and κ
4
-bound ligand isomers. The dynamics of exchange were directly correlated to the steric 

bulk of the alkyl group at the amines, with complexes containing more bulky alkyl groups at the 

amines showing slower conformational exchange. 

Moreover, we have shown that the mononuclear complexes supported by an N-donor 

macrocyclic ligand, (
R
N4)Cu

I
I, show emissive properties in solution and in the solid state, with 

the photoluminescence quantum yield that is highly sensitive to the steric bulk of the amine 

substituents, likely through suppression of the non-radiative decay pathways in less fluxional 

complexes bearing bulkier alkyl groups. Since the steric bulk of the alkyl group at the amine can 

be easily controlled by simple synthetic modifications, this offers a convenient strategy for the 

control of photophysical properties of simple, solution-stable mononuclear Cu
I
 complexes. 

Importantly, the current study showed that although increasing steric bulk effects the axial 

amine-Cu
I
 center distance, it does not have a negative effect in increasing exchange equilibria 
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and quantum yield and emission lifetime only improve in the series of simple alkyl substituted 

complexes studied here. These photophysical properties are adversely affected when substituting 

an alkyl group for an electron withdrawing Ts moiety. These finding have a direct implication in 

the design of future dynamic polymer probes,
66

 where we will seek to introduce even bulkier, 

alkyl based substituents in order to decrease the amount of organometallic co-monomer required 

for visual observation of mechanical stress. 
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ABBREVIATIONS 

t
Bu, tert-butyl; 

i
Pr, iso-propyl; 

neo
Pent, neo-pentyl; 

sec
Bu, sec-butyl; 

i
Bu, iso-butyl; Me, methyl; 

CV, cyclic voltammetry; PL, photoluminescence; PLQY; photoluminescence quantum yield; 

NMR, nuclear magnetic resonance; EXSY, exchange spectroscopy; SST, spin saturation 

transfers; VT, variable temperature; XRD, X-ray diffraction. 
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For Table of Contents Only: 

 

Ligand steric bulk affects dynamic behavior of pyridinophane copper(I) complexes, with more 

bulky ligands showing slower configurational exchange. Accordingly, correlation is found 

between steric bulk and photoluminescence quantum yield, with sterically hindered systems 

showing higher quantum yield in solution and solid state. 

 


