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ABSTRACT: For the first time, we intentionally deposit an ultrathin layer of excess
methylammonium iodide (MAI) on top of a methylammonium lead iodide (MAPI)
perovskite film. Using photoelectron spectroscopy, we investigate the role of excess
MAI at the interface between perovskite and spiro-MeOTAD hole-transport layer in
standard structure perovskite solar cells (PSCs). We found that interfacial, favorable,
energy-level tuning of the MAPI film can be achieved by controlling the amount of
excess MAI on top of the MAPI film. Our XPS results reveal that MAI dissociates at low
thicknesses (<16 nm) when deposited on MAPbI3. It is not the MAI layer but the
dissociated species that leads to the interfacial energy-level tuning. Optimized interface
energetics were verified by solar cell device testing, leading to both an increase of 19% in
average steady-state power conversion efficiency (PCE) and significantly improved
reproducibility, which is represented by a much lower PCE standard deviation (from 15
± 2% to 17.2 ± 0.4%).

■ INTRODUCTION

The emergence of organic and inorganic hybrid perovskite
(PVSK) semiconductors has captured the attention of materials
scientists with its promising applications in electronic and
optoelectronic devices.1 PVSK semiconductors are currently
being intensively investigated for applications such as light-
emitting diodes,2−4 lasing,5,6 energy storage,7 water splitting,8,9

photodetectors,10 and memory devices.11 In particular, out-
standing progress has been achieved in photovoltaic (PV)
applications employing PVSK materials.12,13 Since the first
solid-state PVSK solar cells reported by Park and coauthors in
2012, outstanding progress has been achieved in PV
applications employing PVSK materials.14 To date, PVSK
solar cells (PSCs) have achieved impressive power conversion
efficiencies (PCEs) exceeding 22%.15 Despite these impressive
PCEs, there is still a great need to understand the fundamental
chemical and energetic properties of PVSK materials in device
structures, which require rational fabrication strategies to yield
efficient and stable optoelectronic devices.
To achieve better power conversion efficiencies, it is

necessary to minimize recombination and to maximize carrier
extraction efficiency at interfaces between different layers in a
solar cell. One of the critical steps to achieve this goal is to
optimize energy level alignment at the interfaces.16 Optimal
energy level alignment relies on fine adjustment of the energy
levels of selective contacts to match the energy levels of the
PVSK material and vice versa.

Methylammonium lead iodide (MAPI) PVSK is a widely
employed PVSK material and solar cells based on MAPI exhibit
high PCEs. MAPI films show n-type behavior when deposited
on insulating or n-type substrates.17,18 In standard perovskite
solar cell (PSC) structure, for example, with FTO/TiO2 as
electron-selective contact, the conduction band (CB) of the
electron transport layer (ETL) has a desirable alignment with
the CB of PVSK.18−20 On the contrary, an interfacial increase in
the valence band (VB) leading edge of the PVSK layer would
provide better hole extraction and minimized carrier recombi-
nation at the interface between PVSK and the spiro-MeOTAD
hole-transport layer (HTL). Therefore, fine control of the
MAPI PVSK interface with the HTL is crucial to achieve
optimal energy level alignment and thus maximize charge
extraction efficiency and PCE.
The CB of MAPI is often reported to be almost pinned to

the Fermi level in standard-structure PSCs.18−21 As pointed out
by Olthof,21 the interpretation of the n-type behavior in MAPI
generally shown by ultraviolet photoelectron spectroscopy
(UPS) is complex, and several factors such as (i) surface
stoichiometry, (ii) the type of defects present, (iii) influence
from the underneath substrate, and others may lead to such an
observation. Deficient amounts of methylammonium iodide
(MAI) in the precursor solution of MAPI or short annealing
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times were also reported to lead to an n-type behavior of the
MAPI PVSK film.22 UPS and XPS measurements show that
energy levels of MAPI PVSK can be tuned up to 1 eV,
depending upon the preparation methods.23 It was shown using
inverted structure with 2-step PVSK film preparation method
that the doping density of the PVSK film is highly dependent
on the length of the MAI loading period of time. Short length
of MAI loading time resulted in low PCEs, which substantially
increased with length up to 1 min. Longer time resulted in
dramatic decrease in the PCEs and was attributed to excess of
uncoordinated ions.24 High PCEs and reproducibility were also
achieved with one-step method with a small amount of excess
MAI in the precursor solution. The higher PCEs and
reproducibility were attributed to MAI layer formation at the
grain boundaries of the PVSK film. The passivated grain
boundaries are believed to suppress nonradiative recombination
and enhance charge-carrier extraction.25

On the contrary, it was proposed that excess MAI might
remain on the PVSK surface and therefore reduce the surface
conductivity.26 Interestingly, excess PbI2 incorporation in the
precursor solution was also reported to improve the PCEs and
was suggested to improve the crystallinity of the perovskite
film.27 Excess PbI2 in the precursor solution was also discussed
as a “double-edge sword”, leading to higher PCEs for PbI2-rich
cells and higher open-circuit voltage (Voc) for MAI-rich cells.28

However, the exact influence of excess MAI or where it should
be located in PSCs has remained conjectural.
In this work, we introduce an ultrathin MAI layer by vacuum

evaporation to simulate and study the effects of various
amounts of excess MAI at the interface between the MAPI
PVSK layer and the spiro-MeOTAD HTL. Our XPS and UPS
measurements suggest that the additional ultrathin MAI layer
deposition leads to efficient interfacial energy-level tuning of
the MAPI PVSK films. By systematically examining energy level
evolution at the interface as a function of MAI layer thickness,
an excess MAI thickness of 8 nm corresponded to the optimal
interfacial energy level alignment with spiro-MeOTAD (spiro).
Furthermore, we verify the validity of such an optimal
condition with PSC testing. Samples were prepared using

standard PSC structure consisting of FTO/TiO2 compact
layer/TiO2 mesoporous layer/MAPI/spiro. The PVSK layer
was prepared using one-step solution processing with diethyl
ether (DEE) antisolvent.29,30 One sample, which served as the
reference sample, was prepared without any modification of the
PVSK layer, while each of the remaining samples was prepared
with an additional ultrathin layer of MAI on top of the PVSK
layer by thermal evaporation under vacuum. Nominal
thicknesses of the evaporated MAI ultrathin films were 1, 2,
4, 8, 16, and 32 nm. The nominal thickness values were
measured with a calibrated quartz crystal microbalance (QCM)
inside the MAI evaporation chamber. The fabricated PSCs with
optimal interfacial modification show an average steady-state
PCE of 17.2%, which is 19% higher than that of reference cells
(15%). In addition, device steady-state PCE shows smaller
spreading with a PCE standard deviation (σ) of 0.4% as
compared with 2% for reference cells, suggesting significantly
improved device reproducibility.
Analysis of UPS results for a pristine MAPI PVSK film

provide a VB leading edge position of −1.45 eV with respect to
the Fermi energy (EF) (Figure 1), which corresponds to an
ionization energy (IE) of 5.36 eV (Figure S1). The addition of
small amounts of MAI on top of the PVSK layer resulted in a
gradual upshift of the VB from −1.45 to −1.15 eV, which
resembles p-doping behavior.22 The distance between EF and
the VB was reduced by 0.3 eV (pristine vs 16 nm). On the
contrary, no drastic changes in WFs were noticed as a function
of MAI layer thickness (Figure 1b). As shown in Figure S1,
gradual and systematic decrease in IE is observed as the
additional MAI layer is increased.23,31 The IE changes relate to
the chemical composition changes on the perovskite surfaces,
which is discussed later when discussing the XPS results. For
example, the IE of the PVSK layer with an additional 16 nm
MAI layer was 4.93 eV, as compared with 5.36 eV in the case of
pristine PVSK films (Figure S1). Therefore, the energy shift in
the BEs of the VB versus EF and IE versus vacuum level (EV)
(Figure 1a) is different (0.3 vs 0.43 eV), which suggests that
this is not a doping effect in the strict sense. A doping effect
would be expected to induce a rigid shift of the whole UPS

Figure 1. (a) UPS spectra (He−Iα = 21.22 eV) corresponding to valence band (VB) and cutoff regions of the pristine perovskite (PVSK) sample
and the samples with an additional layer of excess MAI of various thicknesses. (b) Schematic energy diagram of VB, conduction band (CB), and
work function (WF) with respect to Fermi energy (EF) corresponding to the pristine PVSK sample, afterward modification by MAI evaporation, and
spiro-MeOTAD (spiro). A schematic energy diagram with respect to vacuum energy level (EV) can be found in the Supporting Information. CB
values are derived based on the optical band gap of MAPI PVSK and VB, and, in the case of a 32 nm MAI layer, the MAI band gap is used.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.7b01508
J. Phys. Chem. Lett. 2017, 8, 3947−3953

3948

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.7b01508/suppl_file/jz7b01508_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.7b01508/suppl_file/jz7b01508_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.7b01508/suppl_file/jz7b01508_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.7b01508/suppl_file/jz7b01508_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.7b01508


spectrum toward EF (Figure 1a). The observed energy shift
suggests a nonstoichiometric nature of the deposited MAI layer
on top of the perovskite film. The nonstoichiometric nature
that is expected here suggests that the MAI molecules break,
which will be discussed in more detail based on the XPS results.
Additional evaporation of MAI with nominal values greater
than 16 nm resulted in an opposite effect. For example, the
evaporation of 32 nm of MAI resulted in ∼0.4 eV shift away
from EF to −1.61 eV with a corresponding IE of 5.34 eV. The
schematic energy diagrams with respect to the EV extracted
from UPS data can be found in the Supporting Information
(Figure S1).
After UPS measurements, XPS (Al−Kα = 1486.6 eV) was

performed on the samples to monitor the chemical states
changes and evolution. Figure 2 shows the XPS core levels of
Pb-4f (a), I-3d (b), and C-1s (c) of the PVSK films with
different MAI nominal thicknesses. Interestingly, there were no
detectable shifts in the binding energies (BEs) of the core level
of Pb-4f (Figure 2a). The Pb-4f7/2 peak maximum for the
pristine PVSK film was found at a BE of 138.58 eV and showed
almost no shift, even after evaporation of a 32 nm MAI layer
(∼0.01 eV). The Pb-4f signal is still detected with a 32 nm layer
of MAI, indicating an interfacial modification rather than a thick
conformal layer formation of MAI on top of the PVSK film. In
addition, we have prepared a sample with 120 nm of MAI on
PVSK to examine the possibility of having a conformal layer
with excessive amount of MAI (Figure S2). However, the Pb-4f
signal was still detected. Therefore, the interaction chemistry
between MAI and MAPI needs be considered instead of a
simple physical deposition of an inert MAI conformal layer on
MAPI. Possible scenarios include (i) MAI or dissociated species
may penetrate into the MAPI film and (ii) the dissociated
species from MAI are volatile species and may leave the MAPI
surface leading to a detectable level of Pb-4f signal by XPS.
Here we focus on the Pb-4f peaks because Pb is the only
element that we can correlate directly with the underlying layer
of MAPI PVSK because all other elements are also present in
MAI. XPS has a deeper probing depth compared with UPS
(because of a longer mean escape depth for photoelectrons
with higher kinetic energy).32 We observed almost no shift in
the BEs of Pb-4f core levels. Therefore, it is clear that the
observed VB edge shift is taking place at the very interface at no

more than 2 nm depth, which is the expected mean escape
depth for UPS.
Similarly, no shifts were observed in the BEs of the core

levels of I-3d (Figure 2b). The I-3d5/2 peak maximum for the
pristine sample was found at a BE of 619.47 eV, and the
maximum observed change in BE (0.07 eV) was within
measurement uncertainty. Similarly, N-1s core level spectra did
not show any shift in the BEs of the peak maximum (Figure
S3a). The oxygen core level was also monitored for all samples,
and the detected amount was <1% (Figure S3b).
In the case of the C-1s core-level spectrum (Figure 2c),

nonmodified PVSK films showed two main peaks with maxima
located at BEs of 286.54 and 284.83 eV, respectively. The C-1s
peak at a higher BE of 286.54 eV is reported to be associated
with carbon in crystalline PVSK films. The origin of the C-1s
peak at a lower BE of 284.83 eV remains controversial at
present, and, currently, it has been proposed that this peak
could originate from C in CH3I

33 or in CH3NH2
34 or

remaining solvents.18,31,35,36 After depositing a 1 nm MAI
layer, a new peak located between the aforementioned two
peaks at a BE of 285.46 eV was observed. In the current stage,
we tentatively assign this peak to dissociated MAI species
(dissocd. MAI). As more MAI is deposited, another new peak
appeared in the C-1s region with the peak maximum at a BE of
286.86, the intensity of which gradually increased as MAI film
thickness increased. Simultaneously, a behavior of MAI
electronic properties was observed with UPS, which could be
due to the progressive formation of a pure MAI layer on top of
the PVSK film. An alternative explanation will be provided
based on the changes in the atomic ratios discussed below.
Atomic concentration variations of all measured core levels

(Figure S4a,b) showed that pristine PVSK films have
Pb:I:C(PVSK):N ratio of 1.0:2.9:1.1:1.1, which is in good
agreement with MAPI PVSK that shows ideal ratios of 1:3:1:1.
However, our best performing solar cells (4 nm excess MAI
deposition) showed nonstoichiometric ratios of 1.0:3.0:1.6:1.1
(Pb:I:C(PVSK):N), indicating that the MAI modification effect
is not an extra conversion step of the nonconverted PbI2 layer
on the surface to PVSK. Therefore, the excessive carbon
observed here is believed to be from dissociated MAI species.
The nitrogen signal did not increase, possibly due to release of
ammonia gas37 or other nitrogen-containing gas species.

Figure 2. XPS spectra (Al−Kα = 1486.6 eV) corresponding to (a) Pb-4f, (b) I-3d, and (c) C-1s core levels of the pristine PVSK film (i) and the
samples after depositing an additional excess MAI layer of 1 (ii), 2 (iii), 4 (iv), 8 (v), 16 (vi), and 32 nm (vii).
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Detailed plots illustrating atomic ratio variations of iodine,
carbon, nitrogen, and all different types of carbon species for all
samples can be found in Figure S4.
After deposition of 32 nm MAI, the atomic concentration of

N-1s and I-3d increased substantially while the concentration of
C-1s from PVSK in the total C-1s concentration decreased
(Figure S4). Further surface chemistry was studied by X-ray
diffraction (XRD) (Figure S5). The characteristic MAI peaks
are not observed, providing strong evidence that MAI
dissociates, as corroborated by our XPS analysis. Instead,
additional peaks in the XRD spectra are obtained, in particular,
at 11.45 and 24.9°. The origin of these peaks are controversial
in the literature. Some reports attribute it to bihydrated
perovskite MA4PbI6·2H2O.

38 The most established consensus
is that it originates in the presence of excess MAI, for example,
in precursor solution or long dipping time in case of sequential
deposition.39 These reports attribute the 11.45° peak to a low-
dimensional layered structure of MA4PbI6, where MAI acts as a
matrix structure with embedded PbI2.

40 The nitrogen to iodine
ratio changes from the original value of approximately 1:3 (for
pristine PVSK) to approximately 1:2 (for the PVSK sample
with 32 nm MAI). A ∼0.1 eV increase in the full width at half-
maximum (fwhm) of the I-3d spectra of the same sample (with
32 nm MAI) is observed. In an optimal MAI sample, the
nitrogen to iodine ratio is 1:1. The combination of three
observations (i.e., the N:I ratio changes from the original value
of 1:3 for pristine PVSK to a value closer to that in MAI, fwhm
increases, and the VB level observed by UPS downshifts)
suggests that with this large amount of MAI on top of PVSK
the surface is increasingly dominated by the properties of MAI.
UPS and XPS measurements provided explicit evidence that

the additional ultrathin MAI layer efficiently tunes the energy
level of the PVSK at the interface with the HTL. As can be seen
from Figure 1b, a favorable energy level alignment between
PVSK and spiro would be achieved if an ultrathin layer of MAI
was implemented at the interface. This ultrathin layer would
clearly enhance hole extraction due to staircase energy level
alignment, which is achieved with the interfacial modification of
the PVSK layer.41,42 Also, recombination at this interface is
expected to be reduced due to the decreased number of
electrons at the interface as a result of slight band bending at
the top of the PVSK/MAI layer. Therefore, following our

findings, we fabricated solar cells with MAI modification. The
fabricated solar cells used the same structure, as was used for
UPS/XPS studies. The only difference was that for devices we
deposited a doped spiro layer by spin-coating and a gold
electrode by vacuum evaporation on top of pristine/MAI-
modified PVSK. After gold evaporation, devices were left
overnight in relatively low humidity to achieve better electrical
properties and a HOMO level of 1 eV below EF for spiro
(Figure 1b), which provides better energy level alignment with
the modified PVSK.43,44

Impressive enhancement in steady-state PCE was observed
for the cells with an additional 2 and 4 nm films of MAI, which
is in good agreement with the improved energy level alignment
at the interface between MAI-modified PVSK and spiro HTL.
Reference cells showed an average stabilized PCE of 14.5%. In
comparison, cells with an additional 4 nm MAI layer showed a
significantly improved steady-state PCE up to 17.2% (Figure
3a). In addition, cells with an additional 4 nm MAI layer
showed much lower standard deviation (σ) in PCE, indicating
better batch-to-batch and sample-to-sample reproducibility
(Figure 3b). Cells with an additional 4 nm MAI layer showed
σ of 0.4% compared with the reference cells with σ of 1.9%.
The improvement in PSC device performance and reproduci-
bility highlights the importance of interfacial modification on
PSC device performance. In particular, the low value of σ
suggests better reproducibility, consistent with previous reports
that showed enhanced reproducibility with excess amounts of
MAI in precursor solutions.25 The improved reproducibility is
possibly a benefit of the better-defined PVSK/HTL interface
for cells with excess interfacial MAI, as compared with reference
cells, in which interface properties (e.g., energetics) may
sensitively depend on PVSK film preparation conditions.
In summary, we clarify the role of excess MAI at the interface

between PVSK and spiro HTL in standard structure PVSK
cells. We simulate the situation by vacuum depositing a layer of
excess MAI on top of a PVSK film. Photoelectron spectroscopy
results reveal efficient interfacial energy level tuning of PVSK as
a function of the excess MAI layer thickness. By systematically
examining the energy level at the interface as the MAI layer
thickness increased, we identified the optimal interfacial
energetic and the corresponding interfacial MAI layer thickness.
Our XPS reveals that the initial thin layer of MAI dissociates

Figure 3. (a) Average steady-state PCE from all measured devices and (b) statistics on steady-state PCE for PVSK solar cells as a function of excess
MAI layer thickness. The inset shows a schematic of the interface modification.
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when in contact with MAPI. It is not the MAI layer but the
dissociated species that leads to the interfacial energy-level
tuning. The validity of such an optimal condition was verified
with solar cell device testing. Solar cells showed an impressive
enhancement in reproducibility and stabilized power con-
version efficiencies of 17.2 ± 0.4% (MAI thickness ∼4 nm) as
compared with 14.5 ± 1.9% in the case of reference cells. Our
findings not only provide vital new insight into the role of
excess MAI in PSCs but also indicate the importance of
interfacial modification on both performance and reproduci-
bility of PSC devices.

■ EXPERIMENTAL METHODS

The electronic properties of doped PVSK films were
characterized by UPS (Kratos AXIS ULTRA HAS, He−Iα =
21.22 eV). The leading edge of the VB was extracted from
logarithmic intensity scale (Figure S6). The analysis of UPS was
complemented by XPS (Kratos AXIS ULTRA HAS, mono-
chromated Al−Kα = 1486.6 eV). XPS was performed to
monitor the chemical states of the pristine PVSK films and
MAI-treated films. The BE for UPS and XPS was calibrated by
measuring the Fermi edge (EF = 0 eV) and Au-4f7/2 (84.0 eV)
on a clean Au surface. The estimated energy resolutions of UPS
and XPS were 0.14 and 0.7 eV, respectively. PVSK sample was
used as reference for fitting the first peaks. For the afterward
MAI-treated samples, the fwhm of each spectrum was
constrained to a change of ±0.1 eV, and, similarly, the peak
positions were constrained to a change of ±0.1 eV. When
spectral changes were observed, new peaks were added to
complete the curve fit. The new fitted peaks were used as
reference for the afterward samples. The peak fittings and
standard deviation calculations were performed using CasaXPS
2.3.16 software. The stoichiometry analyses in the C 1s region
show the largest standard deviation (∼50%) because of
multiple components (four peaks) employed to reproduce
the XPS raw data. The atomic ratio analyses for the other
elements were estimated to have relative errors with respect to
the stoichiometry values below 30%. UV- and X-ray-induced
sample damage was monitored by taking five consecutive
spectra and comparing those spectra. Time acquisition for each
scan varied from 20 to 70 s depending on the core level regions.
The five scans were averaged to a single spectrum if no changes
were observed among them. Special care was taken to minimize
the UV and X-ray exposure time when acquiring UPS/XPS on
doped spiro films. No X-ray- or UV-induced damage was
observed on PVSK films. Our UPS is nonmonochromated;
therefore, He I’ satellite (hv = 23.09 eV) with ∼2% intensity of
primary He I (hv = 21.22 eV) is expected.32,45 We numerically
corrected the UPS spectra to minimize the effect of satellite
peaks that arise as a result of the polychromatic nature of the
He I line.23,32,45

Solar cell devices were prepared by cleaning the conductive
substrates (FTO22−7, OPVTech) using a sequence of
brushing with sodium dodecyl sulfate, rinsing with Milli-Q
water and sonicating in a 2-propanol bath for 15 min. A ∼70
nm layer of compact TiO2 was deposited by spraying a solution
of Ti (IV) diisopropoxide bis(acetylacetonate) (75%) in
isopropanol (Aldrich) on the FTO heated at 480 °C in four
rounds of 3 s each spray. After the substrates cooled to room
temperature, a TiO2 mesoporous layer ∼150 nm was deposited
by spin-coating a diluted paste (90-T, Dyesol) in 1-butanol 1:5
wt at 4500 rpm for 30 s. The spin-coated layer was dried at 100

°C, and the edge was removed with cotton. Then, it was
annealed at 480 °C for 30 min with a slow heating ramp.
The PVSK precursor was made by mixing 0.461 g PbI2

(99.99%, TCI) and 0.159 g CH3NH3I (Dyesol) in 73 μL of
anhydrous dimethyl sulfoxide (DMSO, Aldrich) and 570 μL of
anhydrous N,N-dimethylformamide (DMF, Aldrich). The
precursor solution was spin-coated on the UV−O3-treated
TiO2 mesoporous layer at 1200 rpm for 1 s and 2800 rpm for
25 s, and 300 μL of DEE was dripped at 14 s during the second
spinning to form a transparent adduct. The film was transferred
into an N2-filled glovebox at <5% relative humidity and
annealed at 60 °C for 10 min and 100 °C for 20 min.
Modification was achieved using thermally evaporated

powder of MAI (Dyesol) in a low vacuum chamber with a
base pressure of 1 × 10−2 Pa. As previously reported,46,47 a
precise calibration of MAI film is difficult to be obtained due to
Volmer−Weber (island) growth characteristics onto flat
substrates (e.g., glass or Si). The QCM was calibrated by
evaporating different thickness of MAI onto silicon substrates
and measuring the resultant thicknesses by profilometer (Figure
S7).47 Reported thicknesses of MAI evaporation are based on
these nominal values measured with QCM.
The HTL precursor was prepared by mixing in chlor-

obenzene 70 mM of spiro (Merck), 231 mM tert-butylpiridine,
35 mM of bis(trifluoromethane) sulfonimide lithium salt
(predissolved in acetonitrile) and 2.1 mM of tris(2-(1H-
pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III) tri[bis-
(trifluoromethane)sulfonimide] (all additives and solvent
from Aldrich). The spiro solution was deposited on the
PVSK by dripping 30 μL of solution during spinning at 3000
rpm. Finally, 70 nm of gold was deposited as the top electrode
by thermal evaporation.
J−V curves were measured the next day of fabrication to

allow enough time for doping across the spiro film (Figures S8
and S9). The samples were stored in a low-humidity chamber
overnight to enhance electrical properties of the HTL. J−V and
steady-state measurements were performed under 1 sun
illumination (AM 1.5 G, 100 mW·cm−2, calibrated using a
Newport reference Si-cell) using a solar simulator (Newport
Oriel Sol 1A) and a Keithley 2400 source meter in ambient air
at a relative humidity of ∼40−50% and using a 0.1 cm2 mask.
The measurements were done from −0.1 to 1.2 V in 40-point
steps with a delay time of 10 ms.
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