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ABSTRACT Molecular structure determination is important for understanding functionalities and dynamics
of macromolecules, such as proteins and nucleic acids. Cryo-electron tomography (ET) is a technique that
can be used to determine the structures of individual macromolecules, thus providing the snapshots of their
native conformations. Such 3-D reconstructions encounter several types of imperfections due to missing,
corrupted, and low-contrast data. In this paper, we demonstrate that extending the reconstruction space,
which increases the dimensionality of the linear system being solved during reconstruction, facilitates the
separation of signal and noise. A considerable amount of the noise associated with collected projection data
arises independently from the geometric constraint of image formation, whereas the solution to the recon-
struction problem must satisfy such geometric constraints. Increasing the dimensionality thereby allows for
a redistribution of such noise within the extended reconstruction space, while the geometrically constrained
approximate solution stays in an effectively lower dimensional subspace. Employing various tomographic
reconstruction methods with a regularization capability we performed extensive simulation and testing and
observed that enhanced dimensionality significantly improves the accuracy of the reconstruction. Our results
were validated with reconstructions of colloidal silica nanoparticles as well as P. falciparum erythrocyte
membrane protein 1. Although the proposed method is used in the context of Cryo-ET, the method is general
and can be extended to a variety of other tomographic modalities.

INDEX TERMS Cryo-electron microscopy, electron microscopy, electron tomography, tomography, denois-
ing tomograms, extended field, ART, SIRT, Tikhonov regularization, maximum entropy tomography.

I. INTRODUCTION
Important functional information about biological macro-
molecules such as proteins and protein-nucleic acid com-
plexes can be derived from their structures. However, most
macromolecules, including proteins, are flexible, allowing
them to interact dynamically with other molecules. Under-
standing such interactions has significant applications for
drug development [1], [2]. Structure determination tech-
niques are usually based on averaging methods such as
x-ray diffraction (XRD), nuclear magnetic resonance (NMR)
spectroscopy, or single particle cryo-electron microscopy.
These techniques tend to lose information about structural
flexibility and often require extensive sample purification.

XRD also requires crystallization, which excludes a majority
of biomolecules from this approach [3].

Cryo-electron tomography (Cryo-ET) is a method that can
determine a plethora of 3D structures of individual biological
molecules in their native states. It preserves the occurrence of
many different molecular conformations due to rapid freez-
ing at liquid nitrogen temperature. Since Cryo-ET does not
necessarily require averaging [4], [5], it can provide vital
information for examinations of proteins in situ, interac-
tions among proteins, and analysis of molecular dynamics.
Cryo-ET involves taking images of a cryo-specimen using a
transmission electronmicroscope (TEM) at successive angles
by tilting the specimen. These 2D images, often referred

17326
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-7587-1562


F. Mahmood et al.: Extended Field-Based Method for Noise Removal From Electron Tomographic Reconstructions

FIGURE 1. The overall process of cryo-electron tomography from data
collection (forward problem) to reconstruction and
refinement (inverse problem).

to as tilt series, are then aligned, and the desired region of
reconstruction is extracted from each image. The 2D aligned
extractions are then used to reconstruct a 3D tomogram via
filtered back-projection (FBP) or other reconstruction and
refinement methods [6], [7] (Fig. 1). The major challenge
in Cryo-ET is to achieve reconstructions of single biological
molecules at best possible resolution.

A. BACKGROUND
The theoretical resolution of tomographic reconstructions
can be approximated by the optical thickness of the sam-
ple (D) and the number of equally spaced tilts (n, calculated
over 180◦) and is given by R = πD

n [8]. However, this theo-
retical resolution is never achievable since 3D reconstruction
from TEM images is a severely ill-posed inverse problem,
encountering several challenges that stem from noisy and
incomplete data. The data usually encounters several different
types of imperfections and measurement errors [9]. First,
2D tilt images are usually collected at small angular differ-
ences. Ideally, tilts should be recorded to cover the entire 180◦

range of angles. However, the small space within the pole
piece gap of the TEM objective lenses, where the specimen
is placed, limits the tilt angle to about ±70◦, which leads to
missing data commonly known as the missing wedge [10].
Second, specimen noise occurs due to rearrangement of the
specimen during data recording and to its degradation due to
electron beam damage. Third, to minimize radiation damage,
the sample is usually exposed to a low electron dose, which
decreases the signal-to-noise ratio (SNR) of the micrographs.
The low-dose causes uncorrelated shot noise, resulting from
low illumination. Shot noise is usually Poisson-distributed
and can be reduced using procedures of regularized refine-
ment [7]. Fourth, during data acquisition, the specimen is
tilted, and at every tilt angle θ , its effective thickness increases

according to 1/ cos θ [11]. This increased thickness causes
more scattering, which contributes to low contrast in the
image. Fifth, correlated noise can appear due to imperfec-
tions of the TEM detector. Normally, a gain reference is
created to equalize the response from individual detector
elements. However, errors in the gain reference give rise to
noise that can be correlatedwith a region of the detector rather
than with the specimen.

Several reconstruction methods have been employed over
the years, but generally they can be divided into two
categories: Fourier slice theorem-based analytical methods
and regularizing methods that are often iterative. Analyti-
cal algorithms, such as filtered back projection (FBP) [12]
have been extensively used for tomographic reconstructions.
However, such algorithms usually need a large number of
projections, and it is difficult to incorporate a priori infor-
mation and additional constraints into the approximate solu-
tion. Electron lambda tomography (ELT) is another analytical
method [13] useful if the ROI does not contain the whole
object. When dealing with a reconstruction problem marred
by missing and noisy data, regularizing methods are better
suited. Among such methods, the mildly regularizing Alge-
braic Reconstruction Technique (ART) [14], Simultaneous
Iterative Reconstruction Technique (SIRT) [15], and its vari-
ants [16], [17] are often classified as Algebraic Reconstruc-
tion Methods (ARMs) or Row Action Methods (RAMs),
cf. [18], [6]. Extended Field Iterative Reconstruction Tech-
nique (EFIRT) [19], which is based on ART and was pub-
lished in 1974, briefly showed that reconstructing 2D images
from 1D projections within an extended field can lead to low
noise in the region of interest (ROI) and fast convergence.
However, [19] offers only limited experimental and empiri-
cal evidence of the method. Algebraic methods have a lim-
ited regularization capability. This problem can be addressed
by the use of variational regularization methods such as
Tikhonov regularization [20] and Constrained Maximum
Entropy Tomography (COMET) [7] that are equipped with
explicit regularization and goodness-of-fit constraints. Other
modern methods include sparsity exploiting interior tomog-
raphy and compressed sensing methods such as ICON [21]
and others [11], [22]–[24]. Besides compressed sensing such
methods usually also rely on variational regularization-based
methods to increase sparsity.

COMET is an iterative reconstruction algorithm that
performs a deconvolution of the point spread func-
tion (PSF), cf. [9], and enhances the contrast and reso-
lution specifically for Cryo-ET by increasing the SNR.
This was first published in 1996 by Skoglund et al. [7],
mathematically analyzed by Rullgård et al. [25], and
has been extensively used for structure determination,
e.g. in [26], [27], and [28]. COMET can improve the fidelity
of 3D reconstructions by reducing the shot noise. It increases
(theoretically maximizes) the entropy relative to a prior
obtained in the first iteration step from FBP, while iteratively
deconvolving the PSF. In each iteration step it projects the
new density to obtain virtual projections which are then
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compared to the original tilts using a Chi-squared goodness-
of-fit statistic in order to find an optimal balance between
relative entropy and goodness-of-fit. A plethora of modern
image reconstruction methods developed for CT, PET and
SPECT are not directly applicable to Cryo-ET because of
extreme low dose conditions. Moreover, certain learning and
model-based methods can only be applied to reconstruction
problems that focus on imaging similar specimens every time.

B. CONTRIBUTIONS
In 1974 Crowther and Klug [19] observed that extending
the reconstruction space during ART reconstructions allows
noise to spread out of the ROI. In this paper, inspired by [19],
we further build on this idea by contributing the following:
• With extensive empirical experiments we demonstrate
that extended field can go beyond ART and can be
used to enhance a variety of reconstruction methods.
We reconstructed several 2D phantoms from 1D pro-
jections corrupted with noise using ART (Kaczmarz,
Symmetric Kaczmarz, Randomized Kaczmarz), SIRT
(Cimmino, Landweber, DROP), and Tikhonov regu-
larized reconstruction, and we observed that enhanced
dimensionality resulting from a larger reconstruction
space achieved higher correlationwith the original phan-
tom in every case.

• We verify how this method works by quantifying the
amount of noise removed corresponding to the amount
of noise added during simulations.

• We show that an extended field leads to better results
when compared to non-extended reconstructions, and
that it achieves this at a lower regularization parameter,
thus preserving a better fit with the actual data and
preventing over-smoothing.

• With extensive empirical simulations we show how
extended field behaves at increasing extension steps.

• We further tested these effects on real Cryo-ET data,
reconstructing the structure of colloidal silica as well as
reconstructing a single PfEMP1-molecule from biolog-
ical low-dose data using COMET and observed that an
extended field renders low-noise reconstructions.

• We also explain the limitations of this method.

II. PROPOSED METHOD & SIMULATION EXPERIMENTS
In order to analyze the ill-posed inverse problem of recon-
structing data from projections (tilt-series), it is fundamental
to have an accurate formulation of the forward operator,
solving the problem of modelling the process of image for-
mation in the absence of noise and measurement errors [3].
Mathematically, a discretized and simplified version of the
noise-free forward operator can be described in terms of
a linear system where projections b are collected from
object x, given a matrix representation of the imaging
device A.

Ax = b A ∈ Rm×n x ∈ Rn b ∈ Rm (1)

The sinogram (S) represents the tilt series of raw data,
i.e., a matrix where each column represents a projection at

a different angle. The vector b is the vectorized form of S.
Each row of A corresponds to a single ray passing through
the density being imaged. Since each ray only passes through
a certain number of voxels, matrix A is usually sparse. This
sparsity can be used to a computational advantage since A can
be stored and used in a sparse way, utilizing less memory. The
forward model presented here is rather primitive and has been
introduced for the purposes of simulation and testing. A more
detailed account of the forward model for ET has been given
in [9].

The imaging model presented above represents a set of
linear equations such that there is one equation for each ray
passing through the object. Each equation here can be consid-
ered as a hyperplane in vector space, which can be defined as
Hi = {x | aTi x = bi}. In an ideal, noise-free case, these linear
equations would be consistent, and a solution would exist
at the intersection of these hyperplanes. For the purpose of
demonstration this has been shown for a system of two linear
equations (Fig. 2a). However, in practice this is never the case,
since the right hand side of the linear system is usually marred
by noise b = b∗ + e, where b∗ is ideal data and e represents
perturbation or data error. This renders the system inconsis-
tent, and for algebraic techniques an approximate solution is
sought within the region enclosed by the hyperplanes rather
than at their intersection (Fig. 2b). Ill-posed inverse problems
are generally not stable, i.e., small perturbations in data can
lead to large errors in the solution [29]. Hence, regularization
methods are required to compute approximate solutions that
are much less sensitive to perturbations in b [29]. Tikhonov
regularization is a classical method of reducing the sensitivity
of the solution to perturbations and noise in acquired data.
The Tikhonov regularized solution can be defined as the
solution to the following problem, see [20], [30]:

min
x
{‖Ax − b‖22 + λ

2
‖x‖22} (2)

‖Ax − b‖22 measures the goodness-of-fit which essentially
measures the effectiveness of the solution while the sec-
ond term, ‖x‖22, measures the regularity of the solution,
i.e., it controls the norm of x in order to suppress large noise
components. The optimal balance between the two terms is
weighted by the regularization parameter, λ. For a large λ,
more weight is given to the minimization of the solution norm
‖x‖22 which then produces a more regular solution. For small
values of λ the solution tends to be less smooth since more
weight is given to fitting the noisy data.
Extended Reconstructions:Extended reconstruction essen-

tially means reconstructing within a region larger than the
region of interest (ROI). This region outside the ROI gives
extra freedom and flexibility to minimize data discrepancies
and to maximize the consistency of the reconstruction within
the ROI, with respect to the projections (Fig. 2c). Moreover,
since we do not impose a non-negativity constraint in the
extra region around the ROI, this essentially allows an extra
degree of freedom when fitting the projections from our
reconstruction to the sinogram.
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FIGURE 2. a) Consistent System of Equations having an exact solution, showing how Kaczmarz method approaches the solution starting from an initial
guess. b) In case of an inconsistent noisy system the solution would be in a region bound by hyperplanes rather than at their intersection.
c) Reconstruction of a binary phantom with an extra region larger than the ROI. Unconstrained noise is redistributed out of the geometrically constrained
ROI. The extra region gives flexibility to minimize data errors and maximize consistency of the solution within the ROI. d) Image showing how the
sinogram is extended to achieve an extra region outside the ROI. If a sinogram corresponding to a N1 ×M1 phantom is to be extended to a reconstruction
corresponding to N2 ×M2, the sinogram is extended by zero-padding each projection with (

√
M2

2 + N2
2 −

√
M2

1 + N2
1 )/2 on each side. For example, if the

sinogram of a 64× 64 phantom is extended to a 128× 128 phantom the extension on each side of the sinogram would be 45.

A. ART WITH EXTENDED FIELD (EART)
According to ART (Kaczmarz method [31]) the solution to
a linear system of equations can be estimated starting from
an initial guess and orthogonally projecting it onto succes-
sive hyperplanes until a stopping criterion is met (Fig. 2a).
However, in cases where the solution is inconsistent the
introduction of a relaxation parameter γ can speed up
convergence,

xk+1 = xk + γ
bi − aTi x

k

‖ai‖22
ai γ ∈ (0, 2). (3)

The ideal relaxation parameter usually varies between
0 < γ < 2 and is generally tuned to achieve best
results [32]. There are various formulations of Kaczmarz
method such as symmetric Kaczmarz [33] and randomized
Kaczmarz [32]. Most of these formulations are based on the
way the rows, i, of matrix A are accessed. Extended ART per-
forms a reconstruction within a larger reconstruction space,
which is achieved by extending the sinogram S, either by
choosing a large reconstruction region or via zero-padding.
Extending the sinogram via zero-padding means padding
each individual projection with zeros on each side (Fig. 3,
Step 3). If a sinogram corresponding to a N1×M1 phantom is
to be extended to a reconstruction corresponding to N2×M2,
the sinogram is extended by padding each projection with

(
√
M2

2 + N
2
2 −

√
M2

1 + N
2
1 )/2 zeros on each side. Extending

the sinogram from a reconstruction size of N × M to (N +
e) × (M + e) corresponds to an increased dimension of the
sinogram from

√
N 2 +M2×nϑ to

√
(N + e)2 + (M + e)2×

nϑ where nϑ is the number of projections.
Extending the sinogram increases the dimensionality of

the linear system Ax = b and makes vector b more sparse.
Having an extra region outside the ROI allows inconsistencies

FIGURE 3. Flow diagram showing the simulation setup for extended field
simulations with several different iterative reconstruction methods.

and noise to spread out into the extra region, minimizing
the discrepancy and enabling the solution in the ROI to be
more consistent. This means that when reconstructing with
ART, Eq. 3 is applied to not only the required ROI, but to
an extra region outside, thus rendering a large reconstruction
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FIGURE 4. Comparative analysis of reconstructing a binary (relative noise = 0.05) and Shepp-Logan (relative noise = 0.1) phantom with ART and EART
shows that EART can achieve a relatively lower error rate. More results with varying noise levels and number of projections have been presented in the
supplement with this paper. Iterative image reconstruction videos showing noise being redistributed in the extended region can be viewed in the
multimedia supplement with this paper.

where the region of interest is preserved and noise can redis-
tribute to the extra region. On removing the extra region,
inconsistent discrepancies are removed and the consistent
solution is isolated. The density in the extra region orig-
inating from inconsistencies, noise, and fringe effects can
be positive or negative; hence, the non-negativity constraint
often used during ART should not be applied in the extra
region.

B. SIMULATIONS WITH EART
Experiment I: To test the procedure defined in the previ-
ous subsection a 32 × 32 binary phantom [32] (x∗) was
used. A sinogram was created by taking projections at every
5 degree starting from 1◦ to 180◦ (i.e., θ = 1 : 5 : 180).
The projections were corrupted with a mixture of random
Gaussian and Poisson noise (relative level = 0.05). This
was done to simulate the Poisson shot noise and Gaussian
electronic and dynamic range noise. This sinogram was then
reconstructed using all three variants of ART. A version
with an extended field (EART) was also reconstructed using
all three ART procedures. The EART reconstructions were
performed by increasing the dimensions of the sinogram cor-
responding to a 64× 64 reconstruction. The error rate for the
k th iteration relative to the original phantom was calculated
using

∥∥xk − x∗∥∥2, where x∗ is the original phantom and
xk is the result of the k th iteration of the iterative method
being used. The SNR for the reconstructions can be estimated
using SNR = ‖x∗‖2 /

∥∥xk − x∗∥∥2. It should be noted here
that the error rate or SNR for extended reconstructions is
always calculated corresponding to the ROI excluding the
extended region. The complete experimental setup is shown

in Fig. 3. These simulations were conduced using MATLAB
R2016a. Zero-padding is only required when there is not
enough region to reconstruct within the raw data. This is
always the case for simulation studies conducted in this paper.
However for real data when we are reconstructing a region
rather than the entire data we can increase the volume of the
reconstruction without zero-padding.
Experiment II: A 64×64 Shepp-Logan phantom [34] was

used to further test the arguments presented at a higher noise
level and the sinogram was corrupted by normalized noise
of relative level 0.1. The EART reconstructions were per-
formed by increasing the dimensions of the of the sinogram
corresponding to a 128× 128 reconstruction. The rest of the
simulation setup is the same as experiment I.
Traditionally, Kaczmarz method and its variants show

a semi-convergence behavior, where the first few itera-
tions show a sharp decrease in error rate and then slow
down, or in certain cases, diverge from the optimal solu-
tion. From the simulations it is evident that EART follows
a similar trend. Although, EART needs more iterations to
realize its full potential (Fig. 4), it gives a lower error at
semi-convergence.While ART starts diverging from the solu-
tion, EART continues to reach semi-convergence in a later
cycle, with a lower error-rate. These two experiments at
relatively low and high noise, respectively, both show similar
behavior and indicate that increasing the dimensionality of
the reconstruction problem by increasing the reconstruction
space has a direct effect towards improving reconstruction
quality. Fig. 5a-f shows intensity profiles of a single line
through each of the phantoms in experiments I and II. The
X direction and Y direction indicate the horizontal and
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FIGURE 5. a-f) Intensity profiles of a line through the original and reconstructed binary and Shepp-Logan phantoms using FBP,
ART (Kaczmarz) and EART (Extended Kaczmarz). The EART reconstructions show a relatively better fit to the original phantom as
compared to ART reconstructions. g-h) Comparative analysis of ART and EART with respect to changing relaxation parameter γ .

TABLE 1. Comparison of error rates for ART and EART using various phantoms at 20% noise.

vertical direction in which the intensity profile was taken
through the phantom. The difference between FBP, ART,
and EART is evident. Simulation results with a much higher
error rate (relative level = 0.20) have been summarized in
Table 1.
Experiment III: In order to check the effect of the relax-

ation parameter γ , we performed several ART and EART
reconstructions with varying γ between 0 < γ < 2
(Fig. 5g-h). For both phantoms, the error rate is lower for
EART reconstructions than for ART reconstructions, except
at very low γ values, when the noise is relatively high.
It should be be noted that the error reported here is the lowest
error rate at semi-convergence.

C. SIRT WITH EXTENDED FIELD (ESIRT)
Unlike ART the class of SIRT methods are ‘‘simultaneous’’
which means that all rows of matrix A are used simultane-
ously in every iteration [32]. SIRT can thus perform faster
than ART and has better regularization properties. SIRT class
of methods can be generally defined as follows:

xk+1 = xk + γkTATM (b− Axk ) (4)

Here xk and xk+1 denote the current and successive iter-
ation respectively. γk is the relaxation parameter, and the
matrices M and T are symmetric positive definite. Various
methods of SIRT have different M and T [35], [36].
Ideally, the iterations mentioned in Eq. 4 converge to a solu-
tion x∗. However, similar to ART this is usually not the
case and the solution converges to a region and oscillates
in this region over successive iterations. The class of SIRT

methods also follow a semi-convergence behavior as shown
in [37] and [38]. Similar to EART a version of SIRT can be
formulated by extending the region outside the ROI either
by zero-padding or within the region being reconstructed.
This will lead to the enhanced dimensionality of the linear
system being solved and extra reconstruction space, these
extra dimensions act as a mechanism for segregating most of
the background noise.
Simulation and testing was performed on three variants

of SIRT, i.e., Landweber, Cimmino and Diagonally Relaxed
Orthogonal Projections (DROP). Landweber’s method [39]
simply originates from Eq. 4 where M = I and T = I
and I represents an identity matrix. Cimmino’s method [17]
works on the premise that each iteration is the weighted
average of the projections of the previous iteration on all the
hyperplanes:

xk+1 = xk + γk
1
m

m∑
i=1

wi
bi −

〈
ai, xk

〉
‖ai‖22

ai. (5)

Where, wi represents the weights. In terms of Eq. 4 Cimmino
is defined as having M = D and T = I , where D can be
defined as follows:

D =
1
m
diag

(
wi
‖ai‖22

ai

)
. (6)

DROP is an extension of Cimmino’s original method and
incorporates information about sparsity of matrix A [40].
When extending the dimensionality by adding an extra region
outside the ROI the vector b is increased and becomes sparse.
The extra region adds additional hyperplanes to the system
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FIGURE 6. Comparative analysis of reconstructing a smooth phantom (relative noise = 0.05) and Shepp-Logan (relative noise = 0.1) with SIRT and ESIRT
shows that ESIRT can achieve a lower error rate as compared to SIRT. More results with varying noise levels and number of projections have been
presented in the supplement with this paper. Iterative image reconstruction videos showing noise being redistributed in the extended region can be
viewed in the multimedia supplement with this paper.

passing through the origin. This essentially means that for
Cimmino’s methodmore hyperplanes are averaged to achieve
the output of every iteration which in turn leads to distribution
of noise to extra space. Similar to EART the solution stays
in an effectively lower dimensional sub-space and the noise
redistributes to higher dimensions.

D. SIMULATIONS WITH ESIRT
A 64× 64 smooth [32] and Shepp-Logan [34] phantom was
reconstructed using FBP, SIRT, and ESIRT with all three
variants mentioned in the previous sub-section. Sinograms
for these phantoms were created by taking projections every
5 degrees from 1◦ to 180◦ degrees (i.e., θ = 1 : 5 : 180)
and corrupted with normalized noise relative level 0.05 for
smooth and 0.1 for Shepp-Logan, respectively. ESIRT recon-
structions were performed by increasing dimensions of the
sinogram corresponding to a 128× 128 reconstruction. Both
iterative methods were stopped at 100 iterations (k). The
error rate was calculated as mentioned in the previous sub-
section. Fig. 6 shows a comparative analysis of SIRT and
ESIRT methods in detail. Visual inspection of the recon-
structed phantom shows that ESIRT has better regularization
properties than SIRT. It is evident that ESIRT achieves a
much better correlation with the original phantom as com-
pared to SIRT. In the case of ESIRT, the divergence from
semi-convergence is also slower. Fig. 7 shows an intensity
profile of a single line through SIRT and ESIRT phantoms
reconstructed using Cimmino’s method and indicates that
ESIRT behaves much better than SIRT. Simulations at a high
noise level (relative level = 0.20) are presented in Table 2.

FIGURE 7. Intensity profiles of a line through the original and
reconstructed smooth and Shepp-Logan phantoms using FBP, SIRT
(Cimmino) and ESIRT (Extended Cimmino). The ESIRT reconstructions
show a better fit to the original phantom as compared to SIRT
reconstructions.

Details regarding the Four-Phase phantom used for this study
can be found in [32].

E. SIMULATIONS WITH EXTENDED TIKHONOV
REGULARIZATION (ETR)
Tikhonov Regularization (TR) has already been explained
earlier, TR has a stronger regularization capability as com-
pared to SIRT and ART and has been extensively used in the
context of various ill-posed inverse problems [29]. We con-
ducted several experiments to test the effectiveness of an
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TABLE 2. Comparison SIRT and ESIRT using various phantoms at 20% noise.

FIGURE 8. Comparative analysis of reconstructing a binary (relative noise = 0.05) and Shepp-Logan (relative noise = 0.1) phantom with Tikhonov and
extended Tikhonov regularization. Intensity profiles of both phantoms show that extended Tikhonov performs better than Tikhonov. The optimization
problem was was initialized from FBP and solved using an iterative forward-backward solver. Tikhonov reconstructions of the binary phantom were
performed at a relatively lower regularization parameter to prevent smoothing.

TABLE 3. Comparative analysis of error rates for Tikhonov and extended Tikhonov reconstructions at varying relative noise and number of projections.

extended field outside the ROI while reconstructing a density
with TR.

We reconstructed a 64 × 64 binary phantom (relative
noise = 0.05) and a 64 × 64 Shepp-Logan (relative noise =
0.1) using both TR and ETR. ETR simulations were con-
ducted by zero-padding the sinogram corresponding to a
128 × 128 reconstruction (Fig. 8). The reconstructions were
performed using a forward-backward iterative solver. In line
with our findings for ART and SIRT, ETR performed better
than TR when tested on a variety of phantoms under different
noise conditions, as well as with varying numbers of total
projections (Table 3). It is evident from these results that TR
regularizes more powerfully than the methods discussed in
the previous sections, thus the improvement due to the use of
extended field is also significantly larger.

F. ADDITIONAL EXPERIMENTAL OBSERVATIONS
We observed that decreasing the field instead of extending
it leads to having a reconstruction space smaller than corre-
sponding projection size. On simulating several reconstruc-
tions by decreasing the field we observed that it always
leads to a more erroneous reconstructions. This is the case
if the error rate is calculated relative to the original phantom
without excluding the region which was reduced by having
a smaller field of view. That said, an extended field does not
require an object to be fully enclosed in the ROI. If the object
is not enclosed, i.e., the sinogram is modified to reconstruct
a part of the density, the projections still hold information
about the removed part and the reconstruction / regularization
method used will treat it as noise. On reconstructing par-
tial densities from four different phantoms at different noise
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levels we observed that an extended field always improved the
error rate. This is the case if the error rate is calculated relative
to the part of the phantom which was reconstructed. It should
be noted that the major difference between Electron Lambda
Tomography (ELT) [13] and extended field is that ELT targets
the locality problem (i.e., when the ROI does not contain the
whole object), while it does not remove or redistribute noise
like extended field does.

III. QUANTIFYING THE AMOUNT OF NOISE REMOVED
In this section we empirically analyze and quantify the
amount of noise that redistributes into the extended region.
This is essential to verify the effectiveness of extended recon-
structions and allows us to quantify the amount of noise
removed compared to the amount of noise added.

FIGURE 9. Experimental design to quantify the noise redistributed to the
extended field. The pixels in the reconstructed ROI are set to zero and
projections are taken relative to the ROI and compared with noise added
to individual projections of the sinogram.

Experimental Setup: 36 projections were generated from
a 64× 64 Shepp-Logan Phantom and the resulting sinogram
was corruptedwith 15% added normalized random noise. The
noisy sinogramwas extended by zero-padding corresponding
to a 128× 128 reconstruction space. The resulting sinogram
was reconstructed using ART (Kaczmarz), SIRT (Cimmino)
and Tikhonov using FBP as the starting point. The 64 × 64
ROI in the resulting 128× 128 extended reconstruction is set
equal to zero (Fig. 9a).We then take 36 projections equivalent
to the size of the ROI from this matrix (Figure 9b). This essen-
tially means that we summed up pixel-by-pixel, all the noise
removed from the ROI while leaving out regions that did not
contribute to the original projections. These projections were
then compared to the original noise added to each projection
(Figure 10).

The good fit between the projected extended field region
(blue curve in Fig. 10) and the noise added to the sinogram
(red curve in Fig. 10) shows that most of the noise was
redistributed to the extended region during regularization.
Table 4 shows the average correlation between red and the
blue signals. The fit for Tikhonov is better than SIRT and
ART and the fit for SIRT is better than ART. This indicates
that Extended Field works more powerfully for methods with
a stronger regularization capability. Further results from sim-
ilar simulations with SIRT, ART and Tikhonov are elaborated
in the supplementary material.

TABLE 4. Average correlation between the noise redistributed to the
extended region and the noise added.

IV. ENHANCED REGULARIZATION USING
EXTENDED FIELD
It is evident from experiments with algebraic methods (ART,
SIRT and their variants) as well as with variational regular-
ization (Tikhonov) that extended field enhances the effect of
regularization. Extended field works better with stronger reg-
ularization methods and at higher noise levels e.g. extended
field with Tikhonov regularization at 50% noise can improve
the reconstruction several folds (Table 3, column 4). The dis-
tribution of the noise removed fromTikhonov reconstructions
also fits much better with the actual noise added as compared
to ART and SIRT (Table 4).

We reconstructed various phantoms using Tikhonov regu-
larization for a changing regularization parameter (λ in Eq. 2)
and observed that extended field reconstructions can achieve
an enhanced regularization effect when compared to regular
reconstructions at a relatively lower λ (Fig. 11). In accordance
with our hypothesis the rationale behind this is the unique
ability of an extra region to enhance the consistency of the
solution with respect to the sinogram.

The regularization parameter controls the balance between
the fit and the regularity of the solution. A large λ

produces a strongly regular solution i.e. the solution is
smoother. A lower λ produces a solution more faithful to the
data (projections). Since having an extended field reduces the
error at a relatively lower regularization parameter, thismeans
that it can produce a solution which is more faithful to the
data while preventing over-smoothing. The extended region
allows for an increased fit between the projections (sinogram)
and the reconstruction by achieving a better error rate at a
lower λ.

V. OPTIMAL EXTENSION SIZE
Simulations in the previous sections show how extended field
behaves with a variety of reconstruction methods, at various
noise levels and at different number of projections. We show
that extended field can have a promising effect on reconstruc-
tions by lowering the error rate and improving the correlation
with the actual phantom. However, extending the sinogram
to achieve an extra reconstruction space means increasing the
size of the reconstruction problem which is a computational
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FIGURE 10. Comparison of noise removed, i.e., noise redistributed into the extended field and the noise originally added to the projection at 25o, 50o,
75o and 100o for extended ART, SIRT and Tikhonov reconstructions of a Shepp-Logan phantom. The good fit shows that the amount of noise removed
by the flexibility provided by the extended field is approximately equivalent to the amount of noise added while conducting the simulation (Table 4).
Results for the entire sinogram and similar results for ART and SIRT have been presented in the supplementary material.

FIGURE 11. Comparative analysis of error rates for Tikhonov and
Extended Tikhonov reconstructions at a varying regularization parameter
(0.1 ≤ λ ≤ 3). The error rates are calculated corresponding to the ROI for
Extended Tikhonov reconstructions. It can be seen that Extended
Tikhonov achieves a much better error rate at a lower λ than regular
Tikhonov.

constraint. Keeping this in mind, it is necessary to estimate
an optimal extension size especially when dealing with real
data.

We reconstructed 64× 64 Shepp-Logan and Binary phan-
toms at varying extension steps (0, 2, 4, 8, . . . 512) and at dif-
ferent noise levels. Apart from these the experimental setup
is the same as mentioned in the previous section. The binary
phantom was reconstructed at a relatively lower regulariza-
tion parameter to prevent smoothing. Fig. 12 summarizes
these numerical tests and suggests that all extended recon-
structions show a sharp decrease in the error rate during the
first few extension steps followed by a saturation in error
improvement. As the extended field is increased more and
more noise is removed from the ROI into the extra region.
However, extending the field can not continue to improve the
ROI beyond a certain point. This is because extending the
field can not remedy noise and inconsistence originating from
missing data (e.g. less projections, missing wedge). It can
be observed from the experiments that at higher noise levels
the sharp decline in the error rate during the first few exten-
sion steps becomes much more prominent. Also, error rates
for stronger variational regularization methods (Tikhonov)

show a sharper decline when compared to mildly regularizing
algebraic methods (ART, SIRT). After saturation the error
rate stabilizes and varies only slightly despite large extension
sizes.

Extremely large extension steps lead to a slight increase in
the error rate. For example extending a 64×64 Shepp-Logan
phantom corresponding to a 4096×4096 reconstruction gives
an error of 4.268 as compared to a 256× 256 reconstruction
which yields an error rate of 4.257. Moreover, the extended
field reconstruction of phantoms with no noise added leads to
extremely slight improvements in the error rate, as mentioned
inconsistencies due to missing data can not be corrected,
the slight improvement comes form the correction of errors
originating from the numerical treatment of the problem.

The optimal extension size depends on the type of raw
data, the amount of noise and the regularization capability
of the reconstruction method. As shown by our experiments
a strong regularization method will need a smaller extension
to remove most of the noise from the ROI into the extended
region. For instance, reconstructions in [19] were performed
using ART, which has mild regularization capabilities, and in
that specific case twice the reconstruction size may have been
needed. When using Tikhonov regularization an extension
of half the size of the actual phantom, removes most of
the noise. Contrary to [19] we observed that extending the
reconstruction space twice or more the actual reconstruction
space is not necessary to realize the full potential of an
extended field. The ratio of error improvement to extension
size decreases at higher extensions. It is computationally inef-
ficient to increase the extension size beyond half the size of
the actual reconstruction if a powerful enough regularization
method is employed, since the gain in SNR beyond that is not
significant.

In short, the optimal and most computationally efficient
extension size can be decided depending on the type of data
being reconstructed, the amount of noise in the data, the num-
ber of projections and more importantly the regularization
capabilities of the reconstruction method being used. When
dealing with real data the optimal extension size can be
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FIGURE 12. Comparative analysis of error rates for ART, SIRT and Tikhonov reconstructions at varying extension steps 0,2,4,8, . . .512 starting from a
64× 64 phantom. It can be seen that most of the benefit of an extended field is achieved if the size of the extension is half the actual reconstruction
size. All reconstructions show a sharp improvement during the first few small extension steps followed by a saturation of error improvement for larger
extensions.

tuned for a specific imaging device and correlated with data
collection variables such as number of projections and the
dose used etc.

VI. EXPERIMENTAL RESULTS FROM 3D DATA
The previous sections showed the effect of an extended
field when reconstructing simulated 2D images from 1D
projections. This section elaborates the effects of recon-
structing 3D densities from 2D data with an extra region
outside the ROI. In 3D, the reconstruction problem gener-
ally becomes considerably more complicated. For real-data,
deconvolution of the point spread function (PSF) is required
to obtain accurate reconstructions. Problems due to miss-
ing data (missing wedge) are also much more prominent.
We reconstructed the structure of an inorganic nano-particle
and a membrane protein to demonstrate the effectiveness of
extended field in reconstructing real 3D data. We used our in-
house constrained maximum entropy tomography (COMET)
reconstruction package [7] for reconstructing from the 2D
TEM data, since it has built-in PSF deconvolution and
regularization.

Consider the z-axis to be the direction of the electron
beam of the Cryo-Electron Microscope when the data was
collected. Let ZROI be the size of z for which the 3D recon-
struction is desired, i.e., the ROI. For the purpose of testing,
COMET-based reconstructions can be iterated for volumes
increasing in the z-direction, such that Z1 < Z2 < Z3 <
. . . < Zn, resulting in n-many 3D reconstructions. Each
successive reconstruction has an increased volume in the

FIGURE 13. Figure showing successive reconstructions on a large volume
by increasing in z-direction (i.e., reconstructions with an extended field).

z-direction (Fig. 13). Reconstructions in higher volumes are
expected to remove more noise out of the ROI. Finally the
ROI is extracted from each of these reconstructions and a
comparison ismadewith the original reconstruction. It should
be noted that multiple reconstructions with increasing Z are
only for testing the amount of noise removed is relative to
extension size. Practically, the method can simply be used by
reconstructing a single volume larger than the ROI.
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FIGURE 14. Extracted ROIs (355× 355× 255) of successive reconstructions of a colloidal silica sample with increasing z. Reconstructions with an
extended field (i.e. R2 − R8) have a lower noise within the ROI. The map grid size for one pixel is 5.626Å and the average size of a colloidal silica
nano-particle is 31.5nm. The large particle in the center of the reconstruction has lower density as compared to the smaller particles because it is
water in the form of crystallized ice. Videos can be viewed in the multimedia supplement with this paper.

A. SAMPLE: COLLOIDAL SILICA

Colloidal silica is made of synthetically manufactured SiO2
nanoparticles. Like large proteins, it has a diameter of
25-70 nm and a density of 1.28 g/cm3, displaying scatter-
ing properties comparable to those of proteins [41]. There
are several advantages to using colloidal silica as a test
object. Since colloidal silica is an inorganic sample it suffers
minimally from degradation due to electron beam exposure
during data collection. A higher electron dose can be given to
such a sample, reducing the shot noise. The colloidal silica
sample used here is typically used in paint: BINDZIL of
grade 40/130 and was kindly provided by Eka Chemicals,
Akzo Nobel, Sweden. Data was collected using a
Philips CM200 200keV FEG transmission electron micro-
scope (TEM). The specimen was tilted between ±65◦ and
micrographs were recorded on a CCD detector (F224, TVIPS
Gmbh, Germany) every other degree. Eight 3D COMET
reconstructions were performed starting with grid points
355 × 355 × 255 (i.e., dimensions in x,y and z axis respec-
tively) to 355 × 355 × 605 with Z increasing incrementally
by 50 grid points. Then the common region 355× 355× 255
was extracted from all these reconstructions (Fig. 14). Images
were adjusted to the same contrast threshold. We observe
that the background noise decreases over successive recon-
structions. Fig. 15 shows an intensity profile of a single line
through a slice of the 3D reconstruction at two different
values of Z. At a higher value of Z, the signal is much stronger
compared to the noise. Similar results can be achieved by
increasing the volume in the y-direction or in both the
z- and y-directions. However, the reconstruction space cannot
be increased by increasing the x-direction since the sample is
tilted around this axis.

FIGURE 15. Intensity profiles of a single line through a slice of the 3D
reconstruction at two different extension values. The peak represents the
signal (i.e. a silica nano-particle). For a reconstruction with an extended
field the signal within the ROI is significantly stronger as compared to the
noise.

B. SAMPLE: P. falciparum ERYTHROCYTE
MEMBRANE PROTEIN 1 (PfEMP1)
Similar to the colloidal silica reconstructions we recon-
structed the structure of P. falciparum ErythrocyteMembrane
Protein 1 (PfEMP1) with and without extension of the field
(Fig. 16). A more detailed account of the sample prepara-
tion, structure and properties of the 280kD ectodomain of
this membrane protein can be found in [28]. The data was
collected on a Titan Krios 300kV with a FEI Falcon II cam-
era with 14 micron pixels. 281 micrographs were recorded
spaced 0.5 degrees apart. The effective magnification was
61756 giving a pixel-size of 2.267Å. The total dose used
was approximately 40 electrons/Å2, or 0.14 electrons/Å2

VOLUME 6, 2018 17337



F. Mahmood et al.: Extended Field-Based Method for Noise Removal From Electron Tomographic Reconstructions

FIGURE 16. Extracts (70× 100× 70) from 3D reconstructions of P.
falciparum Erythrocyte Membrane Protein 1 (PfEMP1) without
(600× 600× 300) and with (600× 600× 600) extension of the field. The
extended reconstruction shows less noise as compared to the regular
reconstruction. Pixel size is 2.267Å.

per image. The volume of the original reconstruction was
600 × 600 × 300 and that of the extended reconstruction
was 600 × 600 × 600. The results have been presented
in Fig. 16 and show a clear improvement in the quality of
the reconstruction using extended field. Both reconstructions
were low-pass filtered to 15Å resolution.

VII. LIMITATIONS AND SHORTCOMINGS
Limitations of using an extended field during tomographic
reconstructions can be summarized as follows:
• Extended field does not work with filtered back pro-
jection and its variants. Such methods do not allow for
redistribution of noise into an extended region. For an
analytical method having an extended region outside the
ROI would simply mean the same intensity values being
distributed along a longer ray path.

• Extended field does not correct for inconsistencies aris-
ing from missing data due to limited number of projec-
tions or themissing wedge. Although, noise removal due
to an extended field might aid other methods which can
correct for missing data such as [7].

• The method behaves poorly with weaker regularization
methods, better results can be achieved by using more
powerful regularization methods.

• Extended field does not work in cases where an alter-
native, consistent but incorrect solution can be found.
Although this would be a rare case, it remains a possi-
bility.

VIII. CONCLUSIONS
In this paper we show that extending the reconstruction
field during iterative image reconstruction can render bet-
ter results when compared to non-extended reconstructions.
This principle was tested with extensive simulations using a
variety of reconstruction methods. We empirically validate
that solutions from extended reconstructions preserve a better
fit to the collected projection data at a lower regularization
parameter. We also verify the effectiveness of this method by

fitting the noise removed and noise added during simulations.
We further strengthened our claims by testing on real cryo-
ET data collected from an inorganic colloidal silica and a
biological PfEMP1 sample. The technique is unique but it
can segregate the signal from noise without significantly
interfering directly with the signal since it does not involve
manipulating individual reconstructed voxels using standard
filtering, or post-processing procedures, which may remove
high-frequency details from the reconstruction. Moreover,
this method is general and can be extended to be used with
other tomographic modalities.
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