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Abstract

Spectral theory of turbulent flows

In this doctoral thesis we formulate a spectral theory of the mean-velocity profiles
(MVPs) of wall-bounded turbulent flows and use the spectral theory along with dimen-
sional analysis and similarity methods to shed some new theoretical light on several
outstanding problems in the interpretation of the extensive empirical data available
on such flows. The spectral theory applies to turbulent flows of both constant-density
and stratified fluids, and is predicated on the derivation, which we accomplish via a
control-volume analysis, of a “spectral link” between the MVPs and the eddy velocity
distribution (or, alternatively, the spectrum of turbulent kinetic energy) of the phe-
nomenological theory of turbulence. This spectral link is bijective in that it relates
each successive layer of a MVP to, and only to, the corresponding range of the eddy
velocity distribution (the buffer layer to the dissipative range, the log layer to the iner-
tial range, and the wake to the energetic range), with the implication that it is possible
to infer the internal structure of a turbulent state, as one would by parsing through
the successive ranges of the eddy velocity distribution, by parsing instead through the
successive layers of the attendant MVP. We use the spectral theory to argue that a
number of well-known, and as yet unresolved, disparities in the classical experimental
data on friction factor in turbulent plane Couette flows stem from the existence of
multiple states of turbulence that differ only at the largest lengthscales in the flow,
corresponding to the energetic range, and are therefore consistent with small-scale uni-
versality. We also apply the spectral theory to thermally-stratified plane Couette flows
of a type relevant to the atmosphere, and conclude that the spectral link remains bi-
jective in the presence of thermal stratification, but the layers of the MVPs are altered
by buoyancy. For the intermediate region, which is the only to have been previously
theoretically studied, the spectral theory makes predictions in accord with the classical
scaling of the Monin-Obukhov similarity theory (MOST); for the other regions (that
which is near the wall and that which is far from the wall and extends beyond the
intermediate region), the predictions of the spectral theory are in accord with a new
set of scaling laws, which we are able to derive on the basis of dimensional analysis
and similarity assumptions. We hope that our findings will foster the formulation of
better spectral models which might help opening up new prospects of gaining further
theoretical insight into turbulence, “the most important unsolved problem of classical
physics”.
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Nomenclature

Upper-case
A a dimensionless function
B dimensionless constant of the “log law"
E spectrum of turbulent kinetic energy
F force
G unspecified function
G1 unspecified function
G2 unspecified function
H0 heat flux
Hs turbulent heat flux
I integration of the spectrum
Is integration of the spectrum at the flow centerline
I0 dimensionless function for the integration of φ1

I1 dimensionless function for the integration of φu3
I2 an equivalent form of I1
I3 dimensionless function for the integration of φu2
I4 an asymptotic limit form of I3
K turbulent kinetic energy
Ks turbulent kinetic energy of an eddy of size s
L largest length scale in the flow
L0 Obukhov length
M momentum
Nu Nusselt number
O dimensionless function for the integration of φ2

O1 dimensionless function for the integration of φu5
O2 an equivalent form of O1

P shear production
P̃ shear production normalized by ν/u4τ
Pr Prandtl number
R pipe radius
Ra Rayleigh number
Rib bulk Richardson number
Riτ friction Richardson number
Rs velocity slope at the flow centerline of plane Couette flow
Re Reynolds number

ReL0 Reynolds number based on Obukhov length
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xii Nomenclature

Res Reynolds number of an eddy of size s
Reτ friction Reynolds number
S surface area
S0 alternative velocity slope at the flow centerline of plane Couette flow
T temperature
T time averaged local mean temperature
T ′ fluctuating temperature component
δT temperature variation

∆T temperature difference between the two walls of plane Couette flow or channel flow
U mean velocity
V turbulent velocity fluctuation (twice the turbulent kinetic energy)
Ṽ turbulent velocity fluctuation normalized by u2τ
W wetted surface
Wy wetted surface at a distance y from the wall
X length of control volume

Lower-case
ai a dimensionless variable
b half width between the two plates of plane Couette flow
~ei unit vector
f friction factor
g gravitational acceleration
h half width between the two plates of channel flow or plane Couette flow
k wave number
kd thermal diffusivity
p pressure
p time averaged local mean pressure
p0 mean pressure at the wall
p′ fluctuating pressure component
r sand grains size
s eddy size
t time
ts timespan that an eddy of size s lasts
u time averaged local mean velocity
ub bulk velocity
uc centerline velocity
ũ time averaged local mean velocity normalized by uτ
ũc centerline velocity normalized by uτ
uτ friction velocity (

√
τ0/ρ)

~u velocity field (ui~ei)
u same as ~u
ui velocity in ~ei direction
u1 streamwise velocity
u2 wall-normal velocity
u3 spanwise velocity



xiii

ui time averaged local mean velocity in ~ei direction
u time averaged local mean velocity
u′i fluctuating velocity component in ~ei direction
u′ fluctuating velocity component
u′ fluctuating velocity in streamwise direction
v′ fluctuating velocity in wall-normal direction
vk the characteristic velocity of an eddy of wavenumber k

vrms root mean square of wall-normal velocity fluctuation
ṽrms root mean square of wall-normal velocity fluctuation normalized by uτ
vs the characteristic velocity of an eddy of size s
vy the characteristic velocity of an eddy of size y
x Cartesian coordinate along streamwise direction
~x position (xi~ei)
x1 streamwise position
x2 wall-normal position
x3 spanwise position
y distance from the wall
y1 arbitrary distance from the wall
ỹ distance from wall normalized by uτ/ν
ỹv thickness of the viscous layer normalized by uτ/ν
z Cartesian coordinate along spanwise direction

Greek
α thermal expansion coefficient
βd non-negative dimensionless parameter of the dissipative-range correction
βe non-negative dimensionless parameter of the energetic-range correction

∆o constant ∆o � 1
εi constant, 0 < εi � 1
ε̃i constant, 0 < ε̃i � 1
ε turbulent power per unit mass or dissipation of turbulent kinetic energy
η viscous length scale (ν3/4ε−1/4)
κ “Kármán constant"(0.4 ∼ 0.41)
κε dimensionless constant of the spectrum of turbulent kinetic energy
κτ dimensionless parameter
ν kinematic viscosity
νt turbulent viscosity
ξ dimensionless variable of integration
ρ fluid density
ρ time averaged local mean density
ρ′ fluctuating density component
ρ0 reference density
δρ density variation with respect to the reference density ρ0
σ dimensionless function of total shear stress
τ total shear stress
τ0 total shear stress at the wall



xiv Nomenclature

τt turbulent shear stress
τt12 turbulent shear stress
τv12 viscous shear stress
~τt turbulent shear stress tensor
~τv viscous shear stress tensor
φ dimensionless function for gradient of mean-velocity profile
φ1 φ-like function
φ2 φ-like function
φ̃ an equivalent form of φ
˜̃φ an equivalent form of φ
φu dimensionless function for gradient of mean-velocity profile
φu1 φu-like function
φu2 φu-like function
φu3 φu-like function
φu4 φu-like function
φu5 φu-like function
φu6 φu-like function



To my daughter Liuxi (流溪), my son Liuquan (流泉) and my niece
Juanjuan (涓涓), whose names are partly inspired from this thesis.





Contents

Declaration of Original and Sole Authorship iii

Abstract v

Acknowledgment vii

Abbreviations ix

Nomenclature xi

Contents xvii

List of Figures xix

1 Introduction 1
1.1 A synopsis of the phenomenological theory . . . . . . . . . . . . . . . . 5
1.2 An example of application of the spectral link . . . . . . . . . . . . . . 8
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Spectral theory of wall-bounded turbulent flows 13
2.1 Turbulent mean-velocity profiles . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The spectrum of turbulent kinetic energy . . . . . . . . . . . . . . . . . 15
2.3 Turbulent shear stress and spectral link . . . . . . . . . . . . . . . . . . 16
2.4 Equations of the MVPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 A note on the application of the spectral theory in this thesis . . . . . . 21
2.6 Comparison between pipe flow and channel flow . . . . . . . . . . . . . 22

2.6.1 Disparities of MVP . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.2 Disparities of friction factor . . . . . . . . . . . . . . . . . . . . 25
2.6.3 Disparities of shear production . . . . . . . . . . . . . . . . . . 26

2.7 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Spectral theory of plane Couette flow 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Spectral theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Attendant disparities in macroscopic properties other than the
MVPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xvii



xviii Contents

3.3 A note on the asymptotic value of the velocity slope at the flow centerline 39
3.4 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Spectral theory of thermally-stratified plane Couette flow 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 The Monin-Obukhov similarity theory . . . . . . . . . . . . . . . . . . 46
4.3 Mean-velocity profile: empirical data . . . . . . . . . . . . . . . . . . . 47
4.4 Mean-velocity profile: spectral theory . . . . . . . . . . . . . . . . . . . 49

4.4.1 Mean-flow equations . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.2 Spectral link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.3 The effect of the energetic-range correction . . . . . . . . . . . . 55

4.5 Generalized Monin-Obukhov similarity theory . . . . . . . . . . . . . . 55
4.5.1 Classic scaling laws for MVP . . . . . . . . . . . . . . . . . . . . 57
4.5.2 Scaling laws for φu . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.3 Scaling laws for MVP . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Conclusion 73

Appendix A Total shear stress 77

Appendix B Turbulent power per unit mass 81

Bibliography 83



List of Figures

1.1 Leonardo da Vinci’s sketch of a turbulent flow (chalked on paper, dated
A.D. 1494). This turbulent flow consists of what might be termed as
a “turbulent cauldron” that forms where a water jet, discharged from
an orifice in the vertical wall on the right side of the sketch, plunges
into a large pool of still water. The turbulent cauldron contains myriad
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range of sizes is a cardinal property of turbulent flows (Sreenivasan,
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1.2 Schematic of the energy cascade, the crucial conception of the phe-
nomenological theory of turbulence (Kolmogórov, 1941a,b). The largest
eddy, of size commensurate with the size of the turbulent domain, R,
appears at the top. The smallest eddies, of size set by the viscous length-
scale η, appear at the bottom. The turbulent kinetic energy, which is
extracted by the largest eddies from the mean flow, is transferred from
one generation of eddies to the next generation of eddies (of smaller
size). Thus the turbulent kinetic energy “cascades” down through suc-
cessive generations of increasingly smaller eddies, all of which are free
of viscous effects, until it reaches the smallest eddies, where viscosity
takes over and the turbulent kinetic energy is dissipated. According
to Kolmogórov’s analysis, discussed in the main text, the fundamental
quantity which remains invariant over the entire range of lengthscales is
the turbulent power per unit mass (Pope, 2000), ε, which represents the
rate at which turbulent kinetic energy is transferred between any given
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sponds to ỹ = Reτ ); the MVPs collapse onto a single curve close to the
wall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Red line: model spectrum for βd = 7, βe = 8, and L/η = 105. Blue line:
Kolmogórov spectrum without corrections. . . . . . . . . . . . . . . . . 17

2.3 Schematic used to derive an expression for the turbulent shear stress on
the wetted surface Wy. For the coordinate axes, we choose the x axis to
be along the streamwise direction and the y axis to be along the wall-
normal direction. Note that y = 0 corresponds to the wall, so that Wy

is at a distance y from the wall. . . . . . . . . . . . . . . . . . . . . . 17
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Reτ , which corresponds to the centerline (or centerplane) of the flow.
The data are from high fidelity direct numerical simulations (DNS):
El Khoury et al. (2013) (pipe flow), Bernardini et al. (2014) (channel
flow), Pirozzoli et al. (2014) (plane Couette flow). . . . . . . . . . . . 23

2.6 Log-linear plots of the MVPs of pipe flow (blue) and channel flow (red)
at the same value of Reτ = 1000. The data are from DNS: El Khoury
et al. (2013) (pipe flow), Bernardini et al. (2014) (channel flow). . . . 24

2.7 Log-linear plots of the MVPs of pipe flow (blue) and channel flow (red) at
the same value of Reτ = 3000, 30000, 300000 computed from the spectral
theory with κ = 0.4, βd = 7; and βe = 9 for pipe flow, βe = 7 for channel
flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Log-linear plots of the friction factor of pipe flow (blue) and channel
flow (red) as a function of Re. The data are from DNS: El Khoury et al.
(2013) (pipe flow), Bernardini et al. (2014) (channel flow). . . . . . . . 26

2.9 Log-linear plots of the friction factor of pipe flow (blue) and channel
flow (red) as a function of Re computed from the spectral theory with
κ = 0.4, βd = 7; and βe = 9 for pipe flow, βe = 7 for channel flow. . . . 27



xxi

2.10 Log-linear plots of the friction factor of pipe flow (blue) and channel flow
as a function of Re computed from the spectral theory with κ = 0.4,
βd = 7; and βe = 9 for pipe flow, βe = 7 (red) and βe = 2 (black) for
channel flow. For βe = 2, the values of the friction factor of channel flow
exceed those of pipe flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.11 Log-linear plots of the shear production of pipe flow (blue) and channel
flow (red) at the same value of Reτ = 1000. The data are from DNS:
El Khoury et al. (2013) (pipe flow), Bernardini et al. (2014) (channel
flow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.12 Log-linear plots of the shear production of pipe flow (blue) and channel
flow (red) at the same value of Reτ = 3000 computed from the spectral
theory with κ = 0.4, βd = 7; and βe = 9 for pipe flow, βe = 7 for channel
flow. Note that the blue line for pipe flow is covered by the red line for
channel flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.13 Log-linear plots of the premultiplied shear production of pipe flow (blue)
and channel flow (red) at the same value of Reτ = 1000. The data are
from DNS: El Khoury et al. (2013) (pipe flow), Bernardini et al. (2014)
(channel flow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.14 Log-linear plots of the premultiplied shear production of pipe flow (blue)
and channel flow (red) at the same value of Reτ = 3000 computed from
the spectral theory with κ = 0.4, βd = 7; and βe = 9 for pipe flow, βe = 7
for channel flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Log-linear plots of experimental and computational data on the rela-
tion between the friction factor f and the Reynolds number Re of plane
Couette flow. � Reichardt (1959). 4 Telbany & Reynolds (1982). �
Robertson (1959). N Kitoh et al. (2005). © DNS from Lee & Kim
(1991) (Green), Bech et al. (1995) (black), Tsukahara et al. (2006) (Pur-
ple), Avsarkisov et al. (2014) (Blue), and Pirozzoli et al. (2014) (Red),
respectively. Solid lines are the empirical formulas from Telbany &
Reynolds (1982): 0.0331/(log Re)2, Robertson (1959): 0.0361/(log Re)2,
and Pirozzoli et al. (2014): 0.0399/(log Re)2, respectively. . . . . . . . 34

3.2 Log-linear plots of experimental and computational data on the MVPs
of plane Couette flow. � Reichardt (1959) at Reτ = 723. 4 Telbany &
Reynolds (1982) at Reτ = 805. � Robertson (1959) at Reτ = 700. N
Kitoh et al. (2005) at Reτ = 192. © DNS from Avsarkisov et al. (2014)
(Blue) at Reτ = 550, and Pirozzoli et al. (2014) (Red) at Reτ = 986,
respectively. The grey line denotes the log law, ũ(ỹ) = 1
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Chapter 1

Introduction

Flows of high Reynolds number, wherein the ratio between inertial forces and vis-
cous forces is much larger than 1, display turbulence, a state characterized by velocity
fields that fluctuate in broad, continuous ranges of lengthscales (Sreenivasan, 1999;
Davidson, 2004). Leonardo da Vinci (1452–1519) might have been the first person to
put forth a picture of “ la torbolenza” (reproduced in Fig. 1.1). In a hand-written note,
Leonardo tells us that he derived that picture from careful observation:

Observe the motion of the surface of the water, which resembles that of
hair, which has two motions, of which one is caused by the weight of the
hair, the other by the direction of the curls; thus the water has eddying
motions, one part of which is due to the principal current, the other to
random and reverse motion (Piomelli’s translation in Lumley (1992)).

Leonardo’s distinction between that part of a flow “which is due to the principal cur-
rent” and that other part which consists of “random and reverse motion,” foreshadows
the Reynolds decomposition (Pope, 2000), a mainstay of modern theoretical turbu-
lence whereby velocity fields are decomposed additively into mean and fluctuating
components. Furthermore, the fluctuating component (that is, the “random and re-
verse motion”) continues to be thought of in the way Leonardo did (as may be inferred
from his hand-written note): that is, as an aggregate of ephemeral swirling currents or
“turbulent eddies” (Pope, 2000). And, in fact, such eddies are still with us, prominent
as the basic components of the internal structure of turbulence in Kolmogórov’s phe-
nomenological theory of turbulence (Frisch, 1995). Thus, in retrospect, the picture of
Fig. 1.1 and the hand-written note that Leonardo affixed to it, taken together, might
have raised sensible expectations of a speedy development in theoretical turbulence.

And yet, five hundred years after Leonardo and almost two centuries after the first
derivation, in the 1840s, of the Navier-Stokes equations that govern incompressible flows
(Kundu & Cohen, 2002), turbulent ones included, theoretical progress has been meagre.
The Navier-Stokes equations have not been solved analytically for any turbulent flow
directly relevant to an engineering application or natural phenomenon. Turbulence has
been said to be “the most important unsolved problem of classical physics” (Feynman
et al., 1963). It is certainly the most conspicuous unsolved problem in mathematical
classical physics, and as such it is likely to remain unsolved in future, for there seems

1
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Fig. 1.1: Leonardo da Vinci’s sketch of a turbulent flow (chalked on paper, dated A.D.
1494). This turbulent flow consists of what might be termed as a “turbulent cauldron”
that forms where a water jet, discharged from an orifice in the vertical wall on the
right side of the sketch, plunges into a large pool of still water. The turbulent cauldron
contains myriad eddies in a broad range of sizes; the largest eddy encompasses the
entire domain of the turbulent cauldron whereas the smallest ones, which are quite
numerous, have a characteristic size that is but a minute fraction of the size of the
turbulent cauldron. The presence of eddies in a broad range of sizes is a cardinal
property of turbulent flows (Sreenivasan, 1999; Davidson, 2004).

to be scant prospect that the Navier-Stokes equations will ever be solved analytically
for any shear flow in the turbulent regime (Moin & Mahesh, 1998; Doering, 2009).

As a general problem (and not just a narrowly mathematical one), turbulence is im-
portant on account of the myriad engineering applications that involve turbulent flows
(Rodi, 1993; Menter, 1994; Davidson, 2004). In this regard, engineers and applied
scientists have been chiefly interested in the macroscopic properties of the canonical
wall-bounded turbulent flows (Frisch, 1995; Sreenivasan, 1999; Marusic et al., 2010;
Smits et al., 2011; Kim, 2012), a class of flows that consists of pipe flow, channel flow,
boundary layer flow, plane Couette flow, and Taylor-Couette flow (Pope, 2000; Kundu
& Cohen, 2002). The most notable macroscopic properties are the turbulent friction
and the turbulent mean-velocity profile (Tennekes & Lumley, 1972; Zagarola & Smits,
1998; Furuichi et al., 2015). The turbulent friction quantifies the shear stress that
develops between a turbulent flow and its bounding walls. It is the property of a flow
that sets the cost of pumping oil through a pipeline (Kelland, 2014) and the draining
capacity of a river in flood (Bridge, 2009), to cite but two examples. Closely related
to the turbulent friction, the turbulent mean-velocity profile represents the spatial dis-
tribution of the local mean-velocity in a turbulent flow. It is used to compute fluxes,
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diffusivities and other quantities of interest in hydraulics, geomorphology, environmen-
tal science and allied disciplines (Tennekes & Lumley, 1972; Pope, 2000).

The macroscopic (or external) properties can be defined and measured without com-
mitting to any specific theoretical assumptions on the internal structure of turbulence
(Robinson, 1991). Thus, for example, the turbulent friction can be readily calculated
by measuring the shear stress at the wall, where the flow is invariably viscous and the
Newtonian relation between shear stress and shear strain rate applies (Kundu & Cohen,
2002); there is no need to posit eddies or hairpin vortices or coherent structures or any
of the variously concrete, abstract or (on occasion) fanciful entities which have been
held to be the elementary components of the internal structure of turbulence (Hussain,
1983; Robinson, 1991; Smith & Walker, 1995; Adrian, 2007; Mathur et al., 2007), and
to which a fundamental role has been ascribed in the mechanical workings of turbulent
flows. To satisfy the need for actionable knowledge on the macroscopic properties of
turbulent flows, engineers and applied scientists have been able to pursue an empirical
approach unencumbered by theoretical overheads.

Indeed, wall-bounded turbulent flows have been extensively researched by means of
laboratory experiments and numerical simulations (Marusic et al., 2010; Smits et al.,
2011; Kim et al., 1987; Eggels et al., 1994; Bernardini et al., 2014; Orlandi et al., 2015).
Simulations make soaring computational demands as the Reynolds number increases,
and they become impracticable even at modest Reynolds numbers (Moin & Mahesh,
1998; Ishihara et al., 2009; Toschi & Bodenschatz, 2009). On the other hand, laboratory
experiments capable of detailed probing of velocity fields have been recently carried
out at Reynolds numbers as high as 107 (Zagarola & Smits, 1998; Mckeon et al., 2004;
Hultmark et al., 2012, 2013; Furuichi et al., 2015), motivated by engineering projects in
which cost is of little concern. More complicated turbulent flows such as atmospheric
and oceanic flows (Gargett, 1989; Fernando, 1991; Garratt, 1994; Wunsch & Ferrari,
2004; Wallace & Hobbs, 2006) are of significant practical importance but require field
measurements which are more likely than laboratory measurements to display scatter
and uncertainties. Nevertheless, there are plenty of high-quality, beautiful data on
the turbulent friction and the mean-velocity profiles of both relatively simple wall-
bounded turbulent flows and environmental turbulent flows, collected from laboratory
experiments, numerical simulations, and field measurements. In many cases the data,
dating back several decades, furnish an empirical understanding of the macroscopic
properties of a turbulent flow that is as thorough as may be desired. In the absence
of analytical solutions to the Navier-Stokes equations, however, the data are yet to be
properly explained. To account for the empirical evidence and shed some theoretical
light on the macroscopic properties of turbulent flows, we need to look beyond the
Navier-Stokes equations.

Beside the Navier-Stokes equations, Kolmogórov’s phenomenological theory of tur-
bulence, which dates back to the 1940s (Kolmogórov, 1941a,b), is the most striking
achievement of theoretical turbulence to date. It yields profound, quantitative, testable
predictions on the internal structure of turbulence.

In the phenomenological theory, as in Leonardo’s picture (Fig. 1.1), turbulence is
posited to consist of a jumble of turbulent eddies in a broad range of sizes. The aim
of the theory is to develop a theoretical understanding of these eddies, which are, in
principle, the sole immediate concern of the phenomenological theory. Thus, the theory
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focuses on the internal structure of turbulence and bears no ostensible relation to the
macroscopic properties of the flow.

In essence, the phenomenological theory allows us to ascribe a characteristic velocity
vs to any given turbulent eddy in the flow, depending on the size of the eddy, s. In
other words, the theory yields the eddy velocity distribution vs(s). This eddy velocity
distribution has been extensively verified empirically by means of suitable experimental
and computational measurements which pertain only to the internal structure of the
flow (Pope, 2000).

At this stage it is convenient to recapitulate the most salient points of our discussion
so far. We have been dealing with two distinct aspects of turbulent flows, namely

1. The macroscopic properties, which are defined and measured experimentally
without invoking turbulent eddies or any other feature of the internal structure of
a flow. What is known about the macroscopic properties is essentially empirical
in nature and lacking in theoretical explanation.

2. The eddy velocity distribution, which is concerned exclusively with the internal
structure of the flow and has been extensively verified by means of measure-
ments unrelated to the macroscopic properties. It can be deemed an established
empirical fact firmly grounded on the phenomenological theory of turbulence.

For many decades, these two aspects of turbulent flows have remained strictly sepa-
rate, the subjects of utterly unrelated research efforts and disconnected chapters in
books on fluid mechanics (Frisch, 1995; Pope, 2000). This separation is strange. As
distinct aspects of one and the same physical phenomenon (the turbulent flow), the
macroscopic properties and the eddy velocity distribution must be inextricably linked
to one another.

And yet this point, which may entail little beyond logic, and seems hardly apt at
occasioning scandal, or even skepticism, has seldom been made. A notable exception is
that of Tennekes & Lumley (1972), who in the 1970s surmised that the mean-velocity
profiles of pipe flows must be closely related to the spectrum of turbulent kinetic energy
(or “the spectrum”, as we shall frequently call it thereafter), which is but an alternative
form of the eddy velocity distribution.

This thesis is predicated on the certainty that the macroscopic properties and the
eddy velocity distribution (or, equivalently, the spectrum of turbulent kinetic energy),
are indeed closely related to one another. We shall refer to this close relation as the
“spectral link”, and make use of concrete forms of the spectral link (between the turbu-
lent friction and the eddy velocity distribution, for example) to shed some theoretical
light on a number of outstanding problems in turbulence. In particular, we aim to
explain theoretically, solely on the basis of the phenomenological theory, and circum-
venting altogether the Navier-Stokes equations, some of the macroscopic properties
of turbulent flows on which there exists a hitherto unexplained, extensive corpus of
empirical data.

In what remains of the present introductory chapter, we review the most salient
concepts, assumptions and results of the phenomenological theory. Then, we illustrate
the import and implications of the spectral link by way of an example due to Gioia
& Chakraborty (2006) and Tran et al. (2010), who devised a concrete form of the
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spectral link for the turbulent friction in pipes and put it to use to show that the
classical empirical scalings of the turbulent friction in rough and smooth pipes are but
macroscopic manifestations of the eddy velocity distribution of the phenomenological
theory. Last, we outline the research that is to be be expounded in detail in the
remaining chapters of the thesis.

1.1 A synopsis of the phenomenological theory
The phenomenological theory owes its name to the fact that it has not been derived

mathematically from the Navier-Stokes equations. Instead, it has been predicated on
dimensional analysis, a suitable set of similarity assumptions (Barenblatt, 1996), and
the “energy cascade”, an insightful conception of turbulence as a physical phenomenon
structured around a recursive set of energetic exchanges, with precedent in the work
of Richardson (1922).

The phenomenological theory posits that turbulence consists of a jumble of eddies
in a broad range of sizes, as might be inferred from Leonardo’s sketch of Fig. 1.1. The
largest eddy (at the top of Fig. 1.2) has a size R commensurate with the size of the
turbulent domain, and a characteristic velocity U ; in pipe flow, for example, R might
be the radius of the pipe and U might be the mean velocity of the flow (that is, the
volume flux normalized by the cross-sectional area of the pipe). Thus, the Reynolds
number of the largest eddy, UR/ν (that is, the characteristic velocity of the eddy times
the size of the eddy normalized by the kinematic viscosity of the fluid, ν), coincides
with the Reynolds number of the flow, Re ≡ UR/ν (that is, the size of the turbulent
domain times the mean velocity of the flow normalized by the kinematic viscosity). If
the flow be turbulent, Re is large and the largest eddy is also turbulent; therefore, the
dynamics of the largest eddy is dominated by inertial forces.

Consider next an eddy of generic size s and characteristic velocity vs. For the
time being, let us assume that this eddy is turbulent, so that ν is irrelevant to its
dynamics. (In other words, we assume that the generic eddy of size s is inertial, or free
of viscous effects.) The eddy has a turbulent kinetic energy per unit mass Ks, where
Ks is of course proportional to v2s . Kolmogórov postulated that the eddy lasts for a
timespan ts and becomes unstable, whereupon it undergoes fission—that is, it splits
into, say, two eddies of size s/2 (Fig. 1.2), in such a way that the turbulent kinetic
energy cascades from the lengthscale s down to a smaller lengthscale s/2. Now, given
s and vs, we can form a single timescale, namely s/vs (because ν is irrelevant to the
dynamics of the eddy), with the implication that the lifespan ts is proportional to s/vs.
It follows that the rate at which turbulent kinetic energy per unit mass is transferred
from the lengthscale s down to the lengthscale s/2, a quantity customarily denoted by
ε and known as the turbulent power per unit mass, must be proportional to Ks/ts, or
ε ∝ v3s/s (Pope, 2000). Note that ε has the correct units of power per unit mass; thus,
as in the rest of this thesis, the symbol “∝” signifies “equal to except for a dimensionless
multiplicative constant”. Under steady conditions, the turbulent power per unit mass
should be the same for the entire energy cascade—that is, ε should be independent of
s. We conclude that the eddy velocity distribution can be expressed as

vs ∝ (ε s)1/3, (1.1)
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Fig. 1.2: Schematic of the energy cascade, the crucial conception of the phenomeno-
logical theory of turbulence (Kolmogórov, 1941a,b). The largest eddy, of size com-
mensurate with the size of the turbulent domain, R, appears at the top. The smallest
eddies, of size set by the viscous lengthscale η, appear at the bottom. The turbulent ki-
netic energy, which is extracted by the largest eddies from the mean flow, is transferred
from one generation of eddies to the next generation of eddies (of smaller size). Thus
the turbulent kinetic energy “cascades” down through successive generations of increas-
ingly smaller eddies, all of which are free of viscous effects, until it reaches the smallest
eddies, where viscosity takes over and the turbulent kinetic energy is dissipated. Ac-
cording to Kolmogórov’s analysis, discussed in the main text, the fundamental quantity
which remains invariant over the entire range of lengthscales is the turbulent power per
unit mass (Pope, 2000), ε, which represents the rate at which turbulent kinetic energy
is transferred between any given generation of eddies and its immediate successor.

where ε is independent of s (invariant), and therefore a property of the local turbulence.
This is the most fundamental result of the phenomenological theory of turbulence.

Equation 1.1 allows us to ascribe a specific characteristic velocity, namely vs, and
a specific turbulent kinetic energy per unit mass, namely v2s (or Ks), to any eddy of
size s. Thus, Equation 1.1 expresses the way in which the turbulent kinetic energy is
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apportioned among eddies of different sizes in a flow, and may be said to embody in
mathematical form the internal structure as well as the energetics of turbulence.

The cardinal datum in Equation 1.1 is the value of the exponent. That value,
1/3, cannot be determined solely on the basis of dimensional analysis and similarity
assumptions. It hinges instead on the conceptual picture of turbulence put forth by
Kolmogórov, with the turbulent eddies of various sizes, the energy cascade in which
they partake, and the attendant multi-lengthscale physics.

Now, we expect Equation 1.1 to break down where the eddy of size s ceases to
be dominated solely by inertial forces and becomes subject to viscous effects. Let us
denote the Reynolds number of that eddy with Res ≡ vss/ν. From Equation 1.1, we
can readily conclude that

Res ∝ ε1/3s4/3ν−1. (1.2)

Thus, for any given value of ε (or, equivalently, for any given energy cascade), Res
diminishes as s diminishes. The viscous lengthscale η is defined as the characteristic
size of the smallest eddy that is free of viscous effects (Davidson, 2004), and can be
readily computed by setting Res = 1, with the result

η ∝ ε−1/4ν3/4, (1.3)

which is a property of the local turbulence.
To achieve a better grasp on the implications of Equation 1.3, let us assume (as

we shall do in Section 1.2) that the entire turbulent domain evinces a single value of
ε—that is, that the energy cascade is one and the same everywhere in the turbulent
flow. In this case, we can set ε ∝ U3/R (an estimate for ε known as the Taylor scaling
(Pope, 2000)); substitution in Equation 1.1, in Equation 1.2 and in Equation 1.3 gives

vs ∝ (s/R)1/3U, (1.4)

Res ∝ (s/R)4/3Re, (1.5)

and
η ∝ RRe−3/4, (1.6)

respectively. The first of these equations is an alternative form of the eddy velocity
distribution. The second equation is consistent with two observations made in the
preceding pages: (1) that the Reynolds number of an eddy of size R coincides with the
Reynolds number of the flow and (2) that the Reynolds number of an eddy diminishes
as the size of the eddy diminishes. On the other hand, Equation 1.6 indicates that,
other things remaining equal, the smallest eddy in the inertial range (the range of sizes
in which Equation 1.1 applies) becomes smaller as Re increases. In other words, an
increase in Reynolds number results in a broadening of the range of sizes encompassed
by the turbulent eddies of the inertial range.

As we shall see later on, to account for the effect of viscosity on the energy cascade,
the right-hand side of Equation 1.1 should be affected by a multiplicative correction,
the dissipative-range correction, which is a function of η/s that equals 1 everywhere
except in the range of sizes (or lengthscales) known as the dissipative range, namely
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s . η, where the dissipative-range correction is less than 1 (Pope, 2000; Gioia et al.,
2010).

Just as Equation 1.1 breaks down where s becomes comparable to the viscous
lengthscale, it also breaks down where s becomes comparable to the size of the turbulent
domain, R. In fact, as we shall see later on, the right-hand side of Equation 1.1 should
be multiplied by the energetic-range correction, which is a function of s/R that equals
1 everywhere except in the range of lengthscales known as the energetic range, namely
s & R, where the energetic-range correction is less than 1 (Pope, 2000; Gioia et al.,
2010).

The energetic-range correction owes its name to the fact that it pertains to the
largest eddies (those of the energetic range), which contain most of the turbulent kinetic
energy in the flow. Nevertheless, the energetic-range correction accounts for the effect
of the finite turbulent domain: eddies of a size close to the size of that domain might
be thought of, intuitively, as being encumbered by the presence of boundaries, with the
implication that their characteristic velocities are lessened as compared with those of
imaginary eddies of the same size in a flow of larger turbulent domain. Regardless of
the properness of this intuitive argument (which is admittedly rather loose), it should
be apparent that the energetic-range correction, unlike the dissipative-range correction,
can change from flow to flow. (Because different flows have different boundaries which
affect the largest eddies in the flow in different ways.) In other words, turbulence in
the energetic range is expected to depend on the type of flow whereas turbulence in both
the inertial range and the dissipative range can be deemed universal, that is to say, one
and the same for all types of flow (Kolmogórov, 1941b; Schumacher et al., 2014). This
is a point worth remembering as it will recur in the remaining chapters of this thesis.

1.2 An example of application of the spectral link

It may be argued that the turbulent friction is the most important macroscopic
property of wall-bounded turbulent flows. The conventional measure of fluid friction,
whether the flow be viscous or turbulent, is the friction factor f , which may be defined
as the dimensionless ratio f ≡ τ/ρU2, where τ is the shear stress that develops between
the flow and the wall, ρ is the density of the fluid, and U is the mean velocity of the flow.
For concreteness, let us focus our discussion on pipe flow, in which case the Reynolds
number Re of the flow is defined in the form Re ≡ UR/ν, where R is the radius
of the pipe and ν is the kinematic viscosity of the fluid. Where the flow is viscous,
it is possible to conclude directly from the Navier-Stokes equations that f ∝ Re−1

(Massey & Ward-Smith, 1998), regardless of whether the wall of the pipe be smooth
or rough. This prediction has been amply verified empirically (Reynolds, 1883; Massey
& Ward-Smith, 1998; Cerbus et al., 2018).

Where the flow is turbulent, the Navier-Stokes equations have proven of little help
to engineers, and efforts to ascertain scaling relations for f on an empirical basis go
back to the XVIII Century France, where f was the subject of large-scale experiments
carried out apropos of the design of a water-supply system for the city of Paris (Chézy,
1776; Mouret, 1921). Modern experiments dating back to the early XX Century re-
vealed that for smooth-walled flows of moderate turbulent strength (Re up to about
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105 (McKeon et al., 2005)), the experimental measurements are well described by the
Blasius empirical scaling (Blasius, 1913), f ∝ Re−1/4. On the other hand, for flows
over rough walls of a single lengthscale, in which sand grains of size r (where r � R)
are glued as a lining on the wall of the pipe, f becomes independent of Re at high
Re (Re & 106 (Massey & Ward-Smith, 1998)) and the experimental measurements
are well described by the Strickler empirical scaling (Manning, 1890; Strickler, 1923),
f ∝ (r/R)1/3, where r/R is the dimensionless roughness. It bears emphasis that the
exponent of Strickler, 1/3, as well as the exponent of Blasius, −1/4, was determined
by fitting experimental data. The fact that both exponents are written as fractions is
a matter of convenience and should not be construed as denoting theoretical certainty.

To provide a theoretical explanation of the empirical scalings of Blasius and Strick-
ler, we seek to establish a link between f and the eddy velocity distribution of the
phenomenological theory (Gioia & Chakraborty, 2006). To that end, consider a wetted
cylindrical surface tangent to the sand grains that jut out from the wall and into the
turbulent flow. Let us denote that wetted surface by W . Note that the shear stress τ
that appears in the definition of f is but the shear stress that acts on W .

On one side of W there is the bulk of the flow, where the fluid moves along the
axis of the pipe with mean velocity U . On the other side of W there are the sand
grains and the set of fluid-filled cavities left between adjacent sand grains. The size
of these cavities scales with r, the size of the sand grains, and the fluid that fills the
cavities is at rest—that is, the mean velocity of the flow within each cavity is naught.
(Note that this is a binary model: the velocity is assumed to be uniform and equal to
U on one side of W , naught on the other side.) In the turbulent regime, τ arises from
the exchange of momentum between the bulk of the flow on one side of W and the
fluid-filled cavities of the other side of W . This exchange of momentum is effected by
turbulent eddies which straddle W .

Consider one such eddy of generic size s, where s ≤ r. (The need for this restriction
will become apparent shortly.) W bisects the eddy into two equal halves. (That is,
the eddy straddles W .) One half sweeps through the bulk of the flow. The other half
sweeps through one of the cavities of size r (which necessitates the restriction above).
Thus the eddy picks up fluid from the bulk of the flow on one side of W (where the
momentum per unit volume of fluid is ρU) and deposits it inside the cavity on the other
side of W (where the momentum per unit volume of fluid is naught), and at the same
time it picks up fluid from inside the cavity and deposits it in the bulk of the flow. The
shear stress created by the eddy on W can be computed as the momentum contrast
across W (which equals ρU , or ρU − 0) times the rate at which the eddy transports
fluid across W (which rate is proportional to the characteristic velocity of the eddy,
vs). We conclude that the shear stress created by the eddy of size s is proportional to
ρUvs, or τ ∝ ρUvs. This scaling expression for the shear stress is the sought “spectral
link” between τ and the turbulent eddy velocity distribution of the phenomenological
theory (Equation 1.4). By substituting Equation 1.4, we obtain τ ∝ ρU2(s/R)1/3,
which indicates that the shear stress created by a straddling eddy of size s increases
if s increases. Thus the eddy that dominates the creation of shear stress on W is the
largest eddy that straddles W , which is an eddy of the same size as the fluid-filled
cavities (recall that s ≤ r); this reasoning gives the final expression for the shear stress
that develops on the rough wall, namely τ ∝ ρU2(r/R)1/3. From the definition of the
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friction factor, f ≡ τ/ρU2, we have

f ∝ (r/R)1/3, (1.7)

which we recognize as the Strickler empirical scaling. The empirical exponent of Strick-
ler, 1/3, is but the exponent of the eddy velocity distribution.

Consider now the case of a smooth wall. This corresponds formally to the limit
r/R → 0, which according to Equation 1.7 gives f = 0, a result that is at odds with
the Blasius empirical scaling. To dispel this paradox, recall that r in Equation 1.7
must be construed as the size of the eddy that dominates the exchange of momentum
between the turbulent flow and the fluid-filled cavities of the rough wall. But the
characteristic velocity of an eddy of size zero is zero, and such an eddy, lacking in both
extension and velocity, cannot effect any transfer of mass or momentum. Thus the
prediction, f = 0.

It has been argued, however (Gioia & Bombardelli, 2001; Gioia & Chakraborty,
2006), that in the limit r/R→ 0 the dominant eddy should be the smallest eddy that is
unaffected by viscosity—that is to say, the eddy of size η. In fact, eddies smaller than η
are rapidly damped by the dissipative-range correction and are virtually impotent to act
as envisioned in the derivation of Equation 1.7, with the implication that the flow must
be increasingly dominated by viscosity at distances less than η from the wall. Thus,
to compute f for the smooth-wall case, we must focus on the exchange of momentum
across a cylindrical wetted surface at a distance η from the wall, a surface straddled
by eddies of size η, the velocity of which is governed by the velocity distribution of
the phenomenological theory. This we can readily accomplish by substituting η for
r in Equation 1.7, with the result f ∝ (η/R)1/3. Taking into account the relation
between η and Re, Equation 1.6, we obtain the final expression for the friction factor
of smooth-walled turbulent pipe flows,

f ∝ Re−1/4, (1.8)

which we recognize as the Blasius empirical scaling. The empirical exponent of Blasius,
−1/4, is but a recast form of the exponent of the eddy velocity distribution.

The existence of a spectral link sheds some new theoretical light on the friction
factor, with a number of practical implications. Consider, for example, the effect of
polymeric additives on the friction factor of oil pipelines. These additives are known to
cause a pronounced reduction in friction factor (Toms, 1948; Virk et al., 1967; Lumley,
1969; Perlekar et al., 2006), which is the reason why they are customarily injected in
oil pipelines to lessen pumping costs (Burger et al., 1980; White & Mungal, 2008).

Although there has been no lack of theories aimed at explaining the reduction of
fluid friction due to polymeric additives (L’vov et al., 2004; Procaccia et al., 2008;
White & Mungal, 2008; Yang, 2009), no theory has yet been widely accepted. What
is more, none of the theories proposed so far has dwelled on the cardinal fact that
polymeric additives are known to change the exponent of the eddy velocity distribution
(Fouxon & Lebedev, 2003; Dubief et al., 2013). Because of the spectral link, a change
in that exponent will cause a change in the friction factor. Thus the spectral link may
help explain the reduction of friction due to polymeric additives (Calzetta, 2010, 2012;
Anbarlooei et al., 2015, 2017). Rather than carrying out expensive tests to ascertain
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the friction factor in flows with polymeric additives (and other agents that are also
known to affect both the friction factor and the eddy velocity distribution, including
particulate suspensions and air bubbles (Richter, 2015; Rensen et al., 2005; Prakash
et al., 2016)), it might be possible to predict the friction factor from simple, inexpensive
measurements of the modified exponent of the eddy velocity distribution.

1.3 Outline of the thesis

We proceed chapter by chapter in the order of their appearance.
We start the next chapter (Chapter 2) with a review of the turbulent mean-velocity

profile (MVP), a fundamental macroscopic property of the canonical wall-bounded
turbulent flows. For the sake of concreteness, we focus at first on the MVPs of turbulent
pipe flow. We review the most salient features of the MVPs of turbulent pipe flow,
which are known from innumerable experiments and computational simulations, and
which are basically shared in common with the MVPs of all other canonical wall-
bounded turbulent flows. These most salient features including the successive “layers”—
the viscous layer (adjacent to the wall), the buffer layer, the log layer, and the wake
(adjacent to the centerline of the flow)—in which the domain of a MVP is conventionally
partitioned. We also review the way in which, via the introduction of the classical,
dimensionless “wall variables”, the MVPs corresponding to different Reynolds numbers
can be made to collapse onto a single master curve in all layers except the wake.

Next in Chapter 2, we discuss the spectrum of turbulent kinetic energy, which is
essentially a derivative of the eddy velocity distribution. We show that, just as was the
case for the eddy velocity distribution, the spectrum consists of a power law which is
valid in the inertial range and must be modified by a multiplicative dissipative-range
correction, which alters the power law in the dissipative range, and a multiplicative
energetic-range correction, which alters the power law in the energetic range. We also
introduce the standard explicit forms of both corrections (Pope, 2000).

We then turn to a derivation of a specific form of the spectral link relating the
spectrum to the local turbulent shear stress. This derivation differs from the original
derivation (Gioia et al., 2010) in that it is grounded on the concept of control volume,
which has been deemed the quintessential development of engineering science vis-à-vis
physics (Vincenti, 1982). By combining the spectral link with equations of momentum
balance and energy balance, which equations are somewhat different depending on the
type of wall-bounded flow, we formulate a complete spectral theory of the MVPs.

In the remaining of Chapter 2, we use the spectral theory to explain the significant
disparities, evinced by the empirical data and hitherto left unexplained in the literature,
between the MVPs of pipe flow and channel flow. We seek to shed theoretical light
on these disparities, which are circumscribed to the wakes, and to trace their physical
origin to the lack of universality of the spectrum in the energetic range.

In Chapter 3 we turn to plane Couette flow, and focus our attention on a number
of well-known, and as yet unresolved, disparities in the classical experimental data
on turbulent friction in plane Couette flow. We start by pointing out that those
disparities are accompanied by previously unnoticed disparities in the attendant MVPs.
Interestingly, the disparities in the MVPs are circumscribed to the wakes, just as was
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the case in Chapter 2; but the disparities of that chapter involved different types of
turbulent flow (that is pipe flow and channel flow) whereas the disparities of Chapter 3
involve one and the same type of turbulent flow: plane Couette flow. By assessing
the empirical data in light of the spectral theory, we argue for the existence, in plane
Couette flow, of multiple states of turbulence that differ only at the largest lengthscales
in the flow, corresponding to the energetic-range correction of the spectrum. Thus, the
multiplicity of turbulent states, which may be a generic feature of turbulent flows with
moving boundaries (and, as it has been argued by Huisman et al. (2014), may be at
odds with the phenomenological theory), is in fact perfectly consistent with small-scale
universality (Kolmogórov, 1941b; Schumacher et al., 2014).

In Chapter 4 we turn to thermally-stratified turbulent flows in the atmospheric
boundary layer, the approximately 1 km thick region enveloping the surface of the
Earth, which may be modeled as a thermally-stratified plane Couette flow. The the-
oretical framework for the MVP in such a flow is furnished by the Monin-Obukhov
similarity theory (MOST) (Obukhov, 1946; Monin & Obukhov, 1954), which focuses
on an intermediate region of the MVPs—not too close to the wall, where viscosity
affects the flow, and not too far from the wall, where external confinement affects the
flow. By suitably extending the spectral theory to account for the thermal stratifica-
tion, we show that it is possible to account for the whole extent of the MVPs. Further,
by invoking tools of dimensional analysis and complete similarity, we derive a set of
scaling laws for the MVPs (and their derivatives) that includes not only the interme-
diate region, but also the region near the wall and the region far from the wall. Our
analysis leads to a generalized MOST.

Finally, in Chapter 5 we conclude the thesis with a recapitulation of our findings
and a discussion of implications and prospects for future research.



Chapter 2

Spectral theory of wall-bounded
turbulent flows

In this chapter, we will derive a spectral theory of the turbulent mean-velocity
profiles (MVPs) applicable to three types of wall-bounded flow: pipe flow, channel
flow, and plane Couette flow (Pope, 2000; Kundu & Cohen, 2002). Pipe flow and
channel flow are pressure driven whilst plane Couette flow is driven by the walls. A
single cylindrical wall of radius R surrounds the domain of pipe flow. In channel flow
and plane Couette flow, the domain of the flow is sandwiched between two planar
walls separated by a gap of constant width (customarily denoted by 2h in the case of
channel flow, 2b in the case of plane Couette flow). In plane Couette flow, one of the
walls moves relative to the other at a constant velocity, and we will always consider
the frame of reference in which the lower wall is stationary.

We start with a discussion of the turbulent MVPs.

2.1 Turbulent mean-velocity profiles

For the sake of concreteness, we focus on pipe flow, which is, of the three types of
flow of interest here, the one that appears to have been researched the most, particularly
in the turbulent regime. Consider the turbulent flow in a long cylindrical pipe with a
smooth internal wall. Suppose that the volume flux is kept steady and the flow is fully
developed, by which we mean that the statistics of the fluid velocities may be considered
invariant in the streamwise direction. In that case, at a distance y from the wall of the
pipe, a local mean velocity u can be obtained by averaging the instantaneous velocity
of the flow over a long period of time. The function u(y) is known as the mean-velocity
profile (MVP) of the flow. For each value of the Reynolds number Re, there is a MVP.
The Reynolds number quantifies the relative importance of inertia and viscosity in the
flow. For pipe flow, Re ≡ RU/ν, where U is the mean velocity of the flow (that is,
the volume flux divided by the cross-sectional area of the pipe) and ν is the kinematic
viscosity of the fluid.

MVPs in pipe flows were first measured experimentally more than 80 years ago
(Nikuradse, 1950) and have recently been the subject of numerous experiments (Za-
garola & Smits, 1998; Mckeon et al., 2004; Hultmark et al., 2012, 2013; Furuichi et al.,

13
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Fig. 2.1: Log-linear plots of the MVPs of pipe flow in the wall variables ũ and ỹ for
four values of Re (Reτ ). The green symbols denote the data from direct numerical
simulations (DNS) (El Khoury et al., 2013) with Reτ = 999 and the blue, black, and
red symbols denote the data from experiments (Hultmark et al., 2012, 2013) with
Reτ = 3334, 10480, and 98190, respectively. The grey line denotes the log law, ũ(ỹ) =
1
κ

ln ỹ+B, with κ = 0.4 and B = 5. The dashed grey line denotes the laminar solution
of the viscous layer, ũ(ỹ) = ỹ. Each MVP extends from the wall (which corresponds
always to ỹ = 0) to the centerline of the pipe (which corresponds to ỹ = Reτ ); the
MVPs collapse onto a single curve close to the wall.

2015) and numerical simulations (Eggels et al., 1994; Wu & Moin, 2008; El Khoury
et al., 2013). Ludwig Prandtl argued that the MVPs should be plotted in terms of
the dimensionless “wall variables” ũ and ỹ, in which case the MVPs for different values
of Re would collapse onto a single curve close to the wall (Prandtl, 1953), as can be
verified in Fig. 2.1, in which we have plotted a few typical MVPs of turbulent pipe flows
from various experiments and numerical simulations. The wall variables are defined as
ũ ≡ u/uτ and ỹ ≡ yuτ/ν, where uτ ≡

√
τ0/ρ, ρ is the density of the fluid, and τ0 is

the total shear stress at the wall of the pipe. (The dimensionless form of τ0, τ0/ρU2, is
termed the friction factor, f ≡ τ0/ρU

2, and quantifies the fluid friction at the wall.) At
the centerline of the pipe ỹ = Reτ ≡ Ruτ/ν. From Fig. 2.1, it is apparent that to each
MVP there corresponds a different value of Reτ , just as to each MVP there corresponds
a different value of Re. It follows that there is a one-to-one correspondence between
Re and Reτ , and, therefore, that Reτ , which is known as the friction Reynolds number,
may be deemed an alternative form of the Reynolds number (as its name indicates).
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By turning our attention on any one MVP in Fig. 2.1 and scanning that MVP from
left to right, in the direction of increasing ỹ, we can distinguish a number of conven-
tionally named “layers”: the viscous layer (where the MVP has a positive curvature),
the buffer layer (where the MVP has a noticeable negative curvature), the log layer
(where ũ varies linearly with ln ỹ), and the wake (where the MVP deviates from the
linear ũ–ln ỹ relation of the log layer, close to the centerline of the pipe). These layers
can be identified in the turbulent MVPs of all types of wall-bounded turbulent flow,
not just pipe flow.

In the log layer, the relation between ũ and ỹ can be written in the form

ũ(ỹ) =
1

κ
ln ỹ +B, (2.1)

which is known as the “log law”. Here, κ (the “Kármán constant”) and B are dimen-
sionless constants which can be estimated by fitting experimental data (Prandtl, 1953).
Although the log law was justified by Prandtl on the basis of dimensional analysis and
suitable assumptions of similarity, κ and B remained empirical constants. Indeed, for
many decades, theoretical research on the MVPs of pipe flows, as well as of other
wall-bounded turbulent flows, evinced limited progress beyond Prandtl’s work. Here,
we seek to formulate a spectral theory of the MVPs, that is, a theory of the MVPs
grounded on the existence of a connection between the MVPs and the spectrum of
turbulent kinetic energy, to which we turn next.

2.2 The spectrum of turbulent kinetic energy

The spectrum of turbulent kinetic energy, E(k), or the spectrum for short, is a
function of the wavenumber k, defined by the expression E(k) ≡ dv2k/dk, where vk is the
characteristic velocity of a turbulent eddy of wavenumber k. Note that k ∝ 1/s, where
s is the size of the eddy; thus the eddy velocity distribution of the phenomenological
theory, discussed in some detail in the introductory chapter (Chapter 1), is but a
derivative of the spectrum. Indeed, the velocity of an eddy of size s, vs, can be computed
as

vs =

√∫ ∞
1/s

E(k)dk, (2.2)

where
E(k) =

2

3
(κεε)

2/3k−5/3exp(−βdηk)(1 + (βe/Lk)2)−17/6. (2.3)

This expression for E(k) corresponds to the standard model of the spectrum (Pope,
2000). It consists of (see Fig. 2.2)

1. the power-law spectrum of Kolmogórov, 2
3
(κεε)

2/3k−5/3, valid in the inertial range,
where κε is a dimensionless, non-negative constant which can be theoretically
estimated as 4

5
(Gioia et al., 2010; Gioia & Chakraborty, 2006), ε is the turbulent

power per unit mass (that is, the characteristic invariant of the energy cascade),
and −5/3 is the spectral exponent.



16 Spectral theory of wall-bounded turbulent flows

2. The dissipative-range correction that accounts for the effect of viscosity at high
wavenumber (small eddies), exp(−βdηk), where βd is a dimensionless, non-negative
constant known as the dissipative-range parameter, and η is the viscous length-
scale, η = ν3/4ε−1/4.

3. The energetic-range correction that accounts for effect of finite domain at low
wavenumber (large eddies), (1 + (βe/Lk)2)−17/6, due to Kármán, where βe is a
dimensionless, non-negative constant known as the energetic-range parameter,
and L is the size of the largest eddy. For pipe flow, we take L to be equal to R,
the pipe radius, or L = R. For channel flow and for plane Couette flow, we set
L = h and L = b, respectively, where h and b denote half the distance between
the walls in channel flow and in plane Couette flow, respectively.

The standard model of the spectrum has been tested successfully by comparison with
extensive measurements of the velocity fluctuations carried out over a wide range of
Reynolds numbers, and by a variety of probing techniques, in laboratory flows, at-
mospheric flows, flows with shear and flows without shear, as well as by comparison
with velocity fluctuations computed in numerical simulations (Pope, 2000). In spite of
its relative simplicity, the standard model provides a comprehensive, quantitative and
physically meaningful account of each of the features of the spectrum evinced by the
empirical data.

For future reference, note that E(k) > 0 for all k. Thus, from vs =
√∫∞

1/s
E(k)dk,

we conclude that vs is a monotonically increasing function of s. In other words, the
larger the eddy, the larger its characteristic velocity.

By substituting the standard model of the spectrum (Equation 2.3) in Equation 2.2,
we obtain (Gioia et al., 2010)

vs = (κεεs)
1/3
√
I, (2.4)

where

I ≡ I(η/s, s/L) ≡ 2

3

∫ ∞
1

ξ−5/3exp(−ξβdη/s)(1 + (βes/L)2/ξ2)−17/6dξ (2.5)

and ξ ≡ sk. In general, for an eddy of size s in the inertial range (η � s � L),
I = 1 and vs = (κεεs)

1/3, which is the eddy velocity distribution in the inertial range
(discussed in the introductory chapter). For an eddy size s in the dissipative range
(s . η) or the energetic range (s & L), I < 1 and vs < (κεεs)

1/3, with the implication
that the eddy is slower than an imaginary eddy of the same size in the inertial range.
If we set βd = βe = 0—that is, if there were no dissipative-range correction and no
energetic-range correction (an unphysical proposition)—vs = (κεεs)

1/3 for all s, and all
eddies would be inertial.

2.3 Turbulent shear stress and spectral link
We seek to derive an expression for the turbulent shear stress that acts on a wetted

surfaceWy at a distance y from the wall (Fig. 2.3). Consider a cuboidal control volume
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Fig. 2.2: Red line: model spectrum for βd = 7, βe = 8, and L/η = 105. Blue line:
Kolmogórov spectrum without corrections.

Fig. 2.3: Schematic used to derive an expression for the turbulent shear stress on
the wetted surface Wy. For the coordinate axes, we choose the x axis to be along the
streamwise direction and the y axis to be along the wall-normal direction. Note that
y = 0 corresponds to the wall, so that Wy is at a distance y from the wall.

(CV) whose upper face (of surface area S) overlaps with Wy and whose lower face is at
a distance y1 from the wall. The length of the CV is X. (y1 and X are arbitrary and
0 < y1 < y.) Eddies of size s (and velocity vs) bring high-momentum fluid (momentum
per unit mass ∼ ρu(y + s)) into the CV and take low-momentum fluid (momentum
per unit mass ∼ ρu(y − s)) out of the CV. The net momentum exchanged in a time
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interval ∆t is

∆M ∼ Svs∆t ρu(y + s)− Svs∆t ρu(y − s) ≈ 2Sρvs∆ts
du(y)

dy
, (2.6)

Thus, there is an turbulent force F acting on the CV:

F = ∆M/∆t ∼ 2ρSvss
du(y)

dy
. (2.7)

Then the turbulent shear stress τt12 must be the same as this turbulent force per unit
area, i.e.,

τt12 = F/S ∼ ρsvs
du(y)

dy
, (2.8)

which generally applies to all the types of wall-bounded turbulent flow with which we
shall be concerned. For fully developed turbulent pipe flow, channel flow and plane
Couette flow, we show that this expression of turbulent shear stress can be obtained
via force equilibrium equation. The force equilibrium equation for the CV reads

(p1 − p2)(y − y1)S/X + F + τv12S = τ(y1)S, (2.9)

where p1 − p2 is the pressure drop over the length X of the CV and τv12 is the viscous
shear stress on the upper face of the CV, τv12 = ρν du(y)

dy
. From Equation A.10 of

Appendix A we have τ(y) = dp0
dx1

(y− y1) + τ(y1), and with p1− p2 = − dp0
dx1
X, we obtain

F/S + τv12 = τ(y), (2.10)

Therefore, the turbulent shear stress τt12 should be expressed as

τt12 = τ(y)− τv12 = F/S ∼ ρsvs
du(y)

dy
, (2.11)

which is the same as Equation 2.8. (Thus, the turbulent viscosity νt scales as νt ∼ svs;
see Appendix A.) Note that we have allowed for a non-zero pressure gradient; it follows
that Equation 2.11 applies to turbulent flows with pressure gradient (such as pipe flow
and channel flow) as well as turbulent flows with no pressure gradient (such as plane
Couette flow).

Now, we have seen that vs is a monotonically increasing function of s. Thus, τt12
is also a monotonically increasing function of s, and the production of turbulent shear
stress must be dominated by the largest eddies that straddle Wy—that is, the eddies
of size s = y. We conclude that

τt12 = κτρyvy
du(y)

dy
, (2.12)

where κτ is a dimensionless parameter (a proportionality constant). Next, we set
s = y in Equation 2.4 to obtain, vy = (κεεy)1/3

√
I, where ε = τt12

du(y)
dy

/ρ is the energy
equation (or, more precisely, the turbulent kinetic energy budget equation, for which
see Appendix B); substituting in Equation 2.12:

τt12 = κ2ρI3/4y2(
du(y)

dy
)2, (2.13)
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where κ ≡ (κεκ
3
τ )

1/4 and I ≡ I(η/y, y/L).
Equation 2.12 links the turbulent shear stress to vy, the eddy velocity distribution,

which is a function the spectrum. In other words, Equation 2.12 is the “spectral link”.
It was first derived, by a method different from that which we have employed here,
by Gioia et al. (2010), who showed that the parameter κ in Equation 2.13 is but the
Kármán constant of the log law, which according to the theory can be expressed as
κ ≡ (κεκ

3
τ )

1/4. Thus, the Kármán constant is set by κτ and κε, which relate to the
mechanism of momentum transfer and to the spectrum, respectively. The fact that the
Kármán constant depends explicitly on a spectral parameter, namely κε, serves as a
striking reminder of the fundamental spectral nature of the present theory.

2.4 Equations of the MVPs
The total shear stress of the types of flow with which we are concerned can be

expressed in the form
τ(y) = τv12 + τt12 = τ0σ, (2.14)

where σ = 1 − y/R for pipe flow, σ = 1 − y/h for channel flow, and σ = 1 for plane
Couette flow (see Appendix A). By substituting the total shear stress in Equation 2.13
and rewriting the result in terms of the friction Reynolds number (Reτ ≡ Luτ/ν) and
the wall variables (ỹ ≡ Reτy/L and ũ ≡ u/uτ ), we obtain the momentum equation:

κ2I3/4ỹ2(
dũ

dỹ
)2 +

dũ

dỹ
= σ, (2.15)

where I ≡ I(η/y, ỹ/Reτ ).
Similarly, by taking into account that η = ν3/4ε−1/4 and ε = τt12

du(y)
dy

/ρ (the energy
equation), we obtain a recast (and final) form of the energy equation:

η/y = (
dũ

dỹ
σ − (

dũ

dỹ
)2)−1/4ỹ−1, (2.16)

which is coupled to the momentum equation via the dependence of I on η/y. Equa-
tions 2.15 and 2.16 are the equations of the MVPs in the spectral theory.

When the flow is laminar, the turbulent shear stress is naught (τt12 = 0) and
Equation 2.15 reduces to dũ

dỹ
= σ, which is the law of laminar flows (Kundu & Cohen,

2002). When the flow is turbulent, the no-slip boundary condition gives rise to a thin
laminar viscous layer next to the wall (y � L). Now, for y � L, σ reduces to 1
regardless of the type of flow; thus, with the no-slip boundary condition (that is, ũ = 0
for ỹ = 0), the viscous layer solution for all the cases discussed here reads ũ = ỹ. We
shall show next that the thickness of the viscous layer can be determined starting with
Equations 2.15 and 2.16.

Consider a point where y � L, τt12 > 0, thus σ = 1, I = I(η/y, 0) > 0. Then dũ
dỹ

can be eliminated from Equations 2.15 and 2.16 to obtain,

ỹ =

(
(η/y)4/3 + κ4/3I1/2(η/y, 0)

κ2/3(η/y)8/3I1/4(η/y, 0)

)1/2

. (2.17)
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Now, for a given value of κ and a given value of βd, Equation 2.17 gives ỹ as a function
of η/y. As it turns out, this function has a minimum, denoted ỹv (Fig. 2.4), with the
implication that for ỹ < ỹv there is no turbulent solution (Gioia et al., 2010). Thus, for
ỹ < ỹv the only possible solution is the viscous layer solution, ũ = ỹ, and ỹv represents
the thickness of the viscous layer. For κ = 0.4 and βd = 7, the viscous layer thickness
ỹv = 4.24 (Fig. 2.4). For ỹ > ỹv, turbulence prevails and the turbulent MVP can be
computed by integrating Equation 2.15 with boundary condition ũ = ỹv at ỹ = ỹv.
Note that the MVP is determined by all three parameters (κ, βd and βe) whereas the
thickness of the viscous layer depends only on κ and βd.
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Fig. 2.4: Plot of ỹ vs. η/y as per Equation 2.17, for κ = 0.4 and βd = 7. The thick
red dot indicates the point where ỹ is minimized; the minimum is denoted by ỹv and
represents the thickness of the viscous layer.

From the equations of the spectral theory, it is apparent that the standard model
of the spectrum should in itself be sufficient to compute, with no additional assump-
tions, the turbulent MVP corresponding to any given Reynolds number, over its entire
domain, regardless of the type of flow (pipe flow, channel flow, or plane Couette flow).
For pipe flow, it has been shown that, indeed, the theory yields complete MVPs with
viscous layer, buffer layer, log layer, and wake (Gioia et al., 2010). Furthermore, each
part of the MVP relates to a specific spectral range: the viscous layer to the dissipative
range, the buffer layer to the dissipative range, the log layer to the inertial range, and
the wake to the energetic range.

Regarding the viscous layer, we have seen already that it relates to the dissipative
range in that its thickness is set by the dissipative-range parameter βd. As for the
log layer, we have seen that in the spectral theory the Kármán constant (that is, the
characteristic constant of the log law) is independent of both βd and the parameter
of the energetic-range correction, βe. This indicates that the eddies that dominate
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momentum transfer in the log layer are affected by neither βd nor βe—that is, they are
eddies of the inertial range. Thus, the log layer relates to the inertial range.

The buffer layer and the wake are perhaps the most interesting. Regarding the
buffer layer, it has been shown that the eddies that dominate momentum transfer in
the buffer layer are eddies of the dissipative range (Gioia et al., 2010). As such, these
eddies are slowed down by the dissipative-range correction, which makes them less
effective at transferring momentum and producing turbulent shear stress. Thus, the
turbulent shear stress lessens and, consequently, the mean velocity increases locally in
the buffer layer. This local increase in mean velocity results in a steepening of the
MVP—that is, the signature characteristic of the MVP in the buffer layer. Similarly,
it turns out that the eddies that dominate momentum transfer in the wake are eddies
of the energetic range. As such, these eddies are slowed down by the energetic-range
correction—ultimately resulting in a steepening of the MVP, which overshoots the log
layer. This is the signature characteristic of the MVP in the wake.

The previous paragraph can be summarized as follows. The amplitude of the buffer
layer and the amplitude of the wake are set by the spectral parameters βd and βe,
respectively.

The one-to-one correspondence between the layers of the MVPs and the ranges of
the spectrum plays a crucial role in our analysis of plane Couette flow (Chapter 3) as
well as in the remaining portion of the present chapter, starting in Section 2.6. Before
turning to that section, however, we discuss a few methodological issues related to the
application of the spectral theory in the present thesis.

2.5 A note on the application of the spectral theory
in this thesis

We intend to use the spectral theory to extract insight into the MVPs of various
turbulent flows out of the spectrum, on which much has been revealed by the phe-
nomenological theory of turbulence. Thus the emphasis will be on that which the
spectrum may tell us about the structure of the MVPs rather than on how accurately
the spectral theory can reproduce, on the basis of the standard model of the spectrum,
plots of the empirical data on the MVPs. These considerations pertain to all of the
research expounded in the present thesis, and merit some development.

We have seen that the spectral theory entails the existence of individual links,
discussed in the preceding section, between each range of the spectrum and a specific
layer of the MVP. In connection with these individual spectral links, we will be chiefly
interested in broadly qualitative, rather than quantitative, aspects of the spectrum and
the MVP. Thus regarding the spectral link between the energetic range of the spectrum
and the wake of the MVP, for example, our interest will be on qualitative, or generic,
aspects of the energetic-range correction and their relation to salient characteristics
of the wake, notably the relation between the generic fact that the energetic-range
correction decays for small k (in contrast to the specific fact that, according to the
standard model of the spectrum, the decay follows the power law put forth by Kármán)
and the concomitant fact that the MVP overshoots the log law in the wake. Similarly,
we will dwell on the decaying nature of the dissipative-range correction at large k, a
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generic fact that results, via the spectral theory, in a buffer layer that with the correct
(negative) curvature evinced by the empirical data.

Keeping this outlook in mind, we will not try to fit the MVPs from the spectral
theory (computed using the standard model) to the empirical MVPs. Instead we will
show the computed MVPs and the empirical ones in separate yet readily-comparable
plots, and focus on the capacity of the spectral theory to reproduce all of the salient
features of the empirical MVPs, allowing us to trace the cause of each one of those
salient features to the corresponding feature of the spectrum. Note, however, that
the dissipative-range and energetic-range parameters, βd and βe, will in all cases be
set to values in the narrow range 5–7 (for βd) and 1–9 (for βe), consistent with both
theoretical considerations (whereby both βd and βe are expected to be of order 1) and
the available empirical data on the spectrum (Pope, 2000).

2.6 Comparison between pipe flow and channel flow

2.6.1 Disparities of MVP

In this section, we carry out an analysis of the well-known disparities, evinced by
the empirical data and hitherto left unexplained in the literature, between the MVPs
of pipe flow and channel flow. By putting to use the spectral theory, we seek to trace
the physical origin of these disparities (and of the less well-known disparities in other
macroscopic properties besides the MVPs) to the lack of universality of the spectrum
in the energetic range.

Fig. 2.5 shows typical examples of the empirical data for Reτ ' 1000. At this
juncture we find it convenient to include plane Couette flow alongside pipe flow and
channel flow, even though our focus here will be on the comparison between pipe flow
and channel flow. (The case of plane Couette flow is more involved than Fig. 2.5 would
suggest, and will be treated in detail in Chapter 3.)

Like the MVPs of pipe flow, the MVPs of channel flow and plane Couette flow
consist of a viscous layer, a buffer layer, a log layer, and a wake. What is more, the
MVP of pipe flow is practically indistinguishable from the MVP of channel flow and
the MVP of plane Couette flow except in the wake. In other words, the MVPs for the
three types of flow may be said to collapse onto a single master curve except for the
wake, the amplitude of which differs depending on the type of flow.

Now, we have seen that in the spectral theory, of all the characteristic features
of the MVPs, only the wake relates to the energetic range of the spectrum—and, in-
deed, the energetic-range parameter βe is responsible for setting the amplitude of the
wake. Furthermore, according to the phenomenological theory, the energetic range is
the only part of the spectrum that is not universal and might vary from one type of
flow to another (Kolmogórov, 1941b; Schumacher et al., 2014). Thus, the fact that the
MVPs of Fig. 2.5 collapse onto a single master curve in the viscous layer, the buffer
layer, and the log layer can be explained, in light of the spectral theory, as a macro-
scopic manifestation of the universal character of the spectrum at small lengthscales,
including the dissipative range and the inertial range. Conversely, the fact that there
are discrepancies in the wakes depending on the type of flow can also be explained, in
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Fig. 2.5: Log-linear plots of typical MVPs of pipe flow (blue), channel flow (red) and
plane Couette flow (black) in the “wall variables” ũ and ỹ and for Reτ ' 1000. The
thin grey line denotes the log law, ũ(ỹ) = 1

κ
ln ỹ + B with κ = 0.4 and B = 5. The

dashed grey line denotes the laminar solution of the viscous layer, ũ(ỹ) = ỹ. Each
MVP extends to ỹ = Reτ , which corresponds to the centerline (or centerplane) of the
flow. The data are from high fidelity direct numerical simulations (DNS): El Khoury
et al. (2013) (pipe flow), Bernardini et al. (2014) (channel flow), Pirozzoli et al. (2014)
(plane Couette flow).

light of the spectral theory, as a macroscopic manifestation of the lack of universality
of the spectrum at lengthscales commensurate with the size of the turbulent domain
(that is, in the energetic range), a lack of universality that can be readily accounted
for by setting different values of βe, depending on the type of flow.

We now turn to pipe flow and channel flow. Fig. 2.6 shows once again the corre-
sponding MVPs. We can see that the amplitude of the wake is larger for pipe flow than
for channel flow, with the implication that the value of βe should be larger for pipe flow
than for channel flow (Zuniga Zamalloa, 2012). This implication may be verified in
Fig. 2.7, which shows that the MVPs computed using the spectral theory with larger
value of βe for pipe flow than for channel flow, are consistent feature-by-feature with
the MVPs of Fig. 2.6.

The only obvious difference between pipe flow and channel flow is the geometry of
the boundary: pipe flow is confined in a pipe of circular cross section while channel
flow is confined in a channel of rectangular cross section. The eddies in the energetic
range, and only them, being of size commensurate to the characteristic size of the
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Fig. 2.6: Log-linear plots of the MVPs of pipe flow (blue) and channel flow (red) at
the same value of Reτ = 1000. The data are from DNS: El Khoury et al. (2013) (pipe
flow), Bernardini et al. (2014) (channel flow).

turbulent domain (R for pipe flow and h for channel flow), will be affected by the
geometry of the boundaries via the energetic-range correction. Recalling an heuristic
argument we discussed in the introductory chapter, those eddies might be thought of,
intuitively, as being encumbered by the presence of boundaries, with the implication
that their characteristic velocities are lessened, as per the energetic-range correction,
as compared with those of imaginary eddies of the same size in an infinite turbulent
domain. In the same line of argument, and since, given a pipe and a channel of equal
characteristic size (R = h), the cross section of the pipe can be inscribed in the cross
section of the channel, it is conceivable that the eddies of the energetic range will be
encumbered to a larger degree in the pipe than in the channel, and, therefore, that βe
should be larger for pipe flow than for channel flow, with the implication that (as per
the spectral theory) the amplitude of the wake should be concomitantly larger in pipe
flow than in channel flow.

In a discussion of this matter, Chin et al. (2014) conjectured that “the discrepancy
in the wake between pipe flow and channel flow would likely be due to difference in
flow structures in the core region.” In light of the spectral theory, we submit that this
“difference in flow structures in the core region” should be interpreted as differences
in the large-lengthscale part of turbulence that corresponds to the energetic range
and reflects disparities in the geometry of the boundaries. It bears emphasis that
these spectral differences are circumscribed to the energetic range, with the implication
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Fig. 2.7: Log-linear plots of the MVPs of pipe flow (blue) and channel flow (red) at
the same value of Reτ = 3000, 30000, 300000 computed from the spectral theory with
κ = 0.4, βd = 7; and βe = 9 for pipe flow, βe = 7 for channel flow.

that the attendant wake disparities remain consistent with small-scale universality as
conceived in the phenomenological theory.

To find further support for our conclusions regarding the macroscopic effects of the
non-universal part of the spectrum on pipe flow and channel flow, we turn our attention
to macroscopic properties other than the MVPs.

2.6.2 Disparities of friction factor

The quantity most closely related to the MVP is probably the friction factor f ,
f ≡ τ0/ρU

2, where U is the mean velocity of the flow. For pipe flow,

U =
1

πR2

∫ R

0

u2π(R− y)dy, (2.18)

and for channel flow,

U =
1

h

∫ h

0

udy. (2.19)

The friction factor is usually plotted as a function of the Reynolds number, Re ≡ UR/ν
for pipe flow and Re ≡ Uh/ν for channel flow. Fig. 2.8 shows that the friction factor
of pipe flow is consistently higher than that of channel flow as the Re increases. Note
that we can be express f ≡ (Re/Reτ )

2, which allows us to compute f directly from
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Fig. 2.8: Log-linear plots of the friction factor of pipe flow (blue) and channel flow
(red) as a function of Re. The data are from DNS: El Khoury et al. (2013) (pipe flow),
Bernardini et al. (2014) (channel flow).

the MVP for any given Reynolds number. By substituting ũ and ỹ into Equations 2.18
and 2.19 and reorganizing the equations, an expression for the Reynolds number can
be obtained. For pipe flow,

Re = 2

∫ Reτ

0

ũ(1− ỹ/Reτ )dỹ, (2.20)

and for channel flow

Re =

∫ Reτ

0

ũdỹ. (2.21)

Therefore, given a value of Reτ , we can use the spectral theory not only compute the
MVP, but also the friction factor. The computed friction factor for both pipe flow
and channel flow is plotted as a function of Re in Fig. 2.9, which displays a good
qualitative agreement with the DNS data shown in Fig. 2.8: the friction factor of pipe
flow is consistently higher than that of channel flow as Re increases.

2.6.3 Disparities of shear production

We have shown that the disparities of the MVPs in the wakes and of the friction
factor between pipe flow and channel flow are sizable and can be accounted for in the
spectral theory through changes in the parameter of the energetic-range correction, βe.
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Fig. 2.9: Log-linear plots of the friction factor of pipe flow (blue) and channel flow
(red) as a function of Re computed from the spectral theory with κ = 0.4, βd = 7; and
βe = 9 for pipe flow, βe = 7 for channel flow.

Now the question is how significant the difference of the values of βe between pipe flow
and channel flow can be. For each flow, the higher value of βe means a higher wake,
which will result in a lower value of friction factor and vice versa. In other words, if
the difference of the values of βe is large enough, the theoretically computed value of
the friction factor of channel flow could exceed that of pipe flow , a result that would
be inconsistent with the DNS data. In Fig. 2.10, given a lower value of βe = 2 for
channel flow, the computed values of the friction factor are higher than those of pipe
flow. Thus the difference of the values of βe should be slight. This conclusion is also
supported by the DNS data of shear production. In spite of the significant difference
of the MVPs in the wakes and the attendant difference of friction factor between pipe
flow and channel flow, the DNS data of shear production overlap nicely in Fig. 2.11.
The shear production P reads P = τt12

du(y)
dy

/ρ (see Appendix B). If we substitute
Equation 2.13 and reorganize the result using ũ and ỹ, we obtain

P̃ = κ2ρI3/4ỹ2(
dũ

dỹ
)3, (2.22)

where P̃ = Pν/u4τ . Now we can compute the shear production using the spectral
theory. As shown in Fig. 2.12, the theoretical results of shear production of pipe flow
and channel flow overlap like the DNS data. The difference of the shear production
between pipe flow and channel flow cannot be discerned. However, there must be some
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Fig. 2.10: Log-linear plots of the friction factor of pipe flow (blue) and channel flow as
a function of Re computed from the spectral theory with κ = 0.4, βd = 7; and βe = 9
for pipe flow, βe = 7 (red) and βe = 2 (black) for channel flow. For βe = 2, the values
of the friction factor of channel flow exceed those of pipe flow.

difference resulting from the MVP of the shear production as it is calculated from the
MVP, which displays significant discrepancy between pipe flow and channel flow in the
wakes. To magnify the difference, we plot the premultiplied shear production P̃ ỹ from
DNS data, in Fig. 2.13, and as computed from the spectral theory, in Fig. 2.14. The
theoretical results of shear production are in good qualitative accord with the DNS
data. The difference of the shear productions at large scales is consistent with that of
the wakes and also results from the disparity of the energetic-range correction to the
spectrum.

2.7 Discussion and summary

We have used the spectral theory of the MVPs to account for the discrepancy of the
MVP in the wakes between pipe flow and channel flow, with the following conclusions.

1. The physical origin of the discrepancy of the MVPs in the wakes between pipe
flow and channel flow is a manifestation of a slight disparity in the energetic-range
corrections to the spectrum. These in turn are due to the geometrical difference
between pipe flow and channel flow, whereby the largest eddies in the flow, which
are the eddies that dominate momentum transfer in the wake region, are affected
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Fig. 2.11: Log-linear plots of the shear production of pipe flow (blue) and channel
flow (red) at the same value of Reτ = 1000. The data are from DNS: El Khoury et al.
(2013) (pipe flow), Bernardini et al. (2014) (channel flow).

2 4 6 8

0

0.1

0.2

ln y


P


Fig. 2.12: Log-linear plots of the shear production of pipe flow (blue) and channel
flow (red) at the same value of Reτ = 3000 computed from the spectral theory with
κ = 0.4, βd = 7; and βe = 9 for pipe flow, βe = 7 for channel flow. Note that the blue
line for pipe flow is covered by the red line for channel flow.

by the boundaries of the flow in a way that changes from flow to flow. Thus, the
spectrum of turbulent kinetic energy differs in the energetic range depending on
the type of flow. Via the spectral link, these differences in the energetic range
result in MVPs that differ only in the wakes, consistent with empirical data.
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Fig. 2.13: Log-linear plots of the premultiplied shear production of pipe flow (blue)
and channel flow (red) at the same value of Reτ = 1000. The data are from DNS:
El Khoury et al. (2013) (pipe flow), Bernardini et al. (2014) (channel flow).
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Fig. 2.14: Log-linear plots of the premultiplied shear production of pipe flow (blue)
and channel flow (red) at the same value of Reτ = 3000 computed from the spectral
theory with κ = 0.4, βd = 7; and βe = 9 for pipe flow, βe = 7 for channel flow.

2. At smaller lengthscales, comprising the inertial and viscous ranges of the spec-
trum, the spectrum is universal regardless of the type of flow (pipe or channel).
Via the spectral link, small-scale universality of the spectrum translates into
MVPs for pipe flow and for channel flow that are identical in the viscous layer,
the buffer layer, and the log layer, again consistent with empirical data.
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3. The predictions of the spectral theory can be verified by computing the friction
factor for pipe flow and channel flow. With the same, slight disparity of energetic-
range correction (parameter βe) that accounts well for the disparities of MVPs,
the theory gives a good account of the disparities of friction factor, with the
friction factor for pipe flow overshooting that for channel flow. This conclusion
cannot be taken for granted. In fact, the values of βe must differ only slightly: if
they differed more, the value of the friction factor of channel flow would overshoot
that of pipe flow, which would be at odds with empirical data.

4. The predictions of the spectral theory can be verified by computing the shear
production for pipe flow and channel flow. With the same, slight disparity in
the value of βe that accounts well for the disparities of MVPs, the theory gives
a good account for the disparities of shear production, which are only apparent,
in both the empirical data and the theoretical predictions, when plotted as the
premultiplied shear production. In this case, the disparities are seen to be cir-
cumscribed to the region far from the wall, coextensive with the wake, in accord
with our conclusions regarding the MVPs.





Chapter 3

Spectral theory of plane Couette flow

3.1 Introduction
In plane Couette flow the fluid is confined between two mutually parallel plates

separated by a gap of thickness 2b. The upper plate moves relative to the lower one
and parallel to it, at a constant velocity. In the discussion that follows we will work
in a frame of reference in which the lower plate is stationary. No pressure gradient
is imposed on the fluid; thus the total shear stress is uniform across the thickness of
plane Couette flow.

The classical experiments on turbulent plane Couette flow date back to the 1950s,
to the independent experiments by Reichardt (1956, 1959) and by Robertson (1959).
These classical experiments focused on the friction factor f , which is defined as f ≡
τ0/ρu

2
c , where uc ≡ u(y = b) is the mean velocity at the centerline of the flow (that is,

the maximum velocity of the lower half part of plane Couette flow or half the velocity
of the moving plate) and the Reynolds number is defined as Re ≡ ucb/ν.

From the onset, the experiments revealed a noticeable disparity in the relation be-
tween f and Re (Fig. 3.1). In consultation with Reichardt, Robertson repeated his
experiments but the disparity prevailed and has never been resolved (Robertson &
Johnson, 1970). Later, more experiments on turbulent plane Couette flow became
available, including the experiments by Telbany & Reynolds (1982), whose measure-
ments of friction factor are in good accord with Reichardt’s, and the experiments by
Kitoh et al. (2005), whose measurments of friction factor agree well with Robertson’s.
In the meantime, direct numerical simulations (DNS) of turbulent plane Couette flow
became possible. Remarkably, the computational f–Re relation turns out to be quite
distinct from either of the experimental f–Re relations (Fig. 3.1). At the same value
of Reynolds number Re, the friction factors f of Robertson (1959) and Kitoh et al.
(2005) are consistently higher than those of Reichardt (1959) and Telbany & Reynolds
(1982), and consistently lower than those of DNS.

The Reichardt–Robertson disparity has always been thought of as an anomaly,
the inadvertent product of a systematic error that would sooner or later be identified
and factored in. The implicit notion has been that to each value of Re there should
correspond to a unique turbulent state and, therefore, a unique value of f (Massey &
Ward-Smith, 1998).

In view of Fig. 3.1, we argue that this notion should be abandoned. Thus, in what

33
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Fig. 3.1: Log-linear plots of experimental and computational data on the relation
between the friction factor f and the Reynolds number Re of plane Couette flow. �
Reichardt (1959). 4 Telbany & Reynolds (1982). � Robertson (1959). N Kitoh
et al. (2005). © DNS from Lee & Kim (1991) (Green), Bech et al. (1995) (black),
Tsukahara et al. (2006) (Purple), Avsarkisov et al. (2014) (Blue), and Pirozzoli et al.
(2014) (Red), respectively. Solid lines are the empirical formulas from Telbany &
Reynolds (1982): 0.0331/(log Re)2, Robertson (1959): 0.0361/(log Re)2, and Pirozzoli
et al. (2014): 0.0399/(log Re)2, respectively.

follows, we shall accept as a fact the experimental and computational evidence that to
each value of Re there might actually correspond to multiple values of f . Furthermore,
we shall assume that each one of these values of f signals a specific, alternative turbulent
state.

We are ready now to set specific objectives for this chapter. It is not our intention
here to seek an explanation for the existence of multiple alternative turbulent states
in plane Couette flow. Rather, we seek to address three basic questions: How are
we to characterize a turbulent state? In what ways do the various turbulent states
differ among themselves? Can the existence of multiple turbulent states be reconciled
with the phenomenological theory of turbulence? To start answering these questions,
we turn our attention to the mean-velocity profiles (MVPs). The MVPs have been
largely ignored in discussions of the Reichardt–Robertson disparity, yet they may, via
the spectral theory, facilitate a characterization of the various turbulent states that
observed in plane Couette flow.

In Fig. 3.2, we plot the proper data of MVPs of the highest Re available in various
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Fig. 3.2: Log-linear plots of experimental and computational data on the MVPs of
plane Couette flow. � Reichardt (1959) at Reτ = 723. 4 Telbany & Reynolds (1982)
at Reτ = 805. � Robertson (1959) at Reτ = 700. N Kitoh et al. (2005) at Reτ = 192.
© DNS from Avsarkisov et al. (2014) (Blue) at Reτ = 550, and Pirozzoli et al. (2014)
(Red) at Reτ = 986, respectively. The grey line denotes the log law, ũ(ỹ) = 1

κ
ln ỹ +B

with κ = 0.41 and B = 5. The dashed grey line denotes the laminar solution of the
viscous layer, ũ(ỹ) = ỹ. Each MVP extends from the wall to ỹ = Reτ .The MVPs
collapse onto a single curve close to the wall in the viscous layer, the buffer layer, and
the log layer while there are significant discrepancies displaying in the wakes.

experiments and DNS for plane Couette flow. From that figure we can verify that at
comparable values of Reτ , the various MVPs are indistinguishable everywhere in the
domain of the flow except for the wake. Indeed, disparities in the f–Re relation are
reflected in the wakes of the MVPs, and only there, in the form of varying degrees of
overshooting of the log layer.

Even though some of the values of Reτ that appear in Fig. 3.2 are not entirely
comparable with the others (especially for the experiment of Kitoh et al. (2005) and
the DNS of Avsarkisov et al. (2014), where the highest available values of Reτ are rather
small), it can be clearly seen that the overshooting is largest for the experiments of
Reichardt (1959) and Telbany & Reynolds (1982), second largest for the experiments of
Robertson (1959), and smallest for the DNS of Pirozzoli et al. (2014) (Fig. 3.2). That
is to say, a higher friction factor consistently corresponds to a smaller overshooting in
the wakes of the MVPs. Indeed, the overshooting can be quantified by the value of the
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non-dimensional velocity slope at the flow centerline, which is defined as

Rs ≡
b

uτ

du

dy
|y=b ≡

dũ

dlnỹ
|ỹ=Reτ . (3.1)

A higher value of Rs indicates a larger overshooting in the wakes of the MVPs. In
Fig. 3.3 it is possible to confirm the conclusion from Fig. 3.2, namely that a higher
friction factor consistently corresponds to a smaller overshooting in the wakes of the
MVPs (if we exclude as an outlier, likely due to scatter, the only reverse case, which
occurs at a very small Re).
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Fig. 3.3: Log-linear plots of experimental and computational data on the relation
between the non-dimensional velocity slope at the flow centerline, Rs, and the Reynolds
number Re of plane Couette flow. 4 Telbany & Reynolds (1982). � Robertson (1959).
N Kitoh et al. (2005). © DNS from Tsukahara et al. (2006) (Purple), Avsarkisov et al.
(2014) (Blue), and Pirozzoli et al. (2014) (Red), respectively.

3.2 Spectral theory
At this point we use the spectral theory of the MVPs of plane Couette flow (for-

mulated in Chapter 3) to make the theoretical predictions shown in Figs. 3.4 and 3.5.
The theory can reproduce all of the salient trends in the experimental and computa-
tional data (also shown in Figs. 3.1 and 3.2). Furthermore, the disparities in friction
factor and the attendant disparities in the wakes are accounted for by a single param-
eter of the theory: the dimensionless parameter βe of the energetic-range correction.
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Fig. 3.4: Log-linear plots of the friction factor of plane Couette flow as a function of
Re computed from the spectral theory with κ = 0.41, βd = 7, and three different values
of βe: βe = 1 (black line), βe = 2 (red line), βe = 3 (blue line).

We conclude that feasible turbulent states can only differ at the lengthscales of the
energetic-range correction (that is, the largest lengthscales of the spectrum, and the
only ones affected by finite-domain effects). Thus, contrary to the view that multi-
ple turbulent states might be somewhat at odds with the phenomenological theory of
turbulence (this view was put forward in a discussion of multiple turbulent states in
Taylor-Couette flow (Huisman et al., 2014; van der Veen et al., 2016), but is applicable
to plane Couette flow as well), the difference between any one such state and another
is totally circumscribed to the largest lengthscales in the flow, with the implication
that, at any given Reynolds number, all turbulent states are indistinguishable at in-
ertial and viscous lengthscales, and that small-scale universality (Kolmogórov, 1941b;
Schumacher et al., 2014) holds regardless of state, in accord with the phenomenological
theory.

3.2.1 Attendant disparities in macroscopic properties other than
the MVPs

As per the spectral theory, a higher value of βe indicates stronger finite-domain
effects and results in a lower friction factor and a larger overshooting in the wakes
of the MVPs (Figs. 3.4 and 3.5). From this conclusion we expect that a change in a
turbulent state (and the attendant change in the f–Re relation) should have a marked
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Fig. 3.5: Log-linear plots of the MVPs of plane Couette flow at the same value of
Reτ = 1000 computed from the spectral theory with κ = 0.41, βd = 7, and three
different values of βe: βe = 1 (black line), βe = 2 (red line), βe = 3 (blue line).

effect on the turbulent velocity fluctuation profile V (y) ≡ u′iu
′
i (because most of the

turbulent kinetic energy is carried by the largest turbulent eddies in the flow). Indeed,
we can predict that a turbulent state with a lower friction factor corresponds to stronger
finite-domain effects, which in turn should correspond to higher turbulent velocity
fluctuations. This prediction is confirmed in Fig. 3.6, where we plot the most recent
DNS and experimental data, for the highest available values of Re, on the V (y) profile
(that is, on the relation between Ṽ ≡ V/u2τ and ỹ).

The spectral theory does not directly give the turbulent velocity fluctuations. How-
ever, the turbulent wall-normal velocity fluctuation profile vrms(y) may be identified
with vy (the characteristic velocity of the dominant eddy at a distance y from the wall);
in Fig. 3.7, we consider that at a distance y from the wall, the turbulent wall-normal
velocity fluctuation results mostly from the turbulent eddies centering at the wetted
surface Wy. Then, the dominant eddies contributing to the turbulent wall-normal ve-
locity fluctuation vrms(y) must be of size s = y as vs is a monotonically increasing
function of s (see Chapter 2). Thus, we assume that the vrms(y) = vy. From Equa-
tions 2.12 and 2.13, vy (or vrms(y)) can be directly computed from the spectral theory
as

vy = vrms(y) = (κ2κε)
1/3I3/4y

du(y)

dy
. (3.2)

We now are ready to compare our theoretical results of vrms(y) to the corresponding
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Fig. 3.6: Plots of experimental and computational data on the turbulent velocity
fluctuation profiles of plane Couette flow. 4 Telbany & Reynolds (1982) at Reτ = 805.
© DNS from Avsarkisov et al. (2014) (Blue) at Reτ = 550, and Pirozzoli et al. (2014)
(Red) at Reτ = 986, respectively.

experimental and computational data. Similar to the V (y) profile, the vrms(y) profile
(that is, the relation between ṽrms ≡ vrms/uτ and ỹ) should also differ depending on
the turbulent state. What we expect is that because of weaker finite-domain effects, a
higher friction factor should also correspond to a higher turbulent wall-normal velocity
fluctuation, which is again confirmed by Fig. 3.8 and can be reproduced by the spectral
theory by varying the dimensionless parameter βe of the energetic-range correction
(Fig. 3.9).

3.3 A note on the asymptotic value of the velocity
slope at the flow centerline

In plane Couette flow, the value of the non-dimensional velocity slope at the flow
centerline, Rs (which is zero for pipe flow and channel flow because of the vanished shear
stress), has elicited considerable interest since the 1950s when the classical experiments
on turbulent plane Couette flow were conducted by Reichardt (1956, 1959). Regarding
how Rs varies with Re (Fig. 3.3), while most recent DNS studies report a slow decrease
of Rs with increasing Re, different trends have been reported in various experiments.
The discrepancies have been attributed to the difficult measurements of small velocity
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Fig. 3.7: Schematic used to derive the expression for the turbulent wall-normal ve-
locity fluctuation vrms(y).

differences in experiments (Pirozzoli et al., 2014). Regarding whether the value of Rs

will approach a constant in the limit of infinite Re, a convincing conclusion has never
been reached because of the limitation to achieve very high Reynolds number in both
experiments and simulations. Thus, the value of the non-dimensional velocity slope
at the flow centerline remains an open question till now (Avsarkisov et al., 2014). An
alternative definition of the non-dimensional velocity slope at the flow centerline is

S0 ≡
b

uc

du

dy
|y=b ≡

dũ

dlnỹ
|ỹ=Reτ

√
f = Rs

√
f. (3.3)

Here, the spectral theory will be employed to address the open question on the
value of the non-dimensional velocity slope at the flow centerline of plane Couette
flow. Rs and S0 are readily to be calculated from the theoretically computed MVP
and friction factor. At the flow centerline where the viscous shear stress is negligible,
Equation 2.15 gives that Rs = I

−3/8
s /κ, where Is ≡ I(η/b, 1), which depends on Re via

η/b. For a high enough Reynolds number, η/b reduces to zero. Thus Is = I(0, 1) is not
dependent on Re any more and Rs becomes a constant value, which is determined by
the energetic-range correction to the spectrum via I(0, 1). Note that the conclusion
that Rs becomes a constant value at high Reynolds numbers is valid regardless of the
from of the function I(η/s, s/b), thus regardless of the form of the energetic-range
correction to the spectrum, as long as the energetic-range correction to the spectrum
is a function of s/b. In the standard model of the spectrum we are using here, the
dimensionless parameter βe of the energetic-range correction sets the constant value of
Rs at high Reynolds numbers (Fig. 3.10) as Is becomes

I(0, 1) ≡ 2

3

∫ ∞
1

ξ−5/3(1 + β2
e/ξ

2)−17/6dξ, (3.4)
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Fig. 3.8: Plots of experimental and computational data on the turbulent wall-normal
velocity fluctuation profiles of plane Couette flow. 4 Telbany & Reynolds (1982) at
Reτ = 805. © DNS from Avsarkisov et al. (2014) (Blue) at Reτ = 550, and Pirozzoli
et al. (2014) (Red) at Reτ = 986, respectively.
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Fig. 3.9: Plots of the turbulent wall-normal velocity fluctuation profiles of plane
Couette flow at the same value of Reτ = 1000 computed from the spectral theory with
κ = 0.41, βd = 7, and three different values of βe: βe = 1 (black line), βe = 2 (red line),
βe = 3 (blue line).
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Fig. 3.10: Log-linear plots of the non-dimensional velocity slope at the flow centerline
Rs of plane Couette flow as a function of Re computed from the spectral theory with
κ = 0.41, βd = 7, and three different values of βe: βe = 1 (black line), βe = 2 (red line),
βe = 3 (blue line). The dashed grey lines denote that at high Reynolds numbers, the
constant values of Rs = 2.86, 3.34, and 3.69 for βe = 1, βe = 2, and βe = 3, respectively.

which is a constant value only depending on βe. We have argued that a certain βe
signifies a specific turbulent state of plane Couette flow in Section 3.2. That is to say,
for each turbulent state, there is an asymptotic constant value of Rs in the limit of
high Re as shown in Fig. 3.10.

In Fig. 3.11, we also plot S0 ≡ Rs

√
f as a function Re. The decreasing rate of S0

is getting slow in high Reynolds number region as the friction factor f is decreasing
slowly. At infinite Reynolds number, if the friction factor becomes zero, then S0 will
be zero.

3.4 Discussion and summary
We have used the spectral theory of the MVPs of turbulent plane Couette flow to

revisit the Reichardt–Robertson disparity, with the following conclusions.

1. The Reichardt–Robertson disparity is a manifestation of the existence of multiple
turbulent states in plane Couette flow.

2. A turbulent state may differ from any alternative turbulent state only at the
lengthscales that are affected by the energetic-range correction—that is, the
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Fig. 3.11: Log-linear plots of the non-dimensional velocity slope at the flow centerline
S0 of plane Couette flow as a function of Re computed from the spectral theory with
κ = 0.41, βd = 7, and three different values of βe: βe = 1 (black line), βe = 2 (red line),
βe = 3 (blue line).

largest lengthscales in a flow, which are proportional to the thickness of the
flow.

3. Corollary: a change in turbulent state can only alter the wake of the attendant
MVP (which is the part of the MVP dominated by the eddies of the energetic
range).

4. At smaller lengthscales, comprising the inertial and viscous portions of the spec-
trum of turbulent kinetic energy, the spectrum is one and the same regardless of
the turbulent state, consistent with the phenomenological theory of turbulence.

5. Thus, the existence of multiple turbulent states does not contradict the univer-
sality of the spectrum of turbulent kinetic energy (such as this universality is
understood in the phenomenological theory).

6. Conversely, spectral universality does not rule out the existence of multiple tur-
bulent states.

Our analysis might extend beyond plane Couette flow to a general class of flows
driven by moving boundaries. Consider, for instance, the recent papers, Huisman et al.
(2014) and van der Veen et al. (2016), on multiple states in highly turbulent Taylor-
Couette flows, these studies report two branches of global torque (which is analogous
to the friction factor f). These branches correspond to differences in the wake of the
MVPs of azimuthal velocity and in the size of large-scale Taylor vortices (which corre-
spond to differences in the energetic-range correction to the spectrum). The spectral
theory might help shed light on these issues. What is more, by singling out the most
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likely, and quite possibly the sole, agents of the occurrence of multiple alternative
turbulent states in plane Couette flow, our analysis provides patent pointers in the
search for a mechanistic explanation of the Reichardt–Robetson disparity and analo-
gous manifestations of a lack of uniqueness in plane Couette flow and other turbulent
flows driven by moving boundaries. Those agents are, as we have demonstrated, the
largest turbulent eddies in a flow. We submit, on the basis of the analysis of this chap-
ter, that it is in their interactions with the boundaries of the turbulent domain that
the origin of multiple alternative turbulent states should be sought.



Chapter 4

Spectral theory of thermally-stratified
plane Couette flow

4.1 Introduction

In previous chapters, we have considered turbulent flows of constant-density fluids.
Here we shift focus to study turbulent flows of fluids with temperature-dependent
density, i.e., we consider thermally-stratified turbulent flows (Turner, 1973; Stull, 1988).
We are surrounded by such flows. Take, for example, the flow of air in the atmospheric
boundary layer, the approximately 1 km thick region enveloping the surface of the
Earth. Interaction with the Earth’s surface renders the air flow turbulent via two
concurrent effects:

1. frictional drag with the surface shears the flow;

2. heat transfer with the surface (which is subjected to the diurnal cycle of heating
and cooling) makes the flow thermally stratified (Wallace & Hobbs, 2006), which,
via the dependence of density on temperature, induces buoyancy in the flow.

This shear and buoyancy generate turbulence; and the turbulent flow dictates the envi-
ronment for all terrestrial life (Garratt, 1992, 1994). Consequently, there is considerable
interest in studying thermally-stratified, turbulent flows in the atmospheric boundary
layer.

We consider a simpler case of such flows. Assuming zero mean pressure gradient
in the flow direction and constant total shear stress normal to the flow direction, and
ignoring the roughness of the surface, we study fully-developed, thermally-stratified
plane Couette flow. In a plane Couette flow, the fluid is confined between two parallel
smooth walls, where the lower wall is stationary and the flow is driven by the upper
wall moving at a constant velocity. At the walls, we have no-slip and no-penetration
boundary conditions (Davidson, 2004). For the thermally-stratified case, we also in-
voke an additional boundary condition: at the walls, the heat flux is constant. To
model thermally-stratified flows, we invoke the widely used Boussinesq approximation
(Turner, 1973; Kundu & Cohen, 2002). Under this approximation, the governing equa-
tions are as follows.

45
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The equation of state for the fluid, which links the density variation δρ (with respect
to the reference density ρ0) with the temperature variation δT , reads:

δρ

ρ
= −αδT, (4.1)

where α is the coefficient of thermal expansion. The kinematic viscosity of the fluid,
ν, is assumed to be independent of T . Under the Boussinesq approximation, attention
is restricted to small temperature variations, and the equation for the conservation of
mass remains the same as that for incompressible flows (see Appendix A), namely:

∇ · u = 0, (4.2)

where u is the velocity. The equation for the conservation of momentum reads (cf.
Appendix A):

Du

Dt
= −1

ρ
∇p+ ν∇2u +

ρ

ρ0
g, (4.3)

where D/Dt is the material derivative, p is the pressure,and g is the gravitational
acceleration. The effect of density variation is restricted to the last term of the right-
hand side—the buoyant term. Last, the equation for the conservation of energy (i.e.,
the heat equation) reads:

DT

Dt
= kd∇2T, (4.4)

where kd is the thermal diffusivity.

4.2 The Monin-Obukhov similarity theory
Although turbulent flows of wall-bounded, thermally-stratified fluids are well de-

scribed by Equations 4.1–4.4, these equations, despite the simplifying approximations,
cannot yet be solved analytically. Instead of attempting to solve the equations, the
theoretical framework for such flows builds on the tools of dimensional analysis (Baren-
blatt, 1996). The most well-known case of such a framework is the Monin-Obukhov
similarity theory (MOST) (Obukhov, 1946; Monin & Obukhov, 1954). Proposed about
70 years ago for flows in the atmospheric boundary layer, this seminal theory continues
to guide our understanding of thermally-stratified flows in general.

As an application of MOST, we consider the thermally-stratified plane Couette
flow. When the lower wall is heated, the flow becomes unstably stratified. Conversely,
when the lower wall is cooled, the flow becomes stably stratified. At a distance y
from the lower wall, the local mean velocity, u, can be obtained by averaging the
instantaneous velocity over a long period of time. The resultant profile u(y) is known
as the mean-velocity profile (MVP), the scaling and shape of which is the focus of this
chapter.

In MOST, attention is restricted to an intermediate region of the MVP—not too
close to a wall where viscosity affects the flow and not too far from a wall where external
confinement affects the flow. In this region, for the vertical gradient of the MVP, du

dy
,

MOST posits:
du

dy
= G(y, τ0, ρ, g, α,H0), (4.5)
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where G is an unspecified function, τ0 is the wall shear stress, and H0 is the wall
heat flux. Note that because the region near the wall is not included, the effects of
molecular diffusion of momentum (via ν) and of molecular diffusion of heat (via kd) are
not considered. Similarly, the distance between the two walls, which brings in the effects
of external confinement, is not considered. (We will return to these considerations in
Section 4.5.)

Using the Buckingham–Pi theorem (Barenblatt, 1996), the functional relation be-
tween seven dimensional variables of Equation 4.5 can be expressed as an equivalent
functional relationship between two dimensionless variables:

du

dy

κy

uτ
= φu (y/L0) , (4.6)

where κ is a dimensionless constant (which we will discuss shortly), uτ ≡
√
τ0/ρ is

the friction velocity, and φu is a dimensionless function that depends only on the
stability parameter, y/L0 (where L0 ≡ −u3τ/(κgαH0), known as the Obukhov length,
is the characteristic height at which turbulence effected by shear and buoyancy are
comparable). Since the functional form of φu cannot be determined by MOST, to
proceed, one seeks guidance from empirical data, which shows that for small |y/L0|,
φu is a constant ≈ 1 (Businger et al., 1971; Kader & Yaglom, 1990). In this limit,
integrating Equation 4.6 yields the well-known “log law” for canonical wall-bounded
turbulent flows:

ũ =
1

κ
ln ỹ +B, (4.7)

where, following standard convention, we express the log law in the “wall variables”
(ũ ≡ u/uτ and ỹ ≡ uτy/ν, where ν is the fluid kinematic viscosity); κ (the Kármán
constant) and B are dimensionless constants of the log law, whose values are determined
from empirical data. The deviation of φu from 1 quantifies the deviation of the MVP
from the log law. From empirical data it is known that as the stratification becomes
stronger (i.e., the absolute value of heat flux H0 increases and thus the absolute value
of Obukhov length L0 decreases), the log layer becomes thinner, and finally, for strong
stratification the log law disappears. We discuss this feature in more detail in the next
section.

4.3 Mean-velocity profile: empirical data
We begin our considerations by stepping beyond the domain of MOST, which fo-

cuses on the intermediate region of the MVP, and discuss the salient features of the
MVP over its whole extent, from the lower wall to the centerline. Note that, by sym-
metry, the upper half of the MVP mirrors the shape of the lower half, to which we
restrict attention.

Before discussing the MVP, it is useful to list the various dimensionless parameters
that characterize the flow. Three independent dimensionless parameters are needed
to characterize the flow; for example, the bulk Reynolds number, Re ≡ ubh/ν, which
measures the ratio of inertial forces to viscous forces, the Rayleigh number, Ra ≡
αg∆T (2h)3/(kdν), which measures the ratio of buoyant forces to viscous forces, and
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the Prandtl number, Pr ≡ ν/kd, which measures the ratio of momentum diffusivity and
thermal diffusivity. Here, ub is the bulk (average) velocity, i.e., the flow flux divided
by the cross-sectional area (note that for a plane Couette flow, ub equals the flow
centerline velocity, uc); 2h is the distance between the two walls; ∆T is the temperature
difference between the two walls. Instead of the bulk Reynolds number, sometimes the
friction Reynolds number, Reτ ≡ uτh/ν, is used and instead of the Rayleigh number,
sometimes the friction Richardson number, Riτ ≡ αg∆Th/u2τ , or the bulk Richardson
number, Rib ≡ αg∆Th/(2u2b), is used. (The Richardson number measures the ratio
of buoyant production to shear production.) In addition, a dimensionless parameter
known as Nusselt number, Nu ≡ 2hH0/(kd∆T ), which measures the ratio of convective
to conductive heat flux, is also customarily used in the study of thermally-stratified
turbulent flows. We can also consider a different dimensionless parameter, h/L0, which
is the ratio of the domain size to the Obukhov length. h/L0 can be expressed in terms
of the above-mentioned dimensionless parameters as h/L0 = κRaNu/(16Re3τPr

2) =
κRibRe2bNu/(Re3τPr) = κRiτNu/(2ReτPr). To characterize the flow, we consider the
dimensionless parameters: Reτ , h/L0, and Pr.

We collate MVPs from several recent direct numerical simulations (DNS) of thermally-
stratified plane Couette flows and thermally-stratified channel flows (García-Villalba
& del Álamo, 2011; García-Villalba et al., 2011; Deusebio et al., 2015; Pirozzoli et al.,
2017). In Fig. 4.1, we plot these MVPs in wall variables, ũ vs. ỹ. First, we consider
the intermediate region analyzed in MOST. Here, for wall-bounded turbulent flows of
constant-density fluids, (h/L0 = 0), the MVP follows the log law. The MVPs devi-
ate downward from the log law for unstable stratification (h/L0 < 0); and the MVPs
deviate upward from the log law for stable stratification (h/L0 > 0). Such deviations
have long been known and are noted in textbook discussions of this topic (see, e.g.,
Fig. 4.2).

From the DNS data of Fig. 4.1, we get a more detailed picture of the deviations from
the log law. We note that stronger stratification (larger values of |h/L0|) corresponds
to larger deviation from the log law. Further, the deviated MVPs are qualitatively
different for unstable and stable stratification—for unstable stratification, the MVPs
flatten with increase in ỹ, while for stable stratification, the MVPs steepen with increase
in ỹ. These trends continue as we move past the intermediate region and get closer to
the centerline. Moving closer to the wall from the intermediate region, we note that the
MVPs for flows whose stratification is not very strong collapse onto the MVP for wall-
bounded turbulent flows of constant-density fluids—with a viscous layer next to the
wall (with ũ = ỹ) that is topped with a buffer layer (Fig. 4.1). That is, the near-wall
flow obeys the “law of the wall” for wall-bounded turbulent flows of constant-density
fluids (Tennekes & Lumley, 1972; Pope, 2000). When the stratification becomes strong,
the MVPs begin to deviate from the collapsed curve in the buffer layer.

Above we have outlined the salient qualitative features of MVPs in thermally-
stratified turbulent flows. There exists no theory that sheds light on the origin of these
features. Next, using the framework of the spectral theory discussed in Chapter 2, we
seek to understand these features.
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Fig. 4.1: Log-linear plot of the MVPs in the “wall variables”, ũ vs. ỹ. Filled symbols
are DNS data for unstably-stratified channel flows from Pirozzoli et al. (2017) with
Pr = 1: upward-pointing triangles denote h/L0 = −12.04,Reτ = 179, diamonds denote
h/L0 = −1.47,Reτ = 351, downward-pointing triangles denote h/L0 = −0.18,Reτ =
864, and squares denote h/L0 = 0,Reτ = 816. Empty symbols are DNS data for
stably-stratified flows. Green data are for stably-stratified channel flows from García-
Villalba & del Álamo (2011) with Pr = 0.7,Reτ = 550: squares denote h/L0 = 0,
circles denote h/L0 = 0.22, downward-pointing triangles denote h/L0 = 0.34, diamonds
denote h/L0 = 0.84, and upward-pointing triangles denote h/L0 = 1.36. Red data are
for stably-stratified plane Couette flow from García-Villalba et al. (2011) (in this case
h/L0 can not be computed from the data provided in this paper) with Pr = 0.7,Reτ =
540: circles denote Rib = 0, downward-pointing triangles denote Rib = 0.03, diamonds
denote Rib = 0.06, and upward-pointing triangles denote Rib = 0.1. Black data are
for stably-stratified plane Couette flow from Deusebio et al. (2015) with Pr = 0.7:
upward-pointing triangles denote h/L0 = 1.37,Reτ = 349, diamonds denote h/L0 =
3.78,Reτ = 520.

4.4 Mean-velocity profile: spectral theory

4.4.1 Mean-flow equations

To guide the theory of MVP, we first list the governing equations for the mean flow.
Invoking Reynolds’s decomposition, we split the instantaneous flow as:

u = u + u′;

p = p+ p′;

T = T + T ′;

ρ = ρ+ ρ′,
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Fig. 4.2: Deviation from the log law due to unstable and stable stratification. Figure
from the classic textbook Turner (1973). Note that compared with Fig. 4.1, the axes
are flipped. Also note that here the distance from the wall is denoted by z.

where the first term on the right-hand side is the time-averaged mean component and
the second term is the fluctuating component (and is marked with a prime). For a fully-
developed, plane Couette flow, we note that the mean flow is steady (∂()/∂t = 0), the
mean velocity is unidirectional (u = (u, 0, 0)), the mean pressure gradient is absent
(∇p̄ = 0), and the streamwise and the spanwise gradients are absent (∂()/∂x = 0 and
∂()/∂z = 0, respectively). Under these simplifications and by substituting Reynolds’s
decomposition in the governing equations for Boussinesq approximation (see Equations
4.2–4.4), we arrive at the following governing equations for the mean flow (see Kundu
& Cohen (2002)).

The equation for the conservation of mass for incompressible fluid reads:

∇ · u = 0, (4.8)

which is automatically satisfied for a plane Couette flow since ∇ · u = ∂u/∂x = 0.
The equation for the conservation of mean momentum (streamwise component)

reads:

0 = ν
∂2u

∂y2
+
∂τt
∂y

, (4.9)

where τt is the turbulent shear stress; τt ≡ −ρ〈u′v′〉, where the angle brackets denote
an ensemble average, u′ is the fluctuating velocity in the streamwise direction and v′ is
the fluctuating velocity in the wall-normal direction. Note that the buoyant term acts
in the wall-normal direction and thus does not appear in the streamwise momentum
equation. That is, the equation for the streamwise mean momentum is the same as that
in wall-bounded turbulent flows of constant-density fluids. Integrating in y, we obtain
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the equation for momentum balance (which is the same as discussed in Appendix A
for unstratified plane Couette flow):

τ0 = ρν
du

dy
+ τt. (4.10)

From conservation of momentum, we can also derive an equation for the mean
kinetic energy (Kundu & Cohen, 2002), from which equation of energy balance reads:

ε = τt
du

dy
/ρ+ gαHs, (4.11)

where ε is the turbulent power per unit mass, which is balanced by τt dudy/ρ (the shear
production of turbulent kinetic energy) and gαHs (the buoyant production of turbulent
kinetic energy; Hs is the turbulent heat flux; Hs ≡ 〈v′T ′〉). Here, as discussed in
Appendix B, we neglect the transport terms in deriving the equation for energy balance.
Note that unlike the equation for streamwise mean momentum (Equation 4.9), which
is unaffected by buoyancy, the energy balance includes contributions from wall-normal
mean momentum and thus is affected by buoyancy.

Finally, the heat equation reads:

H0 = −kd
dT

dy
+Hs. (4.12)

In the following analysis, we shall invoke Equations 4.10–4.12. Specifically, the
heat equation provides a constraint for Hs, which, in turn, determines the buoyant
production in the energy balance. The MVP is determined by solving the equations of
momentum balance and energy balance. Since the momentum balance is unaffected by
stratification, the effect of stratification is only determined by the buoyant production
term in the energy balance. For later reference we note that in the region where
the shear production dominates over the buoyant production, the equation of energy
balance is the same as that for wall-bounded turbulent flows of constant-density fluids.
Thus, in this region, the MVP will remain unaffected by the stratification.

4.4.2 Spectral link

The nub of the theoretical framework of the spectral theory (Gioia et al., 2010) is
the expression for the turbulent shear stress τt at a distance y from the wall:

τt = κτρyvy
du

dy
, (4.13)

where κτ is a dimensionless proportionality constant and vy is the characteristic velocity
of a turbulent eddy of the size y. This expression (spectral link) links τt to the turbulent
kinetic energy spectrum, E(k), via vy—recall that the characteristic velocity vs of a
turbulent eddy of size s can be determined from E(k) using vs =

√∫∞
1/s
E(k)dk. By

substituting the standard model of the spectrum (Pope, 2000):

E(k) ≡ 2

3
((κεε)

2/3k−5/3 exp(−βdηk)(1 + (βe/kh)2)−17/6,
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and introducing the dimensionless variable ξ ≡ sk, we can write:

vs = (κεεs)
1/3
√
I,

where I ≡ I(η/s, s/h) ≡ 2
3

∫∞
1
ξ−5/3 exp(−ξβdη/s)(1 + (βes/h)2/ξ2)−17/6dξ. Here, κε

is a dimensionless constant of order 1, ε is the turbulent power per unit mass, η is
the viscous lengthscale (which can be computed as η = ν3/4(κεε)

−1/4), exp(−ξβdη/s)
is the dissipative-range correction, βd is the non-negative dimensionless parameter of
the dissipative-range correction), (1 + (βes/h)2/ξ2)−17/6 is the Kármán form of the
energetic-range correction, and βe is the non-negative dimensionless parameter of the
energetic-range correction. In general, for an eddy of size s in the inertial range (η �
s� h), I = 1 and vs = (κεεs)

1/3. For an eddy of size s in the dissipative range (s ∼ η)
or the energetic range (s ∼ h), I < 1 and vs < (κεεs)

1/3. If we set βd = βe = 0—
that is, if there is no dissipative-range correction and no energetic-range correction (an
unphysical proposition)—vs = (κεεs)

1/3 for all s, and all eddies are inertial. Previous
studies of adapting the spectral theory for thermally-stratified flows in the atmosphere
restricted attention to such inertial eddies and to the intermediate region of the MVP,
see, e.g., (Katul et al., 2011). Here we consider the whole structure of E(k) as well as
the whole extent of the MVP.

As in Chapter 2, we seek to obtain the MVP by solving the equation of momentum
balance (Equation 4.10), where τt is given by Equation 4.13. In Equation 4.13, vy is
related to E(k), which varies with y through the dependence of ε with y, which, in turn,
is governed by the energy equation (Equation 4.11). With the additional contribution
from buoyant production, this energy equation is the main difference from our analysis
in Chapter 2.

To proceed, we first obtain a simpler form of the energy equation. To that end,
consider the heat equation (Equation 4.12): H0 = −kd dTdy + Hs. The term −kd dTdy
represents molecular diffusion of heat and the term Hs represents turbulent diffusion
of heat. Due to the no-penetration boundary condition at the wall, we have v′ = 0
and therefore Hs = 0. Thus, at the wall, molecular diffusion of heat dominates the
heat flux. Away from the near-wall region, the heat flux is dominated by Hs. These
considerations are analogous to molecular and turbulent diffusion of momentum flux,
as can be seen by comparing the heat equation (Equation 4.12) with the equation of
momentum balance (Equation 4.10). From the perspective of energy balance, however,
considerations of heat flux and momentum flux in the near-wall region are distinct.
In this region, shear production dominates over buoyant production (Equation 4.11).
(Recall that in the near-wall region, y is much smaller than L0, the Obukhov length,
which characterizes the distance from the wall at which turbulence effected by shear
and buoyancy are comparable.) Thus, if we neglect the molecular diffusion of heat in
the heat equation, the energy balance remains largely unaltered. We therefore simplify
the heat equation as H0 = Hs, which leads to the following simplified equation for the
energy balance:

ε = τt
du

dy
/ρ+ gαH0. (4.14)

Before proceeding with the analysis we note that because we have neglected molec-
ular diffusion of heat from our analysis, our predictions for MVPs do not depend on
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the Prandtl number, Pr. (By contrast, the mean-temperature profile depends on Pr.)
Neglecting the molecular diffusion of heat near the wall is valid as long as the thermal
boundary layer is smaller than or of comparable size as the momentum boundary layer.
In other words, we focus attention to flows where Pr ∼ O(1) (such as flows in the at-
mospheric boundary layer) or larger and do not consider flows where Pr � 1. For
such flows (Pr & O(1)), we predict that the MVPs only depend on two dimensionless
parameters, Reτ and h/L0, independent of Pr.

Returning to the analysis, we combine Equations 4.13 to 4.14 and express the results
in the wall variables to obtain:

ũ′κ4/3ỹ4/3(ũ′ − ũ′2 − h/(ReτκL0))
1/3
√
I + ũ′ = 1, (4.15)

where ũ′ ≡ dũ/dỹ. Solving this equation will yield the MVP.
To obtain the MVP, following the analysis of Chapter 2, we first determine the

thickness of the viscous layer, ỹv. To that end, from Equations 4.14 and 4.15 and the
relation η = ν3/4ε−1/4, we obtain:

η/y = (ũ′ − ũ′2 − h/(ReτκL0))
−1/4ỹ−1. (4.16)

Next we introduce further simplification. In the region adjacent to the wall, we ne-
glect the buoyant production in comparison with shear production, in accord with the
discussion above. (We shall return to this assumption later in this section.) That is,
for y � h, we assume −h/(ReτκL0) � ũ′ − ũ′2. Under this simplification, we can
eliminate ũ′ from Equations 4.15 and 4.16 to obtain:

ỹ = (
(η/y)4/3 + κ4/3I1/2(η/y, 0)

κ2/3(η/y)8/3I1/4(η/y, 0)
)1/2, (4.17)

which allows us to determine ỹv, the thickness of the viscous layer, in the same way as
discussed in Chapter 2.

We are now ready to compute the MVP. For ỹ ≤ ỹv, the flow is purely viscous
and ũ(ỹ) = ỹ. For ỹ > ỹv, we integrate Equation 4.15, where we use the boundary
condition on top of the viscous layer: ũ(ỹv) = ỹv. Setting βd = 5.2 and κ = 0.4 (which
yields ỹv = 3.41), and βe = 2, in Fig. 4.3, we plot the theoretical predictions for the
MVPs in wall variables for a fixed Reτ and for various values of h/L0 spanning unstable
and stable stratification. The predicted MVPs are in excellent qualitative accord with
empirical data (Fig. 4.1). Next we discuss the salient features of the predicted MVPs,
starting at the wall and moving outward.

Near the wall, the MVPs for unstably-stratified flows, stably-stratified flows, and
flows of constant-density fluids collapse onto a single curve, confirming the law of the
wall. This collapsed curve spans the viscous layer and part of the buffer layer. First,
consider the viscous layer. In computing ỹv (see Equation 4.17), we have neglected
buoyant production, and thus stratification does not affect the MVP in the viscous
layer. In the buffer layer, however, effects of both buoyant production and shear pro-
duction are taken into account. As the stratification becomes strong, which corresponds
to larger values of |h/L0|, the region where the buoyant production can be neglected
moves closer to the wall. Thus, the extent of the collapsed MVPs becomes smaller,
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Fig. 4.3: Log-linear plots of theoretically-predicted MVPs in wall variables. The
MVPs correspond to a fixed Reτ = 106 and various values of h/L0. The red line corre-
sponds to the flow of constant-density fluids with h/L0 = 0; the blue lines correspond
to unstably-stratified flows with h/L0 = −10,−100,−1000,−10000; and the green lines
correspond to stably-stratified flows with h/L0 = 10, 20, 50, 100. As the absolute value
of h/L0 increases, the MVPs deviate more from the flow of constant-density fluids. For
computing the curves using the spectral theory, we set κ = 0.4, βe = 2, and βd = 5.2.

creeping closer to the top of the viscous layer. Note, however, that even for the very
strong unstably stratified flow with h/L0 = −10000, there is still a small region of
collapsed MVP in the buffer layer. That is, for all the cases we have considered, the
effect of stratification starts at some distance away from the viscous layer, thereby
providing an a posteriori justification for neglecting buoyant production in computing
the thickness of the viscous layer.

When the stratification is not very strong, we see a clear log layer topping the buffer
layer. The log layer becomes thinner and thinner as the stratification becomes stronger
and stronger. Finally, for very strong stratification, the log layer disappears.

Beyond the log layer, unstable stratification flattens the MVPs whilst stable strat-
ification steepens the MVPs. By contrast, the MVP for the flow of constant-density
fluids continues to inhabit the log layer. These signature features of unstable stratifi-
cation and stable stratification can be understood through the spectral theory. When
the flow is unstably stratified, the buoyant production term is positive and ε is larger
compared with its counterpart for the flow of constant-density fluids. As such, unstable
stratification accelerates the turbulent eddies (vs becomes larger), which makes them
more effective at transferring momentum and producing turbulent shear stress. Thus,
the turbulent shear stress heightens according to Equation 4.13 and, consequently, the
mean velocity decreases. This decrease in mean velocity manifests as a flattening of
the MVP compared with the log law. By contrast, when the flow is stably stratified,
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the buoyant production term is negative and thus ε is smaller compared with its coun-
terpart for the flow of constant-density fluids. As such, stable stratification slows down
the turbulent eddies (vs becomes smaller), which makes them less effective at transfer-
ring momentum and producing turbulent shear stress. Thus, the turbulent shear stress
lessens according to Equation 4.13 and, consequently, the mean velocity increases. This
increase in mean velocity manifests as a steepening of the MVP compared with log law.

4.4.3 The effect of the energetic-range correction

Here we consider how the energetic-range correction, which we parameterize using
βe, affects the MVPs. Similar to Fig. 4.3, in Fig. 4.4 we plot the theoretical predictions
for the MVPs in wall variables for a fixed Reτ and for various values of h/L0 spanning
unstable and stable stratification. Unlike Fig. 4.3, however, here we compute the MVPs
using two values of βe: βe = 1 and βe = 7, which we plot using solid and dashed curves,
respectively. Comparing the solid and dashed curves we note that the energetic-range
correction has only a minor effect on the MVPs. In fact, for stable stratification, the
energetic-range correction has no effect on the MVPs when the stratification is strong.
For example, for h/L0 = 20, the solid and dashed curves overlap with each other, as
can be seen in Fig. 4.4. This behavior can be understood by considering Equations 4.10
and 4.15.

In the region far from the wall, the viscous shear stress in Equation 4.10 can be
ignored compared with the turbulent shear stress. Therefore, Equation 4.15 can be
written as:

ũ′κ4/3ỹ4/3(ũ′ − h/(ReτκL0))
1/3
√
I = 1. (4.18)

We can rewrite Equation 4.18 as:

ũ′ − h/(ReτκL0) =
I−3/2

ũ′3κ4ỹ4
. (4.19)

For strong stable stratification, we can expect that the right-hand side of Equation 4.19
will be negligibly small as the values of both ũ′ and ỹ are large in the region far from
the wall. Thus Equation 4.19 reduces to ũ′ = h/(ReτκL0), which is independent of the
energetic-range correction.

4.5 Generalized Monin-Obukhov similarity theory
Having discussed empirical data and spectral theory for the whole extent of the

MVP, next we seek to generalize the framework of MOST to extend it beyond the
intermediate region for which it was originally formulated and encompass the whole
MVP (see Section 4.2).

Shifting attention from MVP in wall variables, ũ vs. ỹ, we return to the dimension-
less function that is the main concern of MOST, φu. (We discuss scaling of the MVP
in Section 4.5.3.) From Equation 4.6, φu can be expressed as a dimensionless measure
of the gradient of MVP:

φu = κỹ
dũ

dỹ
. (4.20)
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Fig. 4.4: Log-linear plots of theoretically-predicted MVPs in wall variables. The
MVPs correspond to a fixed Reτ = 106 and various values of h/L0. The red line corre-
sponds to the flow of constant-density fluids with h/L0 = 0; the blue lines correspond
to unstably-stratified flows with h/L0 = −100,−1000,; and the green lines correspond
to stably-stratified flows with h/L0 = 10, 20. As the absolute value of h/L0 increases,
the MVPs deviate more from the flow of constant-density fluids. For computing the
curves using the spectral theory, we set κ = 0.4, βd = 5.2,and βe = 1. To see the effect
of the energetic-range correction, the dashed black curves are computed with the same
values of κ and βd, but with βe = 7.

Note that the prediction of MOST that φu is only a function of y/L0 (see Equation 4.6)
is only valid for the intermediate region of y/L0. In general, φu not only depends on
y/L0 but also on Reτ and h/L0. This can be seen using the framework of the spectral
theory—in Fig. 4.5, we plot predicted φu vs. y/L0 for a fixed Reτ and for various
values of h/L0 spanning unstable and stable stratification. For the intermediate region
of y/L0, the different MVPs collapse onto one curve, in accord with the prediction of
MOST. (Note that MOST does not predict the shape of this collapsed curve.) Outside
of this region, however, the functional dependence predicted by MOST breaks down.

The reasons for this break down can be understood by considering the assumptions
that guide MOST. Specifically, as we have noted in Section 4.2, in MOST attention is
restricted to an intermediate region that is not too close to the wall where viscosity
affects the flow and not too far from the wall where external confinement affects the
flow. This allows one to neglect the effects of ν (which encapsulates molecular diffusion
of momentum near the wall), kd (which encapsulates molecular diffusion of heat near
the wall), and h (which encapsulates external confinement). To generalize MOST, we
account for these effects. To that end, we seek guidance from the classic scaling laws
of the MVP in wall-bounded turbulent flows of constant-density fluids.
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Fig. 4.5: Log-log plots of φu vs y/L0 for: (a) unstable stratification, and (b) stable
stratification. For computing the curves using the spectral theory, we set κ = 0.4, βe =
2, and βd = 5.2.

4.5.1 Classic scaling laws for MVP

For reference, next we outline the key elements of deriving the classic scaling laws,
in wall-bounded turbulent flows of constant-density fluids, for the MVP: the law of the
wall, the log law, and the defect law. We consider the case of a fully developed, plane
Couette flow of constant-density fluids. Our discussion closely follows the approach of
Zuniga Zamalloa et al. (2014).

The starting point for deriving the classic scaling laws is dimensional analysis,
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wherein the vertical gradient of the MVP, du
dy
, is posited to depend on:

du

dy
= G1(y, h, τ0, ρ, ν), (4.21)

where G1 is an unspecified function. Using the Buckingham–Pi theorem, the functional
relation between these six dimensional variables can be expressed as an equivalent
functional relationship between three dimensionless variables:

du

dy

y

uτ
= φ

(
ỹ,
y

h

)
, (4.22)

where φ is a dimensionless function whose functional form is unspecified. Hereafter,
for brevity, we do not explicitly mention that the φ-like functions are dimensionless
functions with unspecified functional forms. Equation 4.22 can be expressed in an
equivalent form as:

du

dy

y

uτ
= φ̃ (ỹ, Reτ ) , (4.23)

or as:
du

dy

y

uτ
= ˜̃φ

(y
h
,Reτ

)
. (4.24)

In writing these equations, we are invoking the notion that any combinations of the di-
mensionless variables yield equivalent expressions of the functional dependence. Thus,
for example, Reτ can be written as ỹ/(y/h), which leads to Equation 4.23 or 4.24 from
Equation 4.22. Equations 4.23 and 4.24 imply that the dimensionless du/dy depends
on two independent variables: ỹ and Reτ , or y/h and Reτ . Thus, for example, if we plot
the dimensionless du/dy vs. ỹ, the curves for different values of Reτ will be distinct.
In what follows, we seek to collapse these distinct curves onto one curve. It turns out
that it is not possible to have a single collapsed curve that spans the whole domain of
the flow. Instead, we will have collapsed curves that correspond to different regions of
ỹ and y/h. To that end, we need to go beyond dimensional analysis and invoke com-
plete similarity for asymptotic limits of ỹ and y/h. Next, we define complete similarity
(Barenblatt, 1996).

For a dimensionless function A(a1, ..., aN), where A depends on N dimensionless
variables a1 to aN , if A obeys complete similarity with respect to a dimensionless
variable ai, then for an asymptotic limit of that variable, ai → 0 (or ai →∞), we can
write:

limai→0 (or ai→∞)A(a1, ..., aN) = A1(a1, ..., ai−1, ai+1, ...aN).

That is, in the asymptotic limit of ai, A no longer depends on the value of ai.
We first consider the region near the wall: y/h → 0 (the “inner layer”). Assuming

that φ obeys complete similarity in y/h for this limit, Equation 4.22 can be written as

du

dy

y

uτ
= φ1 (ỹ) . (4.25)

That is, the curves of the dimensionless du/dy vs. ỹ for various values of Reτ should
collapse onto one curve in the inner layer. Integrating Equation 4.25 in ỹ, yields the
law of the wall:

ũ = I0(ỹ), (4.26)
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where I0(x) ≡
∫ x
0
ξ−1φ1(ξ)dξ and we have used the no-slip boundary condition ũ(ỹ =

0) = 0. Per the law of the wall, the curves of ũ vs. ỹ for various values of Reτ should
collapse onto one curve in the inner layer. Note that although the law of the wall is
derived for the asymptotic limit of y/h → 0, in practice this law holds over a finite
layer y/h . 0.1 (Pope, 2000).

Next, for flows at large Reτ , consider the region far from the wall, closer to the
centerline: ỹ →∞ (the “outer layer”). (Here we need to consider large Reτ because the
largest value of ỹ, which is at the centerline, is Reτ .) Assuming that φ obeys complete
similarity in ỹ for this limit, Equation 4.22 can be written as

du

dy

y

uτ
= φ2

(y
h

)
, (4.27)

which, after integration in y/h, yields the defect law:

ũ(y = h)− ũ = O
(y
h

)
, (4.28)

where O(x) ≡
∫ 1

x
ξ−1φ2(ξ)dξ. Note that although the defect law is derived for the

asymptotic limit of ỹ → ∞, in practice this law holds over a finite region ỹ & 50
(Pope, 2000).

Last, for flows at large Reτ , consider the region at intermediate distance from the
wall: y/h→ 0 and ỹ →∞ (the “log layer”). Assuming that φ obeys complete similarity
in y/h and ỹ for these limits, Equation 4.22 can be written as:

du

dy

y

uτ
=

1

κ
, (4.29)

where the “Kármán constant” κ obeys:

1

κ
= limỹ→∞ and y/h→0 φ

(
ỹ,
y

h

)
.

Integrating Equation 4.29 in ỹ yields the log law (Equation 4.7), which, in practice,
holds for ỹ & 30 and y/h . 0.3 (Pope, 2000).

In deriving the classic scaling laws, we first derived scaling laws for du/dy, which
we integrated to derive scaling laws for the MVP. These laws allow us to collapse the
MVPs for different values of Reτ onto one curve for different regions of ỹ and y/h.
Next, for thermally-stratified flows, we first derive scaling laws for du/dy and then, in
Section 4.5.3, we derive scaling laws for the MVP.

4.5.2 Scaling laws for φu
We now turn to deriving generalized scaling laws for du/dy in thermally-stratified

plane Couette flows. Like MOST and the classic scaling laws discussed above, our
starting point is dimensional analysis. We posit that du

dy
depends on:

du

dy
= G2(y, τ0, ρ, g, α,H0, ν, h), (4.30)
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where G2 is an unspecified function. Compared with the analysis of MOST (see Equa-
tion 4.5), here we have two additional variables: ν and h. Analogous to deriving the
classic scaling laws (see Equation 4.21), these variables allow us to go beyond the in-
termediate region of interest in MOST, and cover the whole MVP. We now follow the
same steps as we did starting with Equation 4.21.

Using the Buckingham–Pi theorem, the functional relation between these nine di-
mensional variables of Equation 4.30 can be expressed as an equivalent functional
relationship between four dimensionless variables:

φu =
du

dy

κy

uτ
= φu1

(
y

L0

, ỹ,
y

h

)
. (4.31)

Compared with Equation 4.6, we have two additional dimensionless variables, ỹ and
y/h, which show the direct analogy with Equation 4.22. Next we invoke complete
similarity in these variables.

In the region near the wall, assuming that φu1 obeys complete similarity for y/h→
0, Equation 4.31 can be written as:

φu = φu2

(
y

L0

, ỹ

)
, (4.32)

which can be expressed in an equivalent form as:

φu = φu3

(
y

L0

,ReL0

)
, (4.33)

where ReL0 ≡ uτL0/ν. We call Equation 4.33 “generalized MOST for the inner layer”.
To test the validity of this equation, using the spectral theory, in Fig. 4.6, we plot
φu vs. y/L0 for a fixed ReL0 and for various values of h/L0. Per Equation 4.33, in
the inner layer and for a fixed ReL0 , φu only depends on y/L0, and thus the curves
corresponding to different h/L0 should collapse onto one curve. This prediction is in
excellent accord with the results from the spectral theory for both unstably-stratified
flows and stably-stratified flows (see Fig. 4.6).

At first glance, the trends in Fig. 4.6 for increasing values of |h/L0| might appear
puzzling. In previous figures, the region of collapse has systematically lessened with
increase in |h/L0|. Here, by contrast, the region of collapse increases with increase in
|h/L0|. To understand why that is the case, consider the extent of the inner layer.
As noted earlier in discussing the law of the wall, although the law is derived for the
asymptotic limit of y/h→ 0, in practice it holds over a finite region y/h . 0.1. Here,
let us denote this finite region by y/h . εi, where 0 < εi � 1. Now, y/h . εi can be
written as:

y

L0

. εi|
h

L0

|. (4.34)

That is, the extent of the inner layer increases with increase in |h/L0|.
For a complementary perspective on why the region of collapse increases with in-

crease in |h/L0|, we draw attention to a well-known feature of wall-bounded turbulent
flows of constant-density fluids. For such flows, the region of collapsed MVPs (that is,
the region where the MVPs follow the classic scaling laws discussed earlier) increases
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Fig. 4.6: Testing the generalized MOST for the inner layer. Log-log plots of φu
vs. y/L0 for: (a) unstable stratification, (b) stable stratification. Note the collapsed
curves near the wall. For computing the curves using the spectral theory, we set
κ = 0.4, βe = 2, and βd = 5.2.

with increase in Reτ . Now, consider the ratio of Reτ and ReL0 . From their respective
definitions:

Reτ
|ReL0|

= | h
L0

|. (4.35)

For a fixed ReL0 , as is needed for the generalized MOST for the inner layer, an increase
in |h/L0| corresponds to an attendant increase in Reτ . That is, the curves in Fig. 4.6
that correspond increasing values of |h/L0| also correspond to increasing values of Reτ .

In the region far from the wall and for flows at large Reτ , assuming that φu1 obeys



62 Spectral theory of thermally-stratified plane Couette flow

complete similarity for ỹ →∞, Equation 4.31 can be written as:

φu = φu4

(
y

L0

,
y

h

)
, (4.36)

which can be expressed in an equivalent form as:

φu = φu5

(
y

L0

,
h

L0

)
. (4.37)

We call Equation 4.37 “generalized MOST for the outer layer”. To test the validity
of this equation, using the spectral theory, in Fig. 4.7, we plot φu vs. y/L0 for a fixed
h/L0 and for various values of ReL0 . Per Equation 4.37, in the outer layer and for a
fixed h/L0, φu only depends on y/L0, and thus the curves corresponding to different
ReL0 should collapse onto one curve. This prediction is in excellent accord with the
results from the spectral theory for both unstably-stratified flows and stably-stratified
flows (see Fig. 4.7).

A note on the trends in Fig. 4.7 with increasing values of |ReL0| is in order. The
region of collapse increases with increase in |ReL0 |. To understand why, consider the
extent of the outer layer. As noted earlier in discussing the defect law, although the
law is derived for the asymptotic limit of ỹ → ∞, in practice it holds over a finite
region ỹ & 50. Here, let us denote this finite region by ỹ & ∆o, where ∆o � 1. Now,
ỹ & ∆o can be written as:

y

L0

&
∆o

|ReL0|
. (4.38)

That is, the extent of the outer layer increases with increase in |ReL0 |. Also note, from
Equation 4.35, for a fixed h/L0, as is needed for the generalized MOST for the outer
layer, an increase in |ReL0| corresponds to an attendant increase in Reτ .

In the region at intermediate distance from the wall and for flows at large Reτ ,
assuming that φu1 obeys complete similarity for y/h → 0 and ỹ → ∞, Equation 4.31
can be written as:

φu = φu6

(
y

L0

)
, (4.39)

which is the traditional form of the MOST (Equation 4.6). As discussed earlier, the
collapsed curves of Fig. 4.5 for the intermediate region are in excellent accord with
this equation.

In this section, we have generalized MOST by adding the scaling laws of Equa-
tions 4.33 and 4.37 to the traditional MOST scaling law of Equation 4.39 (or Equa-
tion 4.6). In the next section, we study scaling laws of MVP.

4.5.3 Scaling laws for MVP

As noted before, we derived the classical scaling laws for MVP in plane Couette flows
of constant-density fluids by integrating the scaling laws for du/dy. Here, building on
the discussion above, we integrate the generalized MOST scaling laws to derive scaling
laws for MVP in thermally-stratified plane Couette flows.
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Fig. 4.7: Testing the generalized MOST for the outer layer. Log-log plots of φu
vs. y/L0 for: (a) unstable stratification, (b) stable stratification. Note the collapsed
curves far from the wall. For computing the curves using the spectral theory, we set
κ = 0.4, βe = 2, and βd = 5.2.

First, consider the inner layer. Here, the scaling of du/dy is governed by the gen-
eralized MOST for the inner layer (Equation 4.33). For a fixed ReL0 , integrating
Equation 4.33 in y/L0 yields:

ũ = I1(
y

L0

), (4.40)

where I1(x) ≡
∫ x
0
ξ−1φu3(ξ,ReL0)dξ and we have used the no-slip boundary condition

ũ(y/L0 = 0) = 0. Noting that y/L0 = ỹ/ReL0 and recalling that we have fixed ReL0 ,
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we can write the above equation as:

ũ = I2(ỹ). (4.41)

which, in analogy with classic scaling laws, we call the “law of the wall for thermally-
stratified flows”. Note that for thermally-stratified flows, we need to keep ReL0 fixed
and the functional forms of I1 and I2 depend on the value of ReL0 .

To test the validity of the law of the wall for thermally-stratified flows, using the
spectral theory, we plot ũ vs. ỹ for a fixed ReL0 and for various values of h/L0. Per
Equation 4.41, in the inner layer and for a fixed ReL0 , ũ only depends on ỹ, and
thus the curves corresponding to different h/L0 should collapse onto one curve. This
prediction is in excellent accord with the results from the spectral theory for both
unstably-stratified flows and stably-stratified flows (see Fig. 4.8).

As was the case in Fig. 4.6, here, in Fig. 4.8, the region of collapse increases with
increase in |h/L0|. The reason again has to do with the extent of the inner layer,
y/h . εi. This can be written as:

ỹ . εiReτ . (4.42)

As we have noted in discussing Equation 4.35, for a fixed |ReL0|, as is needed for the
law of the wall for thermally-stratified flows, an increase in |h/L0| corresponds to an
attendant increase in Reτ , which, via Equation 4.42, corresponds to an increase in the
extent of the inner layer.

In addition to the predictions from the spectral theory, the validity of the law of the
wall for thermally-stratified flows is hinted at in the DNS data of Fig. 4.1. In Fig. 4.1,
a close look at the DNS data of MVPs for stably-stratified plane Couette flows reveals
that, for different values of Reτ , the curve denoted by red upward-pointing triangles
(Reτ = 540,ReL0 = 245) and the curve denoted by black upward-pointing triangles
(Reτ = 349,ReL0 = 255) collapse onto each other over the largest extent near the
wall. (We replot these curves in Fig. 4.9.) Interestingly, these curves correspond to
similar values of ReL0—in accord with the expectation from the law of the wall for
thermally-stratified flows.

A close look at Fig. 4.9 reveals a peculiar feature. In the region far from the wall, the
curve denoted by red upward-pointing triangles is slightly higher than the curve denoted
by black upward-pointing triangles, but the value of h/L0 (note h/L0 = Reτ/ReL0) is
higher for the former curve. This appears to go counter to the trends observed in
Fig. 4.8. We can resolve this apparent contradiction by noting that unlike the case in
Fig. 4.8, where we have fixed the value of ReL0 , the curves in Fig. 4.9 do not correspond
to exactly the same value of ReL0 . To understand why, note that in Fig. 4.3, for a
fixed value of Reτ , as the value of h/L0 increases (or the value of ReL0 decreases), the
MVP in the region far from the wall climbs up. In Fig. 4.9, the value of ReL0 for the
curve denoted by red upward-pointing triangles is slightly lower than that of the curve
denoted by black upward-pointing triangles. The effect of disparity in the value of ReL0

dominates over the effect of disparity in the value of Reτ , and therefore the the curve
denoted by red upward-pointing triangles is slightly higher than the curve denoted by
black upward-pointing triangles.

In the discussion so far we have emphasized that the law of the wall for thermally-
stratified flows requires a fixed value of ReL0 . Note, however, that for the MVPs plotted
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Fig. 4.8: Testing the law of the wall for thermally-stratified flows. Log-linear plots
of ũ vs. ỹ for: (a) unstable stratification, (b) stable stratification. Note the collapsed
curves near the wall. For computing the curves using the spectral theory, we set
κ = 0.4, βe = 7, and βd = 5.2.

in Fig. 4.3, the different curves correspond to a fixed Reτ but varying ReL0 . And yet,
near the wall, the different curves collapse. To explain this observation, we invoke an
additional argument of complete similarity, to which we turn next.

Consider Equation 4.32, an equivalent form of the generalized MOST for the inner
layer. Integrating in ỹ yields:

ũ = I3(
y

L0

, ỹ), (4.43)
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Fig. 4.9: Testing the law of the wall for thermally-stratified flows using DNS data of
stably-stratified plane Couette flows from García-Villalba et al. (2011) and Deusebio
et al. (2015). Log-linear plots of ũ vs. ỹ. The curve denoted by red upward-pointing
triangles corresponds to Reτ = 540,ReL0 = 245, and the curve denoted by black
upward-pointing triangles corresponds to Reτ = 349,ReL0 = 255. Note that these
curves collapse onto each other over the largest extent near the wall. Actually, we
can not calculate the value of ReL0 directly for the curve denoted by red upward-
pointing triangles because not enough details are provided in García-Villalba et al.
(2011). However, we found a very similar simulation (see also “Run 21” in Zhou et al.
(2017)) in Deusebio et al. (2015), from which we estimate the value of ReL0 = 245,
which is very similar to the value of ReL0 = 255 for the curve denoted by black upward-
pointing triangles.

where I3(x/ReL0 , x) ≡
∫ x
0
ξ−1φu2(ξ/ReL0 , ξ)dξ and we have used the no-slip boundary

condition ũ(ỹ = 0) = 0. Note that in deriving Equation 4.32, the starting point for
the present analysis, we have invoked complete similarity for y/h→ 0. Now, consider
similarity of I3 as y/L0 → 0. This limit corresponds to the region near the wall (just like
the case for y/h→ 0) and to the region where the effect of shear dominates over that
of buoyancy. Thus, in this region, we might expect the MVP to become independent
of stratification. To that end, we assume I3 obeys complete similarity for y/L0 → 0
and write Equation 4.43 as:

ũ = I4(ỹ), (4.44)

which is the same as the classical law of the wall.
Note that in deriving Equation 4.44 we did not fix ReL0 , as we did for deriving

Equation 4.41. But, whereas Equation 4.41 only considers the limit y/h → 0, Equa-
tion 4.44 considers both y/h→ 0 and y/L0 → 0. Based of Equation 4.44, we note that
near the wall, when both y/h → 0 and y/L0 → 0 are satisfied, the MVP obeys the
law of the wall, even for varying ReL0 . This explains the observations of Fig. 4.3. We
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further note that in Fig. 4.1, where we plot MVPs from DNS data with varying Reτ
and varying ReL0 , we still see that the MVPs obey the law of the wall, as indeed is
expected from Equation 4.44.

We can also predict how the extent of the region over which Equation 4.44 holds
depends on the value of ReL0 . In analogy with the finite extent of the inner layer, we
posit that the complete similarity for the asymptotic limit y/L0 → 0 holds over a finite
region y/L0 . ε̃i, where 0 < ε̃i � 1. The region y/L0 . ε̃i can be written as:

ỹ . ε̃i|ReL0|. (4.45)

That is, the extent of this region increases with increase in |ReL0|. Noting that |ReL0| =
Reτ/|h/L0|, we infer that the extent of the collapsed region in Fig. 4.3 decreases with
increase in |h/L0|, in accord with the prediction from Equation 4.45. As an additional
check, in Fig. 4.10, using the spectral theory, we plot ũ vs. ỹ for a fixed h/L0 and for
various values of ReL0 . In accord with Equation 4.45, the extent of the law of the wall
grows with increase in the value of |ReL0|.

Next, consider the outer layer. Here, the scaling of du/dy is governed by the
generalized MOST for the outer layer (Equation 4.37). For a fixed h/L0, integrating
Equation 4.37 in y/L0 yields:

ũc − ũ = O1

(
y

L0

)
, (4.46)

where ũc ≡ ũ(y = h) and O1(x) ≡
∫ h/L0

x
ξ−1φu5(ξ, h/L0)dξ. Noting that y/L0 =

y/h×h/L0 and recalling that we have fixed h/L0, we can write the above equation as:

ũc − ũ = O2(
y

h
). (4.47)

which, in analogy with classic scaling laws, we call the “defect law for thermally-
stratified flows”. Note that for thermally-stratified flows, we need to keep h/L0 fixed
and the functional forms of O1 and O2 depend on the value of h/L0.

To test the validity of the defect law for thermally-stratified flows, using the spectral
theory, we plot ũc − ũ vs. y/h for a fixed h/L0 and for various values of ReL0 . Per
Equation 4.47, in the outer layer and for a fixed h/L0, ũc − ũ only depends on y/h,
and thus the curves corresponding to different ReL0 should collapse onto one curve.
This prediction is in excellent accord with the results from the spectral theory for both
unstably-stratified flows and stably-stratified flows (see Fig. 4.11).

As was the case in Fig. 4.7, here, in Fig. 4.11, the region of collapse increases with
increase in |ReL0|. The reason again has to do with the extent of the outer layer,
ỹ & ∆o. This can be written as:

y

h
&

∆o

Reτ
. (4.48)

As we have noted in discussing Equation 4.35, for a fixed |h/L0|, as is needed for
the defect law for thermally-stratified flows, an increase in |ReL0| corresponds to an
attendant increase in Reτ , which, via Equation 4.48, corresponds to an increase in the
extent of the outer layer.
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Fig. 4.10: Testing the extent of the law of the wall, Equation 4.44. Log-linear plots
of ũ vs. ỹ for: (a) unstable stratification, (b) stable stratification. We fix h/L0 and
vary ReL0 . Note the collapsed curves near the wall. For computing the curves using
the spectral theory, we set κ = 0.4, βe = 7, and βd = 5.2.

Unlike the law of the wall for thermally-stratified flows, we cannot use the available
DNS data to test the the validity of the defect law for thermally-stratified flows. This
is because testing the defect law requires high Reynolds numbers, as is well known for
the case of the defect law for constant-density fluids (Wu & Moin, 2008).

In discussing the law of the wall for thermally-stratified flows, which entails fixing
the value of ReL0 , we noted that even when ReL0 varies, in the region near the wall, the
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Fig. 4.11: Testing the defect law for thermally-stratified flows. Log-linear plots of ũc−
ũ vs. y/h for: (a) unstable stratification, (b) stable stratification. Note the collapsed
curves far from the wall. For computing the curves using the spectral theory, we set
κ = 0.4, βe = 7, and βd = 5.2.

MVPs collapse, analogous to the classical law of the wall. We explained this observation
by noting that if we go very close to the wall (corresponding to y � L0), the effect of
stratification becomes negligible. In the case of the defect law for thermally-stratified
flows, however, we cannot invoke a similar argument. Unless we restrict attention to
flows with |L0| � h, i.e., flows of constant-density fluids, we cannot neglect the effect
of stratification in the outer layer. Thus, the defect law for thermally-stratified flows is
predicated on fixing h/L0. Indeed, by comparing the shapes of the collapsed curves far
from the wall in panels (a) and (b) of Fig. 4.11, which panels correspond to different
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values of h/L0, we note that these curves have different profiles.
Last, consider the intermediate region. Here, the scaling of du/dy is governed by

the traditional form of the MOST (Equation 4.6), which, after integration in y/L0,
shows how the MVP deviates from the log law (see Section 4.2). These considerations
are well known (Turner, 1973) and we do not discuss them further.

4.6 Discussion and summary
We studied the MVP in thermally-stratified plane Couette flows. Empirical data

on the MVPs show distinctive shapes, which change with the stratification of the
flow. While previous theoretical studies of the MVP have exclusively focused on its
intermediate region—this is the region of interest for the well-known framework of
MOST—the region near the wall and the region far from the wall have remained
unexplored. Here we studied the whole extent of the MVP using two approaches: the
spectral theory and scaling analysis.

We adapted the spectral theory (Gioia et al., 2010), which was originally proposed
for constant-density flows, to study thermally-stratified flows. In our analysis, we
considered the whole structure of E(k)—inertial range plus the energetic-range and
dissipative-range corrections—as well as the whole extent of the MVP—from the wall
to the centerline. Noting that very close to the wall (for y � L0) shear dominates
over buoyancy, we simplified the heat equation. This leads to a simplified energy
balance, which we solved together with the momentum balance to obtain the MVP.
The predicted MVP from the spectral theory captures all the salient qualitative features
of the empirical MVP over its whole extent. The distinctive shape of the MVP can be
understood in terms of the energetics of the turbulent eddies.

Except for flows where Pr � 1, which flows we do not consider, the MVPs com-
puted using the spectral theory do not depend on the value of Pr. A test of this
prediction would be to plot the MVPs for different flows where the Pr is varied and
the other parameters (ReL0 , h/L0) are fixed. We are not aware of any empirical data
with which we can perform such a test.

By varying the values of the dimensionless parameters ReL0 and h/L0 (or, equiva-
lently, Reτ and h/L0), using the spectral theory, we computed the MVPs. We studied
the scaling of the MVP and its derivative (φu) using scaling laws. To that end, we in-
voked the tools of dimensional analysis and complete similarity, and derived the scaling
laws by adapting the framework of the classical scaling laws for constant-density flows.
Our analysis yielded a generalized MOST. For the intermediate region, we recovered
MOST; for the inner layer and the outer layer, we derived new scaling laws.

In the inner layer (y/h→ 0), for the scaling of φu, we derived the generalized MOST
for the inner layer (Equation 4.33):

φu = φu3

(
y

L0

,ReL0

)
,

and for the scaling of MVP, we derived the law of the wall for thermally-stratified flows
(Equation 4.41):

ũ = I2(ỹ),
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where the functional form of I2 depends on the value of ReL0 . Testing the scaling laws
for φu and MVP in the inner layer requires us to fix the value of ReL0 . Guided by the
results of the spectral theory and physical considerations, for the subset of the inner
layer where y/h → 0 and y/L0 → 0, we argued that the above scaling laws become
independent of the value of ReL0 . This prediction is in accord with empirical data.

In the outer layer (ỹ →∞), for the scaling of φu, we derived the generalized MOST
for the outer layer (Equation 4.37):

φu = φu5

(
y

L0

,
h

L0

)
,

and for the scaling of MVP, we derived the defect law for thermally-stratified flows
(Equation 4.47):

ũc − ũ = O2(
y

h
),

where the functional form of O2 depends on the value of h/L0. Testing the scaling laws
for φu and MVP in the outer layer requires us to fix the value of h/L0.

Finally, we hope that our analysis would motivate future experimental and numer-
ical studies. Studies targeted at measuring the MVPs for a fixed ReL0 and varying
h/L0 and the MVPs for a fixed h/L0 and varying ReL0 would provide valuable tests
for the scalings in the inner layer and the outer layer, respectively, thereby greatly
expanding the scope of the analysis for thermally-stratified flows, which have hitherto
been restricted to the intermediate region.





Chapter 5

Conclusion

In this thesis, we have been concerned with what is perhaps the most fundamental
macroscopic property of the canonical wall-bounded turbulent flows, the mean-velocity
profile (MVP). Our aim has been to shed some new theoretical light on several outstand-
ing problems in the interpretation of the MVPs of such flows in both constant-density
and stratified media. The aim of this brief chapter is to recapitulate our findings,
discuss the import and implications of the most salient theoretical concepts we have
developed and built upon, especially in connection with the spectral link, and offer a
few general conclusions.

The spectral theory formulated in this thesis has been grounded on the “spectral
link” that relates the MVPs to the eddy velocity distribution of the phenomenological
theory of turbulence. A crucial fact associated with the spectral link is that the tur-
bulent eddies that dominate momentum transfer at a distance y from the wall—the
dominant eddies at a distance y from the wall—are the eddies of size y. This crucial
fact we have been able to justify without having recourse to any ad-hoc assumptions,
on the basis of (1) a straightforward physical argument whereby the turbulent shear
stress stems from momentum transfer effected by turbulent eddies and (2) the core
premise underlying the spectral link, namely, that the characteristic velocity of a tur-
bulent eddy of any given size y, vy, is fully determined by y via the eddy velocity
distribution of the phenomenological theory, vy(y).

Thus, the turbulent shear stress at a distance y from the wall (and, therefore, the
attendant slope of the MVP at that distance from the wall) is inextricably linked to the
eddy velocity distribution vy(y). This is the spectral link whereby successive layers of
the MVP (associated with increasing distance to the wall) are put in relation with the
successive ranges of the eddy velocity distribution (associated with increasing size of
the dominant eddy). From these considerations there follows a notable property of the
spectral link: that there is a one-to-one, or bijective, relation between the successive
layers of a MVP and the successive ranges of the eddy velocity distribution, in such a
way that the buffer layer relates to, and only to, the dissipative range; the log layer
relates to, and only to, the inertial range; and the wake relates to, and only to, the
energetic range.

Now, from the phenomenological theory, we know that the dissipative range, the
inertial range, and the energetic range correspond to specific physical regimes in the
energetics of turbulence (so that the eddies of the inertial range are dominated by
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inertial forces and remain unaffected by either viscous or finite-domain effects, whereas
the eddies of the dissipative range and the eddies of the energetic range are affected
by viscous effects and finite-domain effects, respectively). By virtue of the bijective
property of the spectral link, we have been able to ascribe a specific physical regime
to each layer of the MVP, and to conclude that the log layer corresponds to a regime
of dynamic equilibrium in which the dominant eddies partake in the energy cascade,
unaffected by either viscous or finite-domain effects, whereas the buffer layer and the
wake are but local steepenings of the MVP due to the lessened capacity for momentum
transfer of dominant eddies that are slowed down by viscous effects and finite-domain
effects, respectively.

Furthermore, we have argued that the bijective property of the spectral link can
be put to use to ascertain the way in which two states of turbulence differ from one
another based solely on the observed differences in the associated MVPs. This comes
about because, by virtue of the bijective property of the spectral link, each layer of
a MVP displays information about a specific range of the eddy velocity distribution,
and it is possible to infer the internal structure of a turbulent state, as one would
by parsing through each of the successive ranges of the eddy velocity distribution, by
parsing through the successive layers of the attendant MVP.

Thus, in Chapter 2, we have invoked the bijective property of the spectral link to
explain the significant disparities between the turbulent MVPs of pipe flow and channel
flow. These disparities are circumscribed to the wakes, and we have been able to infer
that they are but manifestations of the geometrical differences between pipe flow and
channel flow, whereby the largest eddies in the flow, which are the dominant eddies
in the wake, are altered by interaction with the boundaries of the flow (finite-domain
effects), in a way that changes from flow to flow. On the other hand, small-scale
universality prevails at small lengthscales, at which the internal structure of pipe flow
and channel flow is one and the same, as can be inferred from the fact that the MVP
of pipe flow and the MVP of channel flow collapse onto one another in both the buffer
layer and the log layer.

In Chapter 3 we have turned our attention to a number of well-known, and as yet
unresolved, disparities in the classical experimental data on friction factor in turbulent
plane Couette flow. We have pointed out that those disparities are accompanied by
previously unnoticed disparities in the wakes, and only in the wakes, of the attendant
MVPs. By assessing the empirical data in light of the spectral theory, we have argued
for the existence, in plane Couette flow, of multiple states of turbulence, which may
be a generic feature of turbulent flows with moving boundaries. In the literature, the
existence of multiple turbulence states has been put forth along with claims that it
might be at odds with the principle of small-scale universality, a fundamental result of
the phenomenological theory.

To settle the matter, we have been able to invoke the bijective property of the
spectral link to ascertain the ways in which these multiple turbulent states differ from
one another, namely only at the largest lengthscales in the flow, corresponding to the
energetic range of the eddy velocity distribution. Thus, the multiplicity of turbulent
states is in fact perfectly consistent with small-scale universality, and the experimental
data on plane Couette flow pose no challenge to the phenomenological theory.

In Chapter 4, we have moved on to the MVPs in thermally-stratified plane Couette
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flows, for which the empirical data show distinctive shapes, depending on the stratifi-
cation of the flow. Thermal stratification, which amounts to a temperature-dependent
distribution of fluid density, necessitates a modification of the energy equation, wherein
the expression for the turbulent power per unit mass ε consists of two additive terms,
the customary turbulent-production term plus a buoyant-production term. We focus
on the influence of this buoyant-production term.

The bijective property of the spectral link prevails in the presence of thermal strat-
ification, but the canonical layers (buffer layer, log layer, and wake) are modified by
buoyancy. Thus, for example, the region corresponding to the inertial range does not
correspond to a log layer any longer. This region is the intermediate region of interest
in the Monin-Obukhov similarity theory (MOST). While much analysis has focused
on this intermediate region, the region near the wall and the region far from the wall
and beyond the intermediate one had not been theoretically studied before, but we
have shown them to be amenable to theoretical interpretation using the spectral link.
Across the extent of the flow, we studied how the buoyancy modifies the MVPs for
both unstably-stratified flows and stably-stratified flows. Our results are in excellent
qualitative accord with the distinctive shapes of the MVPs seen in empirical data.

In addition, using dimensional analysis and similarity arguments, we have derived
generalized versions of the classical scaling laws of the MOST applicable in the region
near the wall (the inner layer), in the intermediate region (which coincides with MOST),
and in the region far from the wall (the outer layer). The generalized version applicable
in the inner layer and the generalized version applicable in the outer layer amount to
testable predictions. These predictions are in excellent accord with the results from
the spectral theory. Our work suggests that concrete experiments and computations
may yield suitable empirical data for testing the predictions.

To summarize: in this thesis we have established a spectral link between the MVPs
of some of the canonical turbulent flows and the eddy velocity distribution of the phe-
nomenological theory, verified the bijective property of the spectral link, and used it
to shed some new theoretical light on several outstanding problems in the interpreta-
tion of such MVPs. To establish the spectral link, we have used a specific model of
momentum transfer as well as a specific form of the energy equation. Nevertheless,
it has been shown that the existence of a bijective spectral link may be proven with-
out having recourse to any specific models of wall turbulence, solely on the basis of
dimensional analysis and similarity arguments (Gioia & Chakraborty, 2017), with the
implication that a bijective spectral link should be considered as a requisite attribute
of every model of wall turbulence. However, models of wall turbulence, including the
Prandtl model of the MVP, are usually oblivious of the internal structure of turbu-
lence. These models ignore the eddy velocity distribution, on which much knowledge is
readily available, supported by a vast corpus of empirical evidence, and thus miss the
opportunity to harness that knowledge in an effort to better understand the physics of
wall-bounded turbulent flows. We hope that our findings will foster the formulation of
better spectral models which might help opening up new prospects of gaining further
insight into turbulence, “the most important unsolved problem of classical physics”.





Appendix A

Total shear stress

For an incompressible and isotropic Newtonian fluid, the continuity equation and
momentum equation read (Pope, 2000):

∂ui
∂xi

= 0, (A.1)

and
∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (A.2)

where ~u ≡ ui~ei is the velocity field, which fluctuates randomly in both position ~x ≡ xi~ei
and time t when the flow is turbulent, ρ is the fluid density, p is pressure, and ν is the
kinematic viscosity. According to Reynolds decomposition (Davidson, 2004), defining
the flow variables ui = ui + u′i, and p = p + p′, where ui is a local mean velocity
in ~ei direction, p is a local mean pressure, both averaged over a long time, u′i and
p′ denote the fluctuating velocity component in ~ei direction and fluctuating pressure
component respectively. The time average of the fluctuating components equals zero.
Therefore, after averaging and a rearrangement, the mean continuity equation and
mean momentum equation (Reynolds equation) are obtained (Pope, 2000),

∂ui
∂xi

= 0, (A.3)

and
∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj
(ν
∂ui
∂xj
− u′iu′j). (A.4)

In the fully developed flow region, the flow becomes statistically one-dimensional
(Pope, 2000). Thus, the local mean velocity u, at a distance y from the wall reduces to
u(y) = u1(x2), which depends only on x2, i.e., y. The function u(y) is called the MVP.
The lateral mean momentum equation reduces to

0 = −1

ρ

∂p

∂y
− ∂u′2u

′
2

∂y
, (A.5)

which integrates to
p0/ρ = p/ρ+ u′2u

′
2, (A.6)
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with the boundary condition u′2u
′
2(y=0) = 0, p0 = p(y=0). As the flow is statistically

one-dimensional, ∂u′2u′2/∂x1 = 0. Then the mean axial pressure gradient is uniform
across the flow,

∂p

∂x1
=
dp0
dx1

. (A.7)

The axial mean momentum equation reads,

0 = −1

ρ

∂p

∂x1
+ ν

d2u

dy2
− du′1u

′
2

dy
, (A.8)

Defining the total shear stress

τ(y) = ρν
du

dy
− ρu′1u′2, (A.9)

where ρνdu/dy is the viscous shear stress, and ρu′1u′2 can be regarded as the turbulent
shear stress. Then the axial mean momentum equation becomes,

dτ

dy
=
dp0
dx1

, (A.10)

which is the balance of mean forces per unit volume. Since τ is only a function of y and
p0 only depends on x1, both dτ/dy and dp0/dx1 should be constant due to Equation
A.10.

Assume τ(y = 0) = τ0. For pipe flow (radius R) and channel flow (half width h),
the velocity field is symmetric about the centerline, so τ(y) is antisymmetric about the
centerline. Thus, τ(y = 2R) = −τ0 or τ(y = 2h) = −τ0. Integrating Equation A.10
with the boundary conditions at y = 0 and y = 2R or y = 2h,

τ(y) = τ0(1− y/R), (A.11)

or
τ(y) = τ0(1− y/h). (A.12)

For plane Couette flow (half width b), there is no axial pressure gradient imposed, so
dτ/dy = 0. Then

τ(y) = τ0. (A.13)

It is widely accepted that for an incompressible and isotropic Newtonian fluid, the
viscous stress tensor is linearly related to the symmetric strain rate tensor (Kundu &
Cohen, 2002),

~τv = ρν(~∇~u+ ~u~∇). (A.14)

In Cartesian coordinates,
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and
~∇~u = (~u~∇)T . (A.16)

Due to the turbulent viscosity hypothesis introduced by Boussinesq in 1877 (Pope,
2000), the turbulent stress tensor

~τt = −ρ
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 , (A.17)

where the positive scalar coefficient νt is the turbulent viscosity, and K = 1
2
u′iu
′
i is the

turbulent kinetic energy. Thus, the total shear stress

τ(y) = τv12 + τt12 = ρ(ν + νt)
∂u1
∂x2

= ρ(ν + νt)
du

dy
, (A.18)

which is consistent with Equation 2.11.





Appendix B

Turbulent power per unit mass

The turbulent power per unit mass balancing the dissipation of turbulent kinetic
energy can be obtained from the turbulent kinetic energy budget. In Cartesian coor-
dinate, K = 1

2
u′iu
′
i, and the budget reads (Kundu & Cohen, 2002),
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(B.1)

In all cases considered in this thesis, the local rate of change of the turbulent
kinetic energy K is assumed to be zero. Thus, the budget gives that the dissipation
of turbulent kinetic energy ε is balanced by the sum of all other terms on the right-
hand side of Equation B.1, i.e., the turbulent power per unit mass. The dominant
terms balancing the dissipation of turbulent kinetic energy in each case are estimated
as follows. For pipe flow, channel flow, and plane Couette flow,we assume that the
dissipation of turbulent kinetic energy is balanced shear production. For thermally
stratified turbulent flows, the sum of the shear production and buoyant production is
assumed to balance the dissipation of turbulent kinetic energy.
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