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The Yang-Lee edge singularity is investigated by the determinant method of the conformal field
theory. 3 x 3 minors are used for the evaluation of the scale dimension. The agreement with the
Pade of e expansion in the region 3 < Z) < 6 is improved. The critical dimension Dc , where
the scale dimension of scalar is vanishing, is used for the improvement of the Pade. For the
understanding of the intersection point of zero loci of 3 x 3 minors, 2 x 2 minors are investigated
in detail; these are connected through Pliiker relations.

Subject Index 110

1. Introduction
The conformal field theory was developed a long time ago [1], and the modem numerical approach
was initiated in Ref. [2]. Recent studies using this conformal bootstrap method have obtained some
remarkable results for the 3D Ising model [3,4]，Yang-Lee edge singularities [5,6], O( N ) models
[7-10], and self-avoiding walks [11].

A brief summary of the determinant method for the conformal bootstrap theory is as follows. The
conformal bootstrap theory is based on the conformal group 0( D,2), and the conformal block
is the eigenfunction of the Casimir differential operator D j . The eigenvalue of this Casimir operator
is C2：

DIG^L = C2G△，乙,

C2 = -[A(A - D ) + L( L + D - 2)]. ( 1 )

The solutions of the Casimir equation have been studied in Refs. [18-20]. The conformal
block G△，乙（w, v) has two variables u and v, which denote the cross ratios, u = (ズ12ズ34/113ぶ24)2,
v = (x14x23/xj3x24)2, where x y = x i — X j (x/ is a 2D coordinate). They are expressed as u = z z and
v = (1 — z)( l — z). For the particular point z = z, the conformal block G△，/Xw，v) for the spin-zero
( L = 0) case has a simple expression:

G△，〇(w，v)|z
z2

1 Z

△ /2

3> F2
A A A D

2
z2D + 1 D

1;丁，△ 一i+ 1;
4(卜1)

(2)

The conformal bootstrap determines A by the condition of the crossing symmetry x\ ^ X3. For
practical calculations, the point z = z = 1/2 is chosen and, by the recursion relation derived from
the Casimir equation of Eq. (1)，CA,L (W, V) at z = z = 1/2 can be obtained [3].
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The conformal bootstrap analysis with a small matrix size has been investigated for the Yang-Lee
edge singularity with accurate results for the scale dimensions by Gliozzi and Rago [5,6]. For other
models, this bootstrap method for the determinant has been considered [12,15,21,22]. In this paper,
we emphasize the importance of the structure of minors along the Pliiker relations, as shown in the
appendix, and we apply it to the Yang-Lee model for a scale dimension of A^. The intersection
point of the zero loci of 3 x 3 minors was evaluated and it gave a remarkable value of the critical
exponent in Ref. [5]. In these 3 x 3 minors, if the value of the space dimension D is given, the value
of = Acp is determined from the intersection point. However, if one goes to larger minors, for
instance 4 x 4 or 5 x 5 minors, one need the values of additional scale dimensions of the operator
product expansion (OPE). In the study of such large minors, however, the values of deviate from
the expansion [6]. This discrepancy should be improved by the determinant method or by analysis
of the 6 expansion, since the conformal bootstrap method should be consistent with the e expansion
[24,25]. Recently, consistent results were obtained in the 0( N ) vector model through the Mellin
amplitude [13].

We consider this discrepancy by repeating Gliozzi’s evaluation of the 3 x 3 minors [5] and find
that 3 x 3 minors give accurate values that agree with the improved 6 expansion (see Fig. 8). The
nature of the determinant method is still not known, and the convergence to the true value seems
to be slow. As we mentioned before, we have to assume the values of the scale dimensions of the
OPE, such as spin 4, spin 6, etc., for the large minors. Unfortunately we do not know precisely these
higher spin values at present. Therefore, we concentrate on 3 x 3 minors without any assumption of
the other scale dimensions of the OPE.

The four-point correlation function is given by

〈0(jq )0(x:2)0Cx3)0(X4)〉
g(w, v)

Iズ12|2△小34|2△ゅ

and the amplitude g(w, v) is expanded as the sum of conformal blocks:

g ( u, v) = 1 + ^PA,LGA,I(W, V).
△乂

The crossing symmetry o f x i o ズ3 implies

V~GA，(W，V) - w△ゆG△バv，め

(3)

(4)

“ △ </> 一 y^ (f>
(5)

The minor method consists of the derivatives at the symmetric point z = z = 1/2 of Eq. (5).
By a change of variables z = ( a + Vb) / 2, z = (a — Vb ) / 2 , derivatives are taken about a and b.
Since the number of equations becomes larger than the number of truncated variables A, we need
to consider the minors for the determination of the values of A. The matrix elements of minors are
expressed by

Anun )
ノ△，厶

VA <^ GA,L (W, V) - WA^ GA,L (V, W)
uへ*P —— へ中

\ a=\ ,b=0 (6)

and the minors or 2 x 2, 3 x 3, e.g., dy，如，are determinants such as

2/15

(7)
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where ij\k are numbers chosen differently from (1,. . .,6), following the concise correspondence
to (m,«) as 1 — (2,0)，2 —> (4,0), 3 -> (0,1)，4 — (0,2)，5 — (2,1)，and 6 — (6,0).

In the Yang-Lee case, a fusion rule is simply written as [5]

[△0] x [△(/) ] = 1 + [△</> ] + [-D,2] + [A4,4]十… .

The scalar ( L = 0) term in the bootstrap equation ofEq. (6) is denoted as

⑻

vsO
v△少G△，〇(w, v) _ w△必G△，〇(v, w)

w△�一 V△ゆ
(9)

We use the notation ( vsk ) (k is a number, related to the degree of the differential, v is a vector, and 5

is a scalar) for the derivatives of the (v^0) rule in Eq. (6). For L = 2 we use ( vt/c)，and for L = 4 we

use ( vqk ). (ux�）is for L = 6.
The scalar ( L = 0) case is expressed by the hypergeometric function (A = for the Yang-Lee

edge singularity)

v^0 ■2-A /y+
3 x 2"~A /2

2

9-A /2，十 」
2A

(10)

where

AAA D A 1 D a2
ViS1 = 3厂 2 I —’

—，— — — + 1, — + —，△ 一 — + 1 :’ 2 1 2 2 2 2 2 2 2 8(-2 + a)
(1 1)

and〆 is derivative or^. We consider the derivative at a point a = l .
For instance, we have 2 x 2 minors:

, t . vsl v^3 . ,
め3 = det |

vd v,3 h め3 det
vsl V53
vtl vt?>

(12)

In tms Yang-Lee edge singularity, we find that the 2 x 2 minor,ゴ13, becomes zero at D = 6, and it

provides exact values of = 2.

2. 2 x 2 minors

The intersection points of zero loci of 3 x 3 minors are decomposed to 2 x 2 minors at the critical
dimensions D = 6 for the free theory. In the appendix (relation 1), this decomposition is shown.
Among s e v e r a l 2 x 2 minors,ゴ12,ゴ13,ゴ23,. . ., the most fundamental minors may be ゴ13 andめ3,
which are made of lower derivatives of a and b. Note that, in the Yang-Lee model, the constraint
A(: = is taken, and the 2 x 2 minor analysis corresponds to the 3 x 3 minor analysis of another
model such as the Ising model, in which A ^ A^. From the point of the truncation error in the
OPE, as discussed in Ref. [15], it is interesting to start from 2 x 2 minors. The Yang-Lee singularity
is connected to supersymmetry through the dimensional reduction of a branched polymer, where
we have an exact relation of A = △ </> + 1 [14,16,17]. We will discuss the dimensional reduction
D+ 2 ^ D behavior in the Yang-Lee model in 2 x 2 minors.

The 2 x 2 minors consist of two parameters,dimension D and the scaling dimension A^, since we

have A
^2 = ( A = A^2 ) for the Yang-Lee case, due to the ( p3 theory.

3/15
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Fig.1. The intersection of zero loci of 3 x 3 minors (ゴ123, ゴ135，ゴ134, ゴ234, ゴ235) for dimension D = 6. The
axes are ( x,y ) = ( A0, Q ). The intersection point of the five lines is Z) = 6, = 2 with g = 8, which is
decomposed to the 2 x 2 minor The upper fixed point is related to the minorゴ23.

(i) Free field theory at D = 6
The zero loci of ゴ13 gives exactly the scale dimension
vx, and vsf (with a scalar scale dimension A’）can be zero:

2.0 at D = 6. The minors for vq,

det vs\ vq\
v^3 vq3

0, det
v^ l vxl
us3 vx3

0, det
vs1 vs\ f

vs3 vsV 0. (13)

For the value = 2, they yield Q{= A4) = 8, A6 = 1 0, and A' = 4, respectively. These
△0, A4, A6, are determined exactly by 2 x 2 minors ofd^ .This is due to the free theory, i.e.,
no interactions between the scale dimensions. It is known that the six dimensions have algebraic
identities, which are valid for a free theory in any dimension D [23].
Other minors yield different values; for instance, ゴ23 gives = 2.158 at D = o. i hese two
different values of are understood when we evaluate 3 x 3 minors, as shown in Figs. 1 and 2.
There are two fixed points of zero loci of 3 x 3 minors in the six dimensions. The 3 x 3 minors
are denoted by in Eq. (7); for instance,ゴ123 means

dm = det

/ vs l vt\ vq\
vs2 vt2 vq2

[ v^3 V/3 vq3 ノ
(14)

(ii) D = 3
The zero loci of 2 x 2 minor do not provide good results except for D = 6 dimensions. This is due
to the situation where the free theory breaks down in general dimensions. We have to consider
the loci of 2 x 2 minors of a finite small value due to the interactions, instead of a zero value, for
the non-trivial fixed point. The small non-vanisning value of the minor might have an important
meaning for the bound of The loci of two important 2 x 2 minors ゴ13 and ゴ23 are shown
in Fig. 2, in which the value of ゴ13 is changed by small values from — 0.007 to 0.004, and the
zero loci ofめ3 are also shown in Fig. 3 as a guide. The correct value of is realized in some

4/15
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1.0

し! . 5

U U
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-0.5 -

-1.0 -

Fig. 2. The loci of 2 x 2 minors with values from — 0.007 to 0.004 are shown; = 0 is also shown by a
green line. The axes are (x, j) = ( D, A^ ).

0.4 -

0.2 -

0.0 -

2.0 2.2 2.4 2 6 2.8 3.0

-0.4 -

Fig.3. A close-up of the contour map in Fig. 2 near the = 0 loci of minor ゴl 3. The green line shows the
zero loci ofめ3 as a guide. The axes are ( x,y ) = ( D，A^ ).

nmte-value contours ofめ3 for /) < 6. Near D = 6, deviation from the zero loci ofめ3 is expected
since deviates from 2 as the e = 6 — D expansion shows: ~ 2 — 0.5555¢.
In Fig. 2, the finite-value curves ofめ3 converge to a curve starting from = 0.25 ( at D = 1)
to 2.0 (at D = 4). This curve resembles the correct contour if the space dimension is shifted
from D\oD+2. (The curve is translated to the right in Fig. 2 by two space dimensions by keeping
the same value of A^.) This dimensional reduction will be discussed in Sect. 4.
The finite-value contour map ofめ3 shows a valley shape, and one line is located at D = 2 near
the exact value = — 0.4, as shown in Fig. 3. In Fig. 3, the value of minorめ3 is 0.0034, which
gives A(p = — 0.4. The cusp point moves when the value of minorめ3 is changed and its trace
may give the bound of △か

5/15
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3

0

Fig. 4. The zero loci of ^/| Af ]|3 for different dimensions: D = 6 (dark blue), D = 5.5 (red), D = 5
(green), D = 4.5 (yellow), and D = 4 (blue). The axes are (JC，ア）= (Aゅ，Af ).

In Figs. 2 and 3, contour maps ofめ3 with small non-vanishing values are shown.

3, Critical dimension for A巾 = Q

In the Yang-Lee edge singularity, the scale dimension of </> becomes zero at some dimension
between 2 and 3, since it is — 0.4 in two dimensions and approximately 0.2 in three dimensions.
We call this dimension the critical dimension Dc , on which the scale dimension vanishes. In the
determinant method, it is known that even small minors give accurate values of the scale dimensions
[5,6]. We discuss here small determinants of 2 x 2, 3 x 3, and 4 x 4 matrices for this critical
dimension Dc.

Mgure 2 shows Z-shaped curves for zero or very small values of the loci of ゴ13. This figure can
be understood when we plot A6 versus for various values of fixed dimensions. The minor ofゴ13
has so far been considered as a function of D and A# with the condition of due to the
Yang-Lee model. However, in general we are able to consider A and as two free parameters for

and, for the Yang-Lee case, we put = A^.
In Fig. 4, we plot the zero loci of A ]n for different values ofD.This minor then becomes

the usual one including the Ising case. A complicated contour for the zero loci ofめ3 is obtained
especially around D = 4.4, where it has three solutions for = A^. This solution corresponds to
the Z shape around (Z), A ) = (4, 1.5) in Fig. 2.

In addition, we find that the line of of the Yang-Lee condition goes through very near
the zero loci ofめ3, but it does not intersect. This corresponds to Fig. 2 with the nmte-value loci of
ゴ13 around D = 3.

With some value of D, the contours in Fig. 4 (bottom left) and Fig. 5 intersect at the point (A^ , A^) =
(0, 0). We find that this critical dimension from Fig. D IS

Dc = 2.6199. (15)

As seen in Fig. 3, for a small finite value ofめ3, the contour ofめ3 approaches the line = 0
from both sides, above > 0 and < 0. The peak of the contours approaches the critical

/7
0.5 1.0 5 2.0 2.5
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0.010

0.005

0.000

-0.005

-0.010 -
-0.005 0.000 0.005 0.010

Fig.5. A contour plot of the zero loci of AJ13 for different dimensions: D = 2.6 (blue), D = 2.61
(yellow), D = 2.6199 (green). The axes are ( x,y ) = (△多，Ae ).

dimension Dc. We consider the derivative ofめ3 by the dimension D, and we estimate Dc as the
point at which this derivative becomes zero. For = 0.000001, we obtain Dc = 2.605 74.
The derivative of d\3 by the space dimension D gives the approximate solution of Dc in the limit
△0 ―> 0. The minor d\2 is proportional to in the limit 么中 — 0, since 仍1,以3 ～ △シ and
v/ 1，v/3～ A;' .

We consider how the minors become zero in the limit △0 — 0. For instance, at D = 2.61, we
have, for small

vsl = 0.188Aj, v^2 = 0.139Aj, V^3 = 0.225

vt\
1.055
△0

, vt2
0.667
△0

, vt3
1.078
△ゆ

(16)

The coefficientsP(p ,pt are obtained from

Vi'O V/0 \ / /70
vs\ vtl I \ pt 0

(17)

Since uvO = —|, v/0 = 0.7185/ A^ in the limit -> 0, we obtain a solution of = — 4，pt =
aA^ logAfj) ( a is a constant), which gives the value of the central charge C = 0. With this choice of
pt = P( D2 ) ^ the central charge C becomes C = ^ /Pt = 0 for this critical dimension Dc.This means
that the energy-momentum tensor operator T = A(D，2 ) can be neglected since the OPE coefficient
of this operator pt becomes zero. This is the well known c catastrophe, which leads to logarithmic
conformal field theory [26]. When neglecting the A (/)，2) term, and only considering v^0 in Eq. (10)，
we obtain the critical dimension Dc = 2.748 632… . However, this value is too large compared to
the expected value and might not be correct. We need further operators to get the correct value. We
hope to get the correct value of the critical dimension Dc by another sophisticated method by taking
higher operators.

4 x 4 minors The numbers of zero loci of minors are 6Q = 6!/4!2! = 15. We investigated
the critical dimensions Dc by changing D between D = 2.58 and D = 2.59. Remarkably, at

7/15
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5.5

5.0

4.5

4.0

3.5

3.0 -
4.2 4.3 4.4 4.5 4.6

Fig.6. The intersection of zero loci of minors at £) = 2.589 53, = 0. The axes are ( x , y ) = ( Q , A').

D = 2.589 53, a l l 1 5 l i n e s intersect at a single point in the contour map of (Q , Ar) under the
condition = 0. If we take this as the value of the critical dimension Dc , we find the following
set of results:

Dc = 2.589 53, A0 = 0，Q = 4.403 97, = 3.87127. (18)

This critical dimension Dc obtained with 4 x 4 minors is close to Dc = 2.6199 from the 2 x 2
minorめ3 with the intersection point of A6 = = 0. In Fig. 6, all loci coincide but, if we include
more relevant operators, this value may change.

For the △> = 0 case, in any dimension D, dj j can become zero. When △# = 0, by the definition
of the scale dimension the two-point correlation function G { r ) = 1/r■△ゆ becomes a constant
in the long-range limit r^ o o.

In the Yang-Lee edge singularity, the exponent of the density 0 is related to as

a
△0

D - A
(19)

0

From this relation,0 is vanishing for = 0. This means that the density is constant at the transition
point. Several interesting systems are known in which the density is constant but a phase transition
occurs. One example is a localization problem under the random potential.

4. Dimensional reduction
The zero loci of the 2 x 2 minor d\3 shows an interesting characteristic linear behavior for
D < 4, which is approximated as △</> = ( 3D — 2)/5. In Fig. 7, the shift of the zero loci of ¢/13
for D — > D + 2 is shown (translation of two dimensions to the right in Fig. 7). The blue line of
Fig. 7 for the zero loci ofめ3 almost coincides with the red line of the Yang-Lee edge singularity
analyzed by the Pade approximation. The red line represents the result of 3 x 3 minors and it can be
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2.5

2.0

1.5

1.0

0.5

0.0

-1.0

Fig.7. The D -> D + 2 shifted line of the zero loci of dl 3 (yellow line) is shown by the blue line and is
consistent with the estimated Yang-Lee line (red) by Pade analysis. The blue and red lines are almost the same
for 1くDく5.5.

approximated as

3D- 8
^△0二一r—. (2〇)

This expression satisfies the exact values of £) = 1 (A^ = — l ), D = 2 (△</> = — 0.4), and D = 6
(△0= 2).

This dimensional shift seems accidental and only appears in a lower truncation, but there is a
dimensional reduction that has been proven rigorously.

It is known that a branched polymer in Z) + 2 dimensions is equivalent to a Z)-dimensional Yang-
Lee edge singularity for the critical phenomena. This dimensional reduction has been explained by
supersymmetry [28]. A rigorous mathematical proof of this dimensional reduction was shown in Ref.
[29]. We will study this dimensional reduction in a separate paper using the conformal bootstrap
in a determinant method [14]. The Yang-Lee edge singularity requires A (= △�2 ) = For a
branched polymer due to dimensional reduction there is a relation + 1.1’nis relation is a
manifestation of the supersymmetry of the system [loj.

Since the blue line is very close to the red line in Fig. 7, one can make an estimation of the critical
dimension Dc, in which △# = 0. The intersection ofめ3 with the = 0 line can be evaluated
very precisely as D = 0.599 5471444. Adding 2 to this value for the dimensional reduction, it gives
the estimation of the critical dimension Dc as Dc = 2.599 5471444, which is very close to other
estimations of this paper. We discussed this value in the previous section as Dc = 2.6199 as in
Eq. (18).

5. 3 x 3 minors and Pade analysis
Up to now, we have mainly discussed 2 x 2 minors. If we take a spin-4 operator and its scale dimension
Q = A4, we need to do an analysis of the intersection of the zero loci of the 3 x 3 minors d,.

</
2 3 4 5 6 8

9/15
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Table 1. Estimated scale dimensions by zero loci of three dimensional minors. Comparison with Pade analysis
is shown. The value of parenthesis is estimation from other zero loci nearby.

D = 3.0
D = 3.5
D = 4.0
/) = 4.5
D = 5.0
D = 5.5
D =

Q
0.174343 (0.187 825) 4.34106 (3.77124)
0.499401 (0.500969)
0.823 283 (0.815 623)
1.13755 (1.12371)
1.43807 (1.41987)
1.724 69 (1.746 82)

2.0

5.04195 (4.375 56)
5.711 52 (4.922 83)
6.333 95 (5.44645)
6.91716 (5.959 72)
7.469 85 (6.466 72)

8.0

(Pade)
0.229 95
0.53153
0.83175
1.1300
1.4255
1.7165

2.0

From the formula of the minors in a 3 x 6 matrix in the appendix, we have a Pliiker formula such
as (Eq. (A.12))

[126][345]- [123][456] + [124][356] — [125][346] = 0. (21)

For instance, at Z) = 3, we find that the zero loci ofめ23 = [123], d\26 = [126],め24 = [124], and
ゴ346 = [346] intersect at a point, and the above Pliiker formula is satisfied.

In Table 1, we present the intersection of three zero loci of minors め23, ゴ134, and ゴ124. The
value of is obtained from the intersection point of the zero loci of the minors. However, the
intersection point is not the only one, and we find at least three different intersection points for each
fixed dimension D. In Table 1, we present in parentheses such nearby different intersection points
of the three zero loci of the minors.

In the 6 = 6 — D expansion, is known up to the four-loop level [30]:

△0 = 2- 0.555 55x - 0.0294925x2 + 0.021845x3 - 0.0394773x4, (22)

where x = = 6 — D. Including the critical dimension Dc，for which is vanishing, the above
expansion becomes

△0 = ( 6 — x — Dc )
2 2 0.55555_ 6 — DQ \ (6 — Dc )^ 6 — Dc ) x + 0( x2 ) • (23)

Inserting the value of Dc = 2.6199 from Sect. 4, it becomes

△0 = (3.3801 — ズ)[0.59170 + 0.010 695x - 0.005 56125x2

+ 0.004 817 55x3 - 0.010254 IJC4
十… ]. (24)

This expansion is approximated by the [2,2] Pade method,

△0 = (3.3801 — x ) ao + a\x + aix
1 + b\x + bixム

2 -
(25)

with ao = 0.59170, a\ = 2.3916, = 1.0090, b\ = 4.023 85, bi = 1.6419. The curve of this
Pade is incorporated in Fig. 8.

For the values of of the Yang-Lee singularity in D dimensions, the previous results obtained
by Gliozzi [5] are very close to the values of Table 1; for instance, at D = 4, = 0.823. In another
evaluation with more primary operators [6], the values = 0.8460 in D = 4 and A# = 1.455 in

10/15

genkinjo
Rectangle



PTEP 2018, 053101 S. Hikami

△

1.5

VO

0.5

L D

Fig.8. is estimated by a [2,2] Pade with Dc = 2.6199. The dots are the values from Table 1 for a 3 x 3
minor analysis of

D = 5 are obtained, which are larger than the values in Table 1，and a comparison with e expansion
shows the apparent deviations, as shown in Fig. 5 of Ref. [6]. Our new analysis of Pade with a fixed
value at the critical dimension = 0 seems more precise, and the e expansion and bootstrap
determinant method agree well with each other, as shown in Fig. 8. One of the aims of this paper was
to clarify this point by the evaluation of the critical dimension Dc. Unfortunately, what we have done
is a numerical estimation of Dc by the bootstrap determinant method and it may be an approximation.

It is important to obtain an exact value of Dc，and the comparison with e expansion will be improved
with an exact value of Dc.

6. Summary
We have considered theYang-Lee edge singularity in this article by the bootstrap determinant method,

initiated by Gliozzi. Although our results for the scale dimension are same as the 3 x 3 determinant
result of Gliozzi [5], we have improved the consistency with the result of the 6 expansion. We find that
the basic 2 x 2 minor d\ T, is important for the determination of the above scale dimensions through
the analysis of the intersection points of dimensions one to six, although we used the practical value
of Afp obtained by 3 x 3 minors. We have shown that the value obtained by the intersection of the
zero loci of 3 x 3 minors agrees with the result of the e expansion. The discrepancy between the
expansion and the determinant method is reduced with the new Pade analysis with the introduction
of the critical dimension Dc.

We obtained the critical dimension Dc from the minorめ3 for the = 0 and ^ 0 limits. The
intersection of the zero loci of d [ D, Af ]n at the point = Acp = 0 gives the critical dimension
Dc = 2.6199. We have estimated the critical dimension approximately by other methods, by the peak
approaching the finite d\ 2 ( Dc = 2.6050), the dimensional reduction value ( Dc = 2.5995), and 4 x 4
minor analysis ( Dc = 2.589).

We emphasize that the estimation of the critical dimension Dc is useful in practical terms for
the precise analysis of the Yang-Lee edge singularity between two and six dimensions by the Pade
analysis of the 6 expansion [30].

We have discussed the dimensional reduction property in the Yang-Lee model, using the fact that a
branched polymer inD+ 2 dimensions is equivalent to a D-dimensional Yang-Lee edge singularity.
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Appendix. Pliiker formula
Relation 7 (3 x 3 minors) For the determinantめ23, which is defined as

dm = det
^ vs\ vs2 us3 ヽ

vt\ vt2 vt3

〈 vq\ vq2 vq3 ノ

i , . v s l v s2 \ へ ' { v^ l v^3 \ , , / vi'2 v s3 .
ハ ，、(V

_
リ W2 —

_
et

W v/3 + (V

_
v,2ノ（ん”

if the first determinant (め2 ) and second minor (ゴ13) on the right-hand side are zero, then the third
minor (め3) should be vanishing whenめ23 = 0.

Relation 2 (2 x 4 matrix) The 2 x 4 matrix is denoted as

M Ill ズ12 113 114
ぶ2 1 ズ2 2 ズ2 3 ズ2 4

(A.2)

The Pliiker relation is

[12][34]- [13][24] + [14][23] = 0, (A.3)

where the minor is denoted as [ /ノ] = (ズ 1 / )“ 2ゾ）一（ズ ly)(ズ2/).The application of tms formula to minors
of our case can be taken as

M
us1 vs2 v^3 vs4
vt\ vt2 v/3 vtA

(A.4)

Thus, in our notation for 2 x 2 minors,

ゴ12 = [12]，ゴ13 = [13]，め4 = [14], め3 = [23】，ゴ24 = 124]，め4 = [34] (A.5)

and we have an identity

ゴ12ゴ34 — ゴ13ゴ24 +ゴ14ゴ23 = 0, (A.6)

which is represented by the tableaux

2
3 4

3
2 4 + 4

2 3
0. (A.7)
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Note that the third tableau is not ordered by increasing row and column (4 is larger than 3). Another
application of this formula is to take the following matrix:

M v^ l v/1 vq\ vx\
v^3 vt3 vq3 vx3

(A.8)

In the D = 6 case, we find that 2 x 2 minors made of the above matrix are vanishing, [12] = [13] =
[14] = 0 for A0 = 2, A4 = 8, and △6 = 10. Therefore they satisfy the relation of Eq. (A.3). In this
D = 6 case, we also find that, for such values of A# = 2, A4 = 8, A6 = 10, the other three sets of
minors are vanishing at D = 6:

[34] = det

[23] = det

vql vxl
vq3 vx3

vt\ vql
vt3 vq3

0, R4] = det

0.

vt\ vxl
vt3 vx3

0,

(A.9)

Relation 3 (3 x 6 matrix)

(i) The 3 x 6 matrix in the bootstrap minor method is

/

\

vs l vs2 vs?> vsA v^5 v^6
vtl vt2 v/3 v/4 v/5 vt6
vql vql vq3 vcj4 vq5 vq6

\

/

(A.10)

The Pliiker relation is obtained by a mutual exchange of numbers:

[146][235] + [124][356] — [134][256] + [126][345] — [136][245] + [123][456] = 0 (A. l 1)

This identity is obtained from the first term to the second term by (2 0 6), and from the second to
third by (2 0 3), etc. with the sign. We can also use the following relations (obtained similarly):

[126][345] - [123][456] + [124][356] - [125][346] = 0

[136][245] + [123][456] + [134][256] — [135][246] = 0; (A.12)

from these equations, Eq. (A.l 1) becomes

[146][235] = -3[123][456]- [125][346] + [135][246].

In our minor examples, we have

ゴ146ゴ235 = 一3め23ゴ456 — ゴ125ゴ346 +ゴ135ゴ246.

i’he terms on the right-hand side are ordered by increasing row and column,

(ii) Another application can be taken as

(A.13)

(A.14)

\

v^ l v/1 vql vxl vsl’ v s l f ,
vs2 vtl vql vx2 vs2 f v s2 f ,
v^3 vt3 vq3 vx3 vs3 f vsY

(A.15)
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The Pliiker relation is the same as before. In a tableau, Eq. (A.13) is expressed as

4 5 6

The left-hand side is not ordered by increasing column, but the right-hand side is a combination
of ordering by both increasing row and column.
The Pliiker relation is expressed by a two-row tableau [27], and for anm x n matrix, the formula
becomes

〉: び (,1，• • .，ら)[“ 1，• • •，a女，c，、，. • •，Cit ] [cj t^ •，c“，b“ . . 翁，bni ] = 0, (A.17)
i\く…く“，h+\ ...くis

where (1,…，s ) = (/し • • •，is )9 aj ,bf ,Cff e (1, . . . , «), and5 = m — k+l — l > m, t = m — k > 0.
These tableau representations suggest algebraic structures such as character expansion.
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