
Sigmoid-weighted linear units for neural
network function approximation in
reinforcement learning

Author Stefan Elfwing, Eiji Uchibe, Kenji Doya
journal or
publication title

Neural Networks

year 2018-01-11
Publisher Elsevier Ltd.
Rights (C) 2017 The Author(s).
Author's flag publisher
URL http://id.nii.ac.jp/1394/00000601/

doi: info:doi/10.1016/j.neunet.2017.12.012

Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/Licenses/by-nc-nd/4.0/)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OIST Institutional Repository

https://core.ac.uk/display/234765239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Please cite this article in press as: Elfwing, S., et al., Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks
(2018), https://doi.org/10.1016/j.neunet.2017.12.012.

Neural Networks () –

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2017 special issue

Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning
Stefan Elfwing a,*, Eiji Uchibe a,b, Kenji Doya b

a Department of Brain Robot Interface, ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seikacho, Soraku-gun, Kyoto 619-0288, Japan
b Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Reinforcement learning
Sigmoid-weighted linear unit
Function approximation
Tetris
Atari 2600
Deep learning

a b s t r a c t

In recent years, neural networks have enjoyed a renaissance as function approximators in reinforcement
learning. Two decades after Tesauro’s TD-Gammon achieved near top-level human performance in
backgammon, the deep reinforcement learning algorithm DQN achieved human-level performance in
many Atari 2600 games. The purpose of this study is twofold. First, we propose two activation functions
for neural network function approximation in reinforcement learning: the sigmoid-weighted linear unit
(SiLU) and its derivative function (dSiLU). The activation of the SiLU is computed by the sigmoid function
multiplied by its input. Second, we suggest that themore traditional approach of using on-policy learning
with eligibility traces, instead of experience replay, and softmax action selection can be competitive
with DQN, without the need for a separate target network. We validate our proposed approach by, first,
achieving new state-of-the-art results in both stochastic SZ-Tetris and Tetris with a small 10 × 10 board,
using TD(λ) learning and shallow dSiLU network agents, and, then, by outperforming DQN in the Atari
2600 domain by using a deep Sarsa(λ) agent with SiLU and dSiLU hidden units.
© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Neural networks have enjoyed a renaissance as function ap-
proximators in reinforcement learning (Sutton & Barto, 1998) in
recent years. The DQN algorithm (Mnih et al., 2015), which com-
bines Q-learning with a deep neural network, experience replay,
and a separate target network, achieved human-level performance
in many Atari 2600 games. Since the development of the DQN
algorithm, there have been several proposed improvements, both
to DQN specifically and deep reinforcement learning in general.
van Hasselt, Guez, and Silver (2015) proposed double DQN to
reduce overestimation of the action values in DQN and Schaul,
Quan, Antonoglou, and Silver (2016) developed a framework for
more efficient replay byprioritizing experiences ofmore important
state transitions. Wang et al. (2016) proposed the dueling network
architecture formore efficient learning of the action value function
by separately estimating the state value function and the advan-
tages of each action. Mnih et al. (2016) proposed a framework
for asynchronous learning by multiple agents in parallel, both for
value-based and actor-criticmethods. To date, themost impressive
application of using deep reinforcement learning is AlphaGo (Silver

* Corresponding author.
E-mail addresses: elfwing@atr.jp (S. Elfwing), uchibe@atr.jp (E. Uchibe),

doya@oist.jp (K. Doya).

et al., 2016, 2017), which has achieved superhuman performance
in the ancient board game Go.

The purpose of this study is twofold. First,motivated by the high
performance of the expected energy restricted Boltzmannmachine
(EE-RBM) in our earlier studies (Elfwing, Uchibe, & Doya, 2015,
2016), we propose two activation functions for neural network
function approximation in reinforcement learning: the sigmoid-
weighted linear unit (SiLU) and its derivative function (dSiLU).
The activation of the SiLU is computed by the sigmoid function
multiplied by its input. After we first proposed the SiLU (Elfwing,
Uchibe, & Doya, 2017), Ramachandran, Zoph, and Le (2017) re-
cently performed a comprehensive comparison between the SiLU,
the rectifier linear unit (ReLU; Hahnloser, Sarpeshka, Mahowald,
Douglas, & Seung, 2000), and 6 other activation functions in the
supervised learning domain. They found that the SiLU consistently
outperformed the other activation functions when tested in 3
deep architectures on CIFAR-10/100 (Krizhevsky, 2009), in 5 deep
architectures on ImageNet (Deng et al., 2009), and on 4 test sets for
English-to-German machine translation.

Second, we suggest that the more traditional approach of using
on-policy learning with eligibility traces, instead of experience
replay, and softmax action selection with simple annealing can be
competitive with DQN, without the need for a separate target net-
work. Our approach is something of a throwback to the approach
used by Tesauro (1994) to develop TD-Gammon more than two
decades ago. Using a neural network function approximator and

https://doi.org/10.1016/j.neunet.2017.12.012
0893-6080/© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).

https://doi.org/10.1016/j.neunet.2017.12.012
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:elfwing@atr.jp
mailto:uchibe@atr.jp
mailto:doya@oist.jp
https://doi.org/10.1016/j.neunet.2017.12.012
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite this article in press as: Elfwing, S., et al., Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks
(2018), https://doi.org/10.1016/j.neunet.2017.12.012.

2 S. Elfwing et al. / Neural Networks () –

TD(λ) learning (Sutton, 1988), TD-Gammon reached near top-level
human performance in backgammon, which to this day remains
one of the most impressive application of reinforcement learning.

To evaluate our proposed approach, we first test the perfor-
mance of shallow network agents with SiLU, ReLU, dSiLU, and sig-
moid hidden units in stochastic SZ-Tetris, which is a simplified but
difficult version of Tetris. The best agent, the dSiLU network agent,
improves the average state-of-the-art score by 20%. In stochastic
SZ-Tetris, we also train deep network agents using raw board
configurations as states. An agent with SiLUs in the convolutional
layers and dSiLUs in the fully-connected layer (SiLU–dSiLU) out-
performs the previous state-of-the-art average final score. We
thereafter train a dSiLU network agent in standard Tetris with a
smaller, 10 × 10, board size, achieving a state-of-the-art score
in this more competitive version of Tetris as well. We then test
a deep SiLU–dSiLU network agent in the Atari 2600 domain. It
improves the mean DQN normalized scores achieved by DQN and
double DQN by 232% and 161%, respectively, in 12 unbiasedly
selected games. We finally analyze the ability of on-policy value-
based reinforcement learning to accurate estimate the expected
discounted returns and the importance of softmax action selection
for the games where our proposed agents performed particularly
well.

2. Method

2.1. TD(λ) and Sarsa(λ)

In this study, we use two reinforcement learning algorithms:
TD(λ) (Sutton, 1988) and Sarsa(λ) (Rummery & Niranjan, 1994;
Sutton, 1996). TD(λ) learns an estimate of the state-value function,
V

π
, and Sarsa(λ) learns an estimate of the action-value function,

Q
π
, while the agent follows policy π . If the approximated value

functions, Vt ≈ V
π

and Qt ≈ Q
π
, are parameterized by the

parameter vector θt , then the gradient-descent learning update of
the parameters is computed by

θt+1 = θt + αδtet , (1)

where the TD-error, δt , is

δt = rt + γVt (st+1) − Vt (st) (2)

for TD(λ) and

δt = rt + γQt (st+1, at+1) − Qt (st , at) (3)

for Sarsa(λ). The eligibility trace vector, et , is

et = γ λet−1 + ∇θtVt (st), e0 = 0, (4)

for TD(λ) and

et = γ λet−1 + ∇θtQt (st , at), e0 = 0, (5)

for Sarsa(λ). Here, st is the state at time t , at is the action selected
at time t , rt is the reward for taking action at in state st , α is the
learning rate, γ is the discount factor of future rewards, λ is the
trace-decay rate, and ∇θtVt and ∇θtQt are the vectors of partial
derivatives of the function approximators with respect to each
component of θt .

2.2. Sigmoid-weighted linear units

We proposed the EE-RBM as a function approximator in rein-
forcement learning (Elfwing et al., 2016). In the case of state-value
based learning, given a state vector s, an EE-RBM approximates
the state-value function V by the negative expected energy of an

RBM (Freund & Haussler, 1992; Hinton, 2002; Smolensky, 1986)
network:

V (s) =

∑
k

zkσ (zk) +

∑
i

bisi, (6)

zk =

∑
i

wiksi + bk, (7)

σ (x) =
1

1 + e−x . (8)

Here, zk is the input to hidden unit k, σ (·) is the sigmoid function,
bi is the bias weight for input unit si, wik is the weight connecting
state si and hidden unit k, and bk is the bias weight for hidden unit
k. Note that Eq. (6) can be regarded as the output of a one-hidden
layer feedforward neural network with hidden unit activations
computed by zkσ (zk) and with uniform output weights of one. In
this study, motivated by the high performance of the EE-RBM in
both the classification (Elfwing et al., 2015) and the reinforcement
learning (Elfwing et al., 2016) domains, we propose the SiLU as an
activation function for neural network function approximation in
reinforcement learning. The activation ak of the kth SiLU for input
zk is computed by the sigmoid function multiplied by its input
(i.e., equal to the contribution from a hidden node to the value
function in an EE-RBM):

ak(zk) = zkσ (zk). (9)

For zk-values of large magnitude, the activation of the SiLU is
approximately equal to the activation of the ReLU (see left panel in
Fig. 1), i.e., the activation is approximately equal to zero for large
negative zk-values and approximately equal to zk for large positive
zk-values. Unlike the ReLU (and other commonly used activation
units such as sigmoid and tanh units), the activation of the SiLU
is not monotonically increasing. Instead, it has a global minimum
value of approximately−0.28 for zk ≈ −1.28. An attractive feature
of the SiLU is that it has a self-stabilizing property, which we
demonstrated experimentally in Elfwing et al. (2015). The global
minimum, where the derivative is zero, functions as a ‘‘soft floor’’
on the weights that serves as an implicit regularizer that inhibits
the learning of weights of large magnitudes.

In Elfwing et al. (2015), we discovered that the derivative func-
tion of the SiLU (i.e., the derivative of the contribution from a
hidden node to the output in an EE-RBM) looks like a steeper and
‘‘overshooting’’ version of the sigmoid function. In this study, we
call this function the dSiLU and we propose it as a competitive
alternative to the sigmoid function in neural network function
approximation in reinforcement learning. The activation of the
dSiLU is computed by the derivative of the SiLU (see right panel
in Fig. 1):

ak(zk) = σ (zk) (1 + zk(1 − σ (zk))) . (10)

The dSiLU has a maximum value of approximately 1.1 and a mini-
mum value of approximately−0.1 for zk ≈ ±2.4, i.e., the solutions
to the equation zk = − log ((zk − 2)/(zk + 2)).

2.3. Action selection

We use softmax action selection with a Boltzmann distribution
in all experiments. For Sarsa(λ), the probability to select action a in
state s is defined as

π (a|s) =
exp(Q (s, a)/τ)∑
b exp(Q (s, b)/τ)

. (11)

For themodel-based TD(λ) algorithm, we select an action a in state
s that leads to the next state s′ with a probability defined as

π (a|s) =
exp(V (f (s, a))/τ)∑
b exp(V (f (s, b))/τ)

. (12)

Please cite this article in press as: Elfwing, S., et al., Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks
(2018), https://doi.org/10.1016/j.neunet.2017.12.012.

S. Elfwing et al. / Neural Networks () – 3

Fig. 1. The activation functions of the SiLU and the ReLU (left panel), and the dSiLU and the sigmoid unit (right panel).

Here, f (s, a) returns the next state s′ according to the deterministic
state transition dynamics and τ is the temperature that controls
the trade-off between exploration and exploitation. We used hy-
perbolic annealing of the temperature, and the temperature was
decreased after every episode i:

τ (i) =
τ0

1 + τki
. (13)

Here, τ0 is the initial temperature and τk controls the rate of
annealing.

3. Experiments

3.1. SZ-Tetris

Szita and Szepesvári (2010) proposed stochastic SZ-Tetris
(Burgiel, 1997) as a benchmark for reinforcement learning that
preserves the core challenges of standard Tetris but allows faster
evaluation of different strategies due to shorter episodes by re-
moving easier tetrominos. Stochastic SZ-Tetris is played on a board
of standard Tetris size with a width of 10 and a height of 20. In
each time step, either an S-shaped tetromino or a Z-shaped tetro-
mino appears with equal probability. The agent selects a rotation
(lying or standing) and a horizontal position within the board. In
total, there are 17 possible actions for each tetromino (9 standing
and 8 lying horizontal positions). After the action selection, the
tetromino drops down the board, stopping when it hits another
tetromino or the bottom of the board. If a row is completed, then it
disappears. The agent gets a score of +1 point for each completed
row. An episode ends when a tetromino does not fit within the
board.

The standard learning approach for Tetris has been to use a
model-based setting and define the evaluation function or state-
value function as the linear combination of hand-coded features.
Value-based reinforcement learning algorithms have a lousy track
record using this approach. In regular Tetris, their reported perfor-
mance levels are manymagnitudes lower than black-boxmethods
such as the cross-entropy (CE) method and evolutionary ap-
proaches. In stochastic SZ-Tetris, the reported scores for a wide
variety of reinforcement learning algorithms are either approxi-
mately zero (Szita & Szepesvári, 2010) or in the single digits.1

Value-based reinforcement learning has had better success in
stochastic SZ-Tetris when using non-linear neural network based
function approximators. Faußer and Schwenker (2013) achieved
a score of about 130 points using a shallow neural network func-
tion approximator with sigmoid hidden units. They improved the
result to about 150 points by using an ensemble approach con-
sisting of ten neural networks. We achieved an average score of

1 http://barbados2011.rl-community.org/program/SzitaTalk.pdf.

about 200 points using three different neural network function
approximators: an EE-RBM, a free energy RBM, and a standard
neural network with sigmoid hidden units (Elfwing et al., 2016).
Jaskowski, Szubert, Liskowski, and Krawiec (2015) achieved the
current state-of-the-art results using systematic n-tuple networks
as function approximators: average scores of 220 and 218 points
achievedby the evolutionaryVD-CMA-ESmethod andTD-learning,
respectively, and the best mean score in a single run of 295 points
achieved by TD-learning.

In this study, we use the TD(λ) algorithm and softmax action se-
lection to compare the performance of different hidden activation
units in two learning settings: (1) shallownetwork agentswith one
hidden layer using hand-coded state features and (2) deep network
agents using raw board configurations as states, i.e., a state node
is set to one if the corresponding board cell was occupied by a
tetromino and set to zero otherwise.

In the setting with state features, we trained shallow network
agents with SiLU, ReLU, dSiLU, and sigmoid hidden units. We used
the same experimental setup as used in our earlier work (Elfwing
et al., 2016). The networks consisted of one hidden layer with 50
hidden units and a linear output layer. The features were similar to
the original 21 features proposed by Bertsekas and Ioffe (1996), ex-
cept for not including the maximum column height and using the
differences in column heights instead of the absolute differences.
The length of the binary state vector was 460. The shallow network
agents were trained for 200,000 episodes and the experiments
were repeated for ten separate runs for each type of activation unit.

In the deep reinforcement learning setting, we used a deep
network architecture consisting of two convolutional layers with
15 and 50 filters of size 5 × 5 using a stride of 1, a fully-connected
layer with 250 units, and a linear output layer. Both convolutional
layerswere followed bymax-pooling layerswith poolingwindows
of size 3× 3 using a stride of 2. We compared networks with SiLUs
in both the convolutional and fully-connected layers (SiLU–SiLU)
with networks with ReLUs in all hidden layers (ReLU–ReLU). Based
on the high performance of the shallow networks with dSiLUs in
the hidden layer, we also tested a deep network with dSiLUs in
the last, fully-connected, hidden layer, combined with SiLUs in the
convolutional layers (SiLU–dSiLU). The deep network agents were
trained for 200,000 episodes and the experiments were repeated
for five separate runs for each type of network.

We used the following reward function (proposed by Faußer
and Schwenker (2013)):

r(s) = e−(number of holes in s)/33. (14)

We set γ to 0.99, λ to 0.55, τ0 to 0.5, and τk to 0.00025. We used a
rough grid-like search to find appropriate values of the learning
rate α and it was determined to be 0.001 for the four shallow
network agents and 0.0001 for the three deep network agents.

http://barbados2011.rl-community.org/program/SzitaTalk.pdf

Please cite this article in press as: Elfwing, S., et al., Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks
(2018), https://doi.org/10.1016/j.neunet.2017.12.012.

4 S. Elfwing et al. / Neural Networks () –

Fig. 2. Learning curves in stochastic SZ-Tetris for the four types of shallow neural network agents. The figure shows the average scores over ten separate runs (tick solid
lines) and the scores of individual runs (thin dashed lines). The mean scores were computed over every 1000 episodes.

Fig. 3. Average Learning curves in stochastic SZ-Tetris for the three types of deep
neural network agents. The figure shows the average scores over five separate runs,
computed over every 1000 episodes.

Table 1
Average scores (± standard deviations) achieved in stochastic SZ-Tetris, computed
over the final 1000 episodes for all runs and the best single runs.

Network Final average score Final best score

Shallow networks

SiLU 214 ± 74 253 ± 83
ReLU 191 ± 58 227 ± 76
dSiLU 263 ± 80 320 ± 87
Sigmoid 232 ± 75 293 ± 73

Deep networks

SiLU-SiLU 217 ± 53 219 ± 54
ReLU-ReLU 215 ± 54 217 ± 52
SiLU-dSiLU 229 ± 55 235 ± 54

Fig. 2 shows the average learning curves as well as learning
curves for the individual runs for the shallow networks, Fig. 3
shows the average learning curves for the deep networks, and
the final results are summarized in Table 1. The results show
significant differences (p < 0.0001) in final average score between
all four shallow agents. The networks with bounded hidden units
(dSiLU and sigmoid) outperformed the networks with unbounded
units (SiLU and ReLU), the SiLU network outperformed the ReLU
network, and the dSiLU network outperformed the sigmoid net-
work. The final average score (best score) of 263 (320) points
achieved by the dSiLU network agent is a new state-of-the-art
score, improving the previous best performance by 43 (25) points

or 20% (8%). In the deep learning setting, the SiLU–dSiLU network
significantly (p < 0.0001) outperformed the other two networks
and the average final score of 229 points is better than the previous
state-of-the-art of 220 points. There were no significant difference
(p = 0.32) between the final performance of the SiLU–SiLU
network and the ReLU–ReLU network.

3.2. 10 × 10 Tetris

The result achieved by the dSiLU network agent in stochastic
SZ-Tetris is impressive, but we cannot compare the result with
the methods that have achieved the highest performance levels
in standard Tetris, because those methods have not been applied
to stochastic SZ-Tetris. Furthermore, it is not feasible to apply
our method to Tetris with a standard board height of 20, be-
cause of the prohibitively long learning time. The current state-
of-the-art for a single run of an algorithm, achieved by the CBMPI
algorithm (Gabillon, Ghavamzadeh, & Scherrer, 2013; Scherrer,
Ghavamzadeh, Gabillon, Lesner, & Geist, 2015), is a mean score of
51 million cleared lines. However, for the best methods applied to
Tetris, there are reported results for a smaller, 10×10, Tetris board,
and in this case the learning time for our method is long, but not
prohibitively so.

10× 10 Tetris is playedwith the standard seven tetrominos and
the numbers of actions are 9 for the block-shaped tetromino, 17
for the S-, Z-, and stick-shaped tetrominos, and 34 for the J-, L- and
T-shaped tetrominos. In each time step, the agent gets a score equal
to the number of completed rows, with a maximum of +4 points
that can only be achieved by the stick-shaped tetromino.

We trained a shallow neural network agent with dSiLU units in
the hidden layer. To handle the more complex learning task, we
increased the number of hidden units to 250 and the number of
episodes to 400,000. We repeated the experiment for five separate
runs. We used the same 20 state features as in the SZ-Tetris exper-
iment, but the length of the binary state vector was reduced to 260
due to the smaller board size. The reward function was changed as
follows for the same reason:

r(s) = e−(number of holes in s)/(33/2). (15)

We used the same values of themeta-parameters as in the stochas-
tic SZ-Tetris experiment.

The average learning curve as well as learning curves for the
five separate runs in 10 × 10 Tetris are shown in Fig. 4. The dSiLU
network agent reached an average score of 4900 points over the
final 10,000 episodes and the five separate runs, which is a new
state-of-the-art in 10× 10 Tetris. The previous best average scores
are 4200 points achieved by the CBMPI algorithm, 3400 points
achieved by the DPI algorithm, and 3000 points achieved by the

Please cite this article in press as: Elfwing, S., et al., Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks
(2018), https://doi.org/10.1016/j.neunet.2017.12.012.

S. Elfwing et al. / Neural Networks () – 5

Fig. 4. Learning curves for a dSiLU network agent with 250 hidden nodes in 10× 10
Tetris. The figure shows the average score over five separate runs (tick solid lines)
and the scores of individual runs (thin dashed lines). The red dashed line shows the
previous best average score of 4200 points achieved by the CBMPI algorithm.

CEmethod (Gabillon et al., 2013). The best individual run achieved
a final mean score of 5300 points, which is also a new state-of-the-
art, improving on the score of 5000 points achieved by the CBMPI
algorithm.

It is particularly impressive that the dSiLU network agent
achieved its result using features similar to the original Bertsekas
features. Using only the Bertsekas features, the CBMPI algorithm,
the DPI algorithm, and the CE method could only achieve av-
erage scores of about 500 points (Gabillon et al., 2013). The CE
method has achieved its best score by combining the Bertsekas
features, the Dellacherie features (Fahey, 2003), and three original
features (Thiery & Scherrer, 2009). The CBMPI algorithm achieved
its best score using the same features as the CE method, except
for using five original RBF height features instead of the Bertsekas
features.

3.3. Atari 2600 games

To further evaluate the use of value-based on-policy reinforce-
ment learning with eligibility traces and softmax action selection
in high-dimensional state space domains we applied Sarsa(λ) with
a deep convolution neural network function approximator in the
Atari 2600 domain using the Arcade Learning Environment (Belle-
mare, Naddaf, Veness, & Bowling, 2013). Based on the results for
the deep networks in SZ-Tetris, we used a SiLU–dSiLU network
with SiLU units in the convolutional layers and dSiLU units in the
fully-connected layer. To limit the number of games and prevent
a biased selection of the games, we selected the 12 games played
by DQN (Mnih et al., 2015) that begin with the letters ‘A’ and
‘B’: Alien, Amidar, Assault, Asterix, Asteroids, Atlantis, Bank Heist,
Battle Zone, Beam Rider, Bowling, Boxing, and Breakout.

We used a similar experimental setup as Mnih et al. (2015).
We pre-processed the raw 210 × 160 Atari 2600 RGB frames
by extracting the luminance channel, taking the maximum pixel
values over consecutive frames to prevent flickering, and then
downsampling the grayscale images to 105 × 80. For computa-
tional reasons, we used a smaller network architecture. Instead
of three convolutional layers, we used two with half the number
of filters, each followed by a max-pooling layer. The input to the
networkwas a 105× 80×2 image consisting of the current and the
fourth previous pre-processed frame. As we used frame skipping
where actions were selected every fourth frame and repeated for
the next four frames, we only needed to apply pre-processing to
every fourth frame. The first convolutional layer had 16 filters of

size 8× 8 with a stride of 4. The second convolutional layer had 32
filters of size 4 × 4 with a stride of 2. The max-pooling layers had
pooling windows of size 3× 3 with a stride of 2. The convolutional
layers were followed by a fully-connected hidden layer with 512
dSiLU units and a fully-connected linear output layer with 4 to 18
output (or action-value) units, depending on the number of valid
actions in the considered game. We selected meta-parameters by
a preliminary search in the Alien, Amidar and Assault games and
used the same values for all 12 games: α: 0.001, γ : 0.99, λ: 0.8, τ0:
0.5, and τk: 0.0005. As inMnih et al. (2015), we clipped the rewards
to be between −1 and +1, but we did not clip the values of the
TD-errors.

In each of the 12 Atari games, we trained a SiLU–dSiLU agent
for 200,000 episodes and the experiments were repeated for two
separate runs. An episode startedwith up to 30 ‘do nothing’ actions
(no-op condition) and it was played until the end of the game or
for a maximum of 18,000 frames (i.e., 5 min). We evaluated the
agents by computing the mean scores over every 100 consecutive
episodes in each run, which we call themScore. Figs. 5 and 6 show
the average learning curves, as well as the learning curves for the
two separate runs, in the 12 Atari 2600 games. Table 2 summarizes
our results using two metrics:

• Final score: the average score computed over the final
mScores.

• Best score: the average score computed over the maximum
mScores.

We included the Best score to be able to compare our results
with those achieved by DQN (single run scores, where themScores
were computed over 30 episodes; Mnih et al., 2015), the Gorila
implementation of DQN (average scores over 5 runs, where the
mScores were computed over 30 episodes; Nair et al., 2015), and
double DQN (singles run scores, where the mScores were com-
puted over 100 episodes; van Hasselt et al., 2015). The last two
rows of the table shows summary statistics over the 12 games,
which were obtained by computing the mean and the median of
the DQN normalized scores:

ScoreDQN_normalized =
Scoreagent − Scorerandom
ScoreDQN − Scorerandom

.

Here, Scorerandom is the score achieved by a random agent in Mnih
et al. (2015).

The results clearly show that our SiLU–dSiLU agent outper-
formed the other agents, improving the mean (median) DQN nor-
malized Best score from 127% (105%) achieved by double DQN
to 332% (125%). The SiLU–dSiLU agents achieved the highest Best
score in 6 out of the 12 games and only performed much worse
than the other 3 agents in one game, Breakout, where the learning
never took off during the 200,000 episodes of training (see Fig. 6).
The performance was especially impressive in the Asterix (Best
score of 100,322) and Asteroids (Best score of 10,614) games,
which improved the Best scores achieved by the second-best agent
by 562% and 552%, respectively.

4. Analysis

4.1. Value estimation

First, we investigate the ability of TD(λ) and Sarsa(λ) to accu-
rately estimate discounted returns:

Rt =

T−t∑
k=0

γ krt+k.

Here T is the length of an episode. The reason for doing this
is that van Hasselt et al. (2015) showed that the double DQN

Please cite this article in press as: Elfwing, S., et al., Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks
(2018), https://doi.org/10.1016/j.neunet.2017.12.012.

6 S. Elfwing et al. / Neural Networks () –

Fig. 5. Average learning curves (solid lines) over two separate runs (dashed lines) for the SiLU–dSiLU agents in the 6 Atari games that begin with the letter ‘A’. The dotted
lines show the reported results for DQN (red), the Gorila implementation of DQN (green), and double DQN (blue). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 2
The Best and Final scores achieved by our SiLU–dSiLU agents in 12 Atari 2600 games, and the reported Best scores
achieved by DQN, the Gorila implementation of DQN, and double DQN (dDQN) in the no-op condition with 5 min of
evaluation time.

Game DQN Gorila dDQN SiLU-dSiLU

Best Best Best Final Best

Alien 3,069 2,621 2,907 1,370 2,246
Amidar 740 1,190 702 762 904
Assault 3,359 1,450 5,023 2,415 2,944
Asterix 6,012 6,433 15,150 70,942 100,322
Asteroids 1,629 1,048 931 6,537 10,614
Atlantis 85,950 100,069 64,758 127,651 128,983
Bank Heist 430 609 728 5 770
Battle Zone 26,300 25,267 25,730 22,930 29,115
Beam Rider 6,846 3,303 7,654 1,829 2,176
Bowling 42 54 71 67 75
Boxing 72 95 82 36 92
Breakout 401 402 375 25 55

Mean (DQN Normalized) 100% 102% 127% 218% 332%
Median (DQN Normalized) 100% 104% 105% 78% 125%

Please cite this article in press as: Elfwing, S., et al., Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks
(2018), https://doi.org/10.1016/j.neunet.2017.12.012.

S. Elfwing et al. / Neural Networks () – 7

Fig. 6. Average learning curves (solid lines) over two separate runs (dashed lines) for the SiLU–dSiLU agents in the 6 Atari games that begin with the letter ‘B’. The dotted
lines show the reported results for DQN (red), the Gorila implementation of DQN (green), and double DQN (blue). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

algorithm improved the performance of DQN in Atari 2600 games
by reducing the overestimation of the action values. It is known
(Thrun & Schwartz, 1993; van Hasselt, 2010) that Q-learning based
algorithms, such as DQN, can overestimate action values due to the
max operator, which is used in the computation of the learning
targets. TD(λ) and Sarsa(λ) do not use themax operator to compute
the learning targets and they should therefore not suffer from this
problem.

Fig. 7 shows that for SZ-Tetris episodes of average (or expected)
length, the best dSiLUnetwork agent at the endof the learning (τ =

0.0098) learned good estimates of the discounted returns, both
along the episodes (left panel) and as measured by the normalized
sum of differences between V (st) and Rt (right panel):

1
T

T∑
t=1

(V (st) − Rt) .

The linear fit of the normalized sum of differences data for 1000
episodes gives a small underestimation (−0.43) for an episode of

average length (866 time steps). The V (st)-values overestimated
the discounted returns for short episodes and underestimated the
discounted returns for long episodes (especially in the middle part
of the episodes), which is accurate since the episodes ended earlier
and later, respectively, than were expected.

Fig. 8 shows typical examples of learned action values and
discounted returns along episodes in Asterix (score of 108,500)
and Asteroids (score of 22,500), when the best SiLU–dSiLU agents
at the end of the learning (τ = 0.00495) successfully played for
the full 18,000 frames (i.e., 4500 time steps since the agents acted
every fourth frame). In both games, with the exception of a few
smaller parts, the learned action values matched the discounted
returns very well along the whole episodes. The normalized sums
of differences (absolute differences) were 0.59 (1.05) in the As-
terix episode and −0.23 (1.28) in the Asteroids episode. In both
games, the agents overestimated action values at the end of the
episodes. However, this is an artifact of that an episode ended after
amaximumof 4500 time steps, which the agents could not predict.

Please cite this article in press as: Elfwing, S., et al., Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks
(2018), https://doi.org/10.1016/j.neunet.2017.12.012.

8 S. Elfwing et al. / Neural Networks () –

Fig. 7. The left panel shows learned V (st)-values and Rt -values, for examples of short, medium-long, and long episodes in SZ-Tetris. The right panel shows the normalized
sum of differences between V (st) and Rt for 1000 episodes and the best linear fit of the data (−0.012T + 9.8).

Fig. 8. Learned action values, Q (st , at), and discounted returns, Rt , for the best SiLU–dSiLU agents in Asterix and Asteroids.

Videos of the corresponding learned behaviors in Asterix and
Asteroids can be found at http://www.cns.atr.jp/~elfwing/videos/
asterix_deep_SiL.mov and http://www.cns.atr.jp/~elfwing/videos/
asteroids_deep_SiL.mov.

4.2. Action selection

Second, we investigate the importance of softmax action se-
lection in the games where our proposed agents performed par-
ticularly well. Almost all deep reinforcement learning algorithms
that have been used in the Atari 2600 domain have used ε-greedy
action selection (one exception is the asynchronous advantage
actor-critic method, A3C, which used softmax output units for the
actor Mnih et al., 2016). One drawback of ε-greedy selection is
that it selects all actions with equal probability when exploring,
which can lead to poor learning outcomes in taskswhere theworst
actions have very bad consequences. This is clearly the case in
both Tetris games and in the Asterix and Asteroids games. In each
state in Tetris, many, and often most, actions will creates holes,
which are difficult (especially in SZ-Tetris) to remove. In theAsterix
game, randomexploratory actions can kill Asterix if executedwhen
Cacofonix’s deadly lyres are passing. In the Asteroids game, one
of the actions sends the spaceship into hyperspace and makes it
reappear in a random location, which has the risk of the spaceship
self-destructing or of destroying it by appearing on top of an
asteroid.

We compared softmax action selection, where τ was set to
the annealed values after 10,000 episodes (τ10k), 50,000 episodes
(τ50k), and 200,000 episodes (τ200k, i.e., the τ -values at the end
of learning), and ε-greedy action selection, where ε was set to 0,
0.001, 0.01, and 0.05, for the best dSiLU network agent in SZ-Tetris
and the best SiLU–dSiLU agents in the Asterix and Asteroids games.
The results (see Table 3) clearly show that ε-greedy action selection
with ε set to 0.05, as used for evaluation by DQN, is not suitable
for these games. The scores were only 4% to 10% of the scores
for softmax selection using τ200k. The negative effects of random
exploration were largest in Asteroid and SZ-Tetris. Even when ε

was set as low as 0.001 and the agent performed only 2.1 non-
greedy actions per episode in Asteroids and 0.6 in SZ-Tetris, the
mean scoreswere reduced by 26% and 22%, respectively, compared
with ε = 0. In contrast, even if the numbers of non-greedy actions
in Asteroids and SZ-Tetris were increased by about an order of
magnitude when using τ10k compared to when using τ200k, the
scores were only reduced by 10% and 7%, respectively.

5. Conclusions

In this study, we proposed SiLU and dSiLU as activation func-
tions for neural network function approximation in reinforce-
ment learning. We demonstrated in stochastic SZ-Tetris that SiLUs
significantly outperformed ReLUs, and that dSiLUs significantly
outperformed sigmoid units. The best agent, the dSiLU network

http://www.cns.atr.jp/%7Eelfwing/videos/asterix%5Fdeep%5FSiL.mov
http://www.cns.atr.jp/%7Eelfwing/videos/asterix%5Fdeep%5FSiL.mov
http://www.cns.atr.jp/%7Eelfwing/videos/asterix%5Fdeep%5FSiL.mov
http://www.cns.atr.jp/%7Eelfwing/videos/asteroids%5Fdeep%5FSiL.mov
http://www.cns.atr.jp/%7Eelfwing/videos/asteroids%5Fdeep%5FSiL.mov
http://www.cns.atr.jp/%7Eelfwing/videos/asteroids%5Fdeep%5FSiL.mov

Please cite this article in press as: Elfwing, S., et al., Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks
(2018), https://doi.org/10.1016/j.neunet.2017.12.012.

S. Elfwing et al. / Neural Networks () – 9

Table 3
Mean scores and average numbers of non-greedy actions for softmax action selec-
tion and ε-greedy action selection.

Game Selection Mean score Non-greedy actions

SZ-Tetris

τ200k = 0.0098 326 28.7
τ50k = 0.0370 318 93.0
τ10k = 0.1429 302 191.7
ε = 0 332 0
ε = 0.001 260 0.6
ε = 0.01 71 2.0
ε = 0.05 14 3.2

Asterix

τ200k = 0.00495 104,299 47.6
τ50k = 0.0192 97,365 178.5
τ10k = 0.0833 71,505 576.9
ε = 0 102,890 0
ε = 0.001 98,264 3.6
ε = 0.01 66,113 30.0
ε = 0.05 7,152 56.8

Asteroids

τ200k = 0.00495 15,833 31.3
τ50k = 0.0192 15,421 92.7
τ10k = 0.0833 14,219 355.2
ε = 0 15,091 0
ε = 0.001 11,105 2.1
ε = 0.01 3,536 11.7
ε = 0.05 1,521 47.3

agent, achieved a new state-of-the-art in stochastic SZ-Tetris and
in 10 × 10 Tetris. In the Atari 2600 domain, a deep Sarsa(λ) agent
with SiLUs in the convolutional layers and dSiLUs in the fully-
connected hidden layer outperformed DQN and double DQN, as
measured by mean and median DQN normalized scores.

An additional purpose of this study was to demonstrate that
a more traditional approach of using on-policy learning with el-
igibility traces and softmax selection (i.e., basically a ‘‘textbook’’
version of a reinforcement learning agent but with non-linear
neural network function approximators) can be competitive with
the approach used by DQN. This means that there is a lot of room
for improvements, by, e.g., using, as DQN, a separate target net-
work, but also by using more recent advances such as the dueling
architecture (Wang et al., 2016) for more accurate estimates of
the action values and asynchronous learning by multiple agents in
parallel (Mnih et al., 2016).

Acknowledgments

This work was supported by the project commissioned by the
New Energy and Industrial Technology Development Organization
(NEDO), MEXT KAKENHI grants 16H06563 and 17H06042, and
Okinawa Institute of Science and Technology Graduate University
research support to KD.

References

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The Arcade learning
environment: an evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47, 253–279.

Bertsekas, D. P., & Ioffe, S. (1996). Temporal differences based policy iteration and
applications in neuro-dynamic programming. Technical Report LIDS-P-2349,
MIT.

Burgiel, H. (1997). How to lose at Tetris.Mathematical Gazette, 81, 194–200.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-

scale hierarchical image database. In CVPR09.
Elfwing, S., Uchibe, E., & Doya, K. (2015). Expected energy-based restricted Boltz-

mann machine for classification. Neural Networks, 64(3), 29–38.
Elfwing, S., Uchibe, E., & Doya, K. (2016). From free energy to expected energy: Im-

proving energy-based value function approximation in reinforcement learning.
Neural Networks, 84, 17–27.

Elfwing, S., Uchibe, E., & Doya, K. (2017). Sigmoid-weighted linear units for neu-
ral network function approximation in reinforcement learning. arXiv:1702.
03118 [cs.LG].

Fahey, C. (2003). Tetris AI, computer plays tetris. colinfahey.com/tetris/tetris.html
[Online; (accessed 22.02.17)].

Faußer, S., & Schwenker, F. (2013). Neural network ensembles in reinforcement
learning. Neural Processing Letters, 1–15.

Freund, Y., & Haussler, D. (1992). Unsupervised learning of distributions on binary
vectors using two layer networks. In J. E. Moody, S. J. Hanson, & R. P. Lippmann
(Eds.), Proceedings of advances in neural information processing systems. Morgan
Kaufmann.

Gabillon, V., Ghavamzadeh, M., & Scherrer, B. (2013). Approximate dynamic pro-
gramming finally performs well in the game of tetris. In Proceedings of advances
in neural information processing systems (pp. 1754–1762).

Hahnloser, R. H. R., Sarpeshka, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S.
(2000). Digital selection and analogue amplification coexist in a cortex-inspired
silicon circuit. Nature, 405, 947–951.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural Computation, 12(8), 1771–1800.

Jaskowski, W., Szubert, M. G., Liskowski, P., & Krawiec, K. (2015). High-dimensional
function approximation for knowledge-free reinforcement learning: a case
study in SZ-Tetris. In Proceedings of the genetic and evolutionary computation
conference (pp. 567–573).

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Tech.
rep., University of Toronto.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., & Harley, T. et al., (2016).
Asynchronous methods for deep reinforcement learning. In Proceedings of the
international conference on machine learning (pp. 1928–1937).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et
al. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540), 529–533.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., & Maria, A. D. et al.,
(2015). Massively parallel methods for deep reinforcement learning. arXiv:
1507.04296 [cs.LG].

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activation functions.
arXiv:1710.05941 [cs.NE].

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist
systems. Tech. Rep. CUED/F-INFENG/TR 166, Cambridge University Engineering
Department.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2016). Prioritized experience replay.
In International conference on learning representations, Puerto Rico.

Scherrer, B., Ghavamzadeh,M., Gabillon, V., Lesner, B., &Geist,M. (2015). Approxim-
ate modified policy iteration and its application to the game of tetris. Journal of
Machine Learning Research (JMLR), 16, 1629–1676.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et al.
(2016). Mastering the game of Go with deep neural networks and tree search.
Nature, 529, 484–503.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., & Guez, A. et
al., (2017). Mastering the game of go without human knowledge. Vol. 550, (pp.
354–359).

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of
harmony theory. In D. E. Rumelhart, & J. L. McClelland (Eds.), Parallel distributed
processing: explorations in the microstructure of cognition. Volume 1: Foundations.
MIT Press.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences.
Machine Learning , 3, 9–44.

Sutton, R. S. (1996). Generalization in reinforcement learning: successful examples
using sparse coarse coding. In Proceedings of advances in neural information
processing systems (pp. 1038–1044). MIT Press.

Sutton, R. S., & Barto, A. (1998). Reinforcement learning: An introduction. MIT Press.
Szita, I., & Szepesvári, C. (2010). SZ-Tetris as a benchmark for studying key problems

of reinforcement learning. In ICML 2010 workshop on machine learning and
games.

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation, 6(2), 215–219.

Thiery, C., & Scherrer, B. (2009). Improvements on learning tetriswith cross entropy.
International Computer Games Association Journal, 32.

Thrun, S., & Schwartz, A. (1993). Issues in using function approximation for re-
inforcement learning. In Proceedings of the 1993 connectionist models summer
school (pp. 255–263).

van Hasselt, H. (2010). Double q-learning. In Proceedings of advances in neural
information processing systems (pp. 2613–2621).

van Hasselt, H., Guez, A., & Silver, D. (2015). Deep Reinforcement learning with
double q-learning. arXiv:1509.06461 [cs.LG].

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., & de Freitas, N. (2016).
Dueling network architectures for deep reinforcement learning. In Proceedings
of the international conference on machine learning (pp. 1995–2003).

http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb1
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb3
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb3
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb3
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb3
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb3
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb3
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb3
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb4
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb4
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb4
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb4
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb4
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb4
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb4
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb4
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb4
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb4
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb4
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb4
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb5
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb5
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb5
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb5
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb5
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb5
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb5
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb5
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb5
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb5
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb5
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb5
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb6
http://arxiv.org/1702.03118
http://arxiv.org/1702.03118
http://arxiv.org/1702.03118
http://colinfahey.com/tetris/tetris.html
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb9
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb9
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb9
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb9
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb9
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb9
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb9
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb9
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb9
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb9
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb9
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb9
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb10
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb12
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb13
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb17
http://arxiv.org/1507.04296
http://arxiv.org/1507.04296
http://arxiv.org/1507.04296
http://arxiv.org/1710.05941
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb22
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb23
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb25
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb26
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb27
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb28
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb28
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb28
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb28
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb28
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb28
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb28
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb28
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb28
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb28
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb28
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb30
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://refhub.elsevier.com/S0893-6080(17)30297-6/sb31
http://arxiv.org/1509.06461

	Sigmoid-weighted linear units for neural network function approximation in reinforcement learning
	Introduction
	Method
	TD(λ) and Sarsa(λ)
	Sigmoid-weighted linear units
	Action selection

	Experiments
	SZ-Tetris
	10 × 10 Tetris
	Atari 2600 games

	Analysis
	Value estimation
	Action selection

	Conclusions
	Acknowledgments
	References

