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We consider the dark matter (DM) scenario in the context of the classically conformal Uð1Þ0 extended
standard model (SM), with three right-handed neutrinos (RHNs) and the Uð1Þ0 Higgs field. The model is
free from all of the Uð1Þ0 gauge and gravitational anomalies in the presence of the three RHNs. We
introduce a Z2 parity in the model, under which an odd parity is assigned to one RHN, while all of the other
particles are assigned to be Z2 even, and hence the Z2-odd RHN serves as a DM candidate. In this model,
the Uð1Þ0 gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, by which the
electroweak symmetry breaking is triggered. There are three free parameters in our model—the Uð1Þ0
charge of the SM Higgs doublet (xH), the new Uð1Þ0 gauge coupling (gX), and the Uð1Þ0 gauge boson (Z0)
mass (mZ0 )—which are severely constrained in order to solve the electroweak vacuum instability problem,
and satisfy the LHC Run-2 bounds from the search for the Z0 boson resonance. In addition to these
constraints, we investigate the RHN DM physics. Because of the nature of classical conformality, we find
that a RHN DM pair mainly annihilates into the SM particles through Z0 boson exchange. This is the
so-called Z0-portal DM scenario. Combining the electroweak vacuum stability condition, the LHC Run-2
bounds, and the cosmological constraint from the observed DM relic density, we find that all constraints
work together to narrow the allowed parameter regions and, in particular, exclude mZ0 ≲ 3.5 TeV. For the
obtained allowed regions, we calculate the spin-independent cross section of the RHN DM with nucleons.
We find that the resultant cross section is well below the current experimental upper bounds.

DOI: 10.1103/PhysRevD.96.095032

I. INTRODUCTION

There are important missing pieces in the Standard
Model (SM), such as a candidate for dark matter (DM)
and the tiny neutrino masses and their flavor mixings. The
SM should be extended so as to supplement these missing
pieces. The so-called seesaw mechanism is a natural way
to reproduce the tiny neutrino masses [1–5], where heavy
Majorana right-handed neutrinos (RHNs) are introduced.
The minimal gauged B − L model [6–11] is one of the
simplest extensions of the SM with an extra gauge
symmetry, in which the accidentally anomaly-free global
B − L (baryon number minus lepton number) in the SM is
gauged. Three RHNs play an essential roll to cancel the
gauge and gravitational anomalies of the model. Associated
with the B − L symmetry breaking, the RHNs acquire their
Majorana masses, and hence the seesaw mechanism is
automatically implemented. The minimal B − L model
can be generalized to the so-called minimal Uð1Þ0 model
[12]. Here, the Uð1Þ0 gauge group is defined as a linear

combination of the Uð1ÞB−L and SM Uð1ÞY gauge groups,
so that the Uð1Þ0 model is anomaly-free.
In our previous work [13,14] we investigated the minimal

Uð1Þ0 model with classically conformal invariance.1 In this
model, the Uð1Þ0 gauge symmetry is radiatively broken
through the Coleman-Weinberg (CW) mechanism [53].
Given a negative mixing quartic coupling between the
SM Higgs and Uð1Þ0 Higgs fields, once the Uð1Þ0 Higgs
field develops a vacuum expectation value (VEV), a negative
mass-squared of the SM Higgs doublet is generated, and
thus the electroweak symmetry breaking is naturally trig-
gered. In this model context, we investigated the electroweak
vacuum instability problem in the SM. Employing the
renormalization group (RG) equations at the two-loop level
and the central values for the world average masses of the
top quark (mt ¼ 173.34 GeV [54]) and the Higgs boson
(mh ¼ 125.09 GeV [55]), we performed parameter scans to
identify the parameter region that resolves the electroweak
vacuum instability problem. We also investigated the
ATLAS and CMS search limits at the LHC Run-2 (2015)
for the Uð1Þ0 gauge boson (Z0) [56,57], and identified the
allowed parameter regions in our model. Combining the
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1See Refs. [15–52] for recent work on new physics models
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constraints from electroweak vacuum stability and the LHC
Run-2 results, we found a lower bound on the Z0 boson
mass. We also calculated self-energy corrections to the SM
Higgs doublet field through the heavy states, the right-
handed neutrinos, and the Z0 boson, and found the natural-
ness bound as mZ0 ≲ 6 TeV, in order to reproduce the right
electroweak scale for a fine-tuning level better than 10%.
The so-called weakly interacting massive particle

(WIMP) is one of the most promising candidates for
DM, as it is in thermal equilibrium in the early
Universe. Among many possibilities, a simple way to
introduce WIMP DM in the minimal Uð1Þ0 model was
proposed in Ref. [58] (see also Ref. [59]), where Z2 parity
is introduced and an odd parity is assigned to one RHN,
while all the other particles are assigned to be Z2 even. We
adapt this scheme in our minimal Uð1Þ0 model with the
classically conformal invariance, and the Z2-odd RHN is a
DM candidate, while the other two RHNs are utilized for
the seesaw mechanism. Note that only two RHNs are
sufficient to reproduce the neutrino oscillation data and the
observed baryon asymmetry of the Universe through
leptogenesis [60]. This system is called the minimal seesaw
[61,62]. In our model, there are two ways for the RHN DM
to interact with the SM particles. One is mediated by the Z0
boson (Z0 portal), and the other is mediated by the two
Higgs bosons (Higgs portal) which are two mass eigen-
states consisting of the SM Higgs and the Uð1Þ0 Higgs
bosons. Recently, the Z0-portal DM scenarios [63–91] have
been intensively investigated, and the Higgs portal RHN
DM scenarios [58,92,93] have been analyzed in detail.
In this paper, we consider the classically conformal

Uð1Þ0 extended SM with the RHN DM. As we mentioned
above, the allowed parameter regions in the classically
conformal model are severely constrained in order to solve
the electroweak vacuum instability problem, and to satisfy
the LHC limits from the search for the Z0 boson resonance.
In addition to these constraints, we will investigate the
RHN DM physics. Because of the nature of classical
conformality, we find that the mass mixing between the
SM Higgs and the Uð1Þ0 Higgs bosons is very small, so that
the RHN DM pair annihilation process mediated by the
Higgs bosons is highly suppressed. Therefore, we focus on
the study of the Z0-portal RHN DM [80,89], and identify
allowed parameter regions that reproduce the observed DM
relic density from the Planck 2015 result [94]. We will
show that the DM physics, LHC phenomenology, and the
electroweak vacuum stability condition work together to
narrow the allowed parameter regions. For the identified
allowed regions, we also calculate the spin-independent
cross section of the RHN DM with nucleons and compare
our results with the current upper bounds from the direct
DM search experiments.
This paper is organized as follows. In the next section,

we introduce the classically conformal Uð1Þ0 extended SM
with Z0-portal RHN DM. We briefly review our previous

work on the classically conformal Uð1Þ0 model [13,14]. In
Sec. III, we calculate the relic density of the Z0-portal RHN
DM. In Sec. IV, we study the Z0 boson production at the
LHC Run-2 (2016) [95,96], and obtain the constraints on
the model parameter space from the search results for the Z0
boson resonance by the ATLAS and CMS collaborations.
In Sec. V, we combine all of the results from the previous
sections and narrow the allowed regions. In Sec. VI, we
calculate the spin-independent cross section of the RHN
DM with nucleons for the allowed parameter regions. The
last section is devoted to conclusions.

II. THE CLASSICALLY CONFORMAL Uð1Þ0
EXTENDED SM WITH RHN DM

In this section we briefly review the results of Ref. [14].
Although the model is extended to incorporate the RHN
DM, the results presented here are essentially the same as
those in Ref. [14].

A. The model

The model we will investigate is the anomaly-free
Uð1Þ0 extension of the SM with the classically conformal
invariance, which is based on the gauge group
SUð3ÞC × SUð2ÞL × Uð1ÞY ×Uð1Þ0. The particle contents
of the model are listed in Table I. In addition to the SM
particle content, three generations of RHNs νiR and a
Uð1Þ0 Higgs field Φ are introduced. We also introduce
the Z2 parity [58], and assign an odd parity to one RHN
ν3R, while the other particles, including ν1R and ν2R, have
even parity. The conservation of Z2 parity ensures the
stability of ν3R, which is a unique candidate for DM in
our model.
The covariant derivative, which is relevant to Uð1ÞY×

Uð1Þ0, is defined as

TABLE I. Particle contents of the Uð1Þ0 extended SM with Z2

parity. In addition to the SM particle contents, three generations
of RHNs νiR (i ¼ 1, 2, 3 denotes the generation index) and the
Uð1Þ0 Higgs field Φ are introduced. Under Z2 parity, only one
RHN ν3R is odd, while the other particles, including ν1R and ν2R, are
even.

SUð3Þc SUð2ÞL Uð1ÞY Uð1Þ0 Z2

qiL 3 2 þ1=6 xq ¼ 1
3
xH þ 1

6
xΦ þ

uiR 3 1 þ2=3 xu ¼ 4
3
xH þ 1

6
xΦ þ

diR 3 1 −1=3 xd ¼ − 2
3
xH þ 1

6
xΦ þ

li
L 1 2 −1=2 xl ¼ −xH − 1

2
xΦ þ

ν1;2R 1 1 0 xν ¼ − 1
2
xΦ þ

ν3R 1 1 0 xν ¼ − 1
2
xΦ −

eiR 1 1 −1 xe ¼ −2xH − 1
2
xΦ þ

H 1 2 þ1=2 xH ¼ xH þ
Φ 1 1 0 xΦ ¼ xΦ þ
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Dμ ≡ ∂μ − i

�
Y1 YX

��
g1 g1X
gX1 gX

��
Bμ

B0
μ

�
; ð2:1Þ

where Y1 (YX) is the Uð1ÞY [Uð1Þ0] charge of a particle, and
the gauge couplings gX1 and g1X are associated with the
kinetic mixing between the two U(1) gauge bosons. In
order to reproduce the observed fermion masses and flavor
mixings, we introduce the following Yukawa interactions:

LYukawa ¼ −
X3
i¼1

X3
j¼1

Yij
u qiL ~HujR −

X3
i¼1

X3
j¼1

Yij
d q

i
LHdjR

−
X3
i¼1

X3
j¼1

Yij
e li

LHejR −
X3
i¼1

X2
j¼1

Yij
ν li

L
~H νjR

−
X3
i¼1

Yi
MΦνicR ν

i
R þ H:c:; ð2:2Þ

where ~H ≡ iτ2H�, and the fourth and fifth terms on the
right-hand side allow the seesaw mechanism to generate
neutrino masses. Without loss of generality, the Majorana
Yukawa couplings in the fifth term are already diagonalized
in our basis. Because of the Z2 parity, only two generations
of RHNs are involved in the neutrino Dirac Yukawa
couplings and hence the neutrino Dirac mass matrix is
2 × 3. Once the Uð1Þ0 Higgs field Φ develops a VEV, the
Uð1Þ0 symmetry is broken and the Majorana mass terms for
the RHNs are generated. After the electroweak symmetry
breaking, the seesaw mechanism [1–5] is automatically
implemented, except that only two generations of RHNs
are relevant. This system is the minimal seesaw [61,62],
which possesses a number of free parameters Yij

ν and Yj
M

(i ¼ 1, 2, 3, j ¼ 1, 2), enough to reproduce the neutrino
oscillation data with a prediction of one massless
eigenstate.
In the particle contents, the two parameters (xH and xΦ)

reflect the fact that the Uð1Þ0 gauge group can be defined as
a linear combination of the SM Uð1ÞY and Uð1ÞB−L gauge
groups. Since the Uð1Þ0 gauge coupling gX is a free
parameter of the model and it always appears as a product
(xΦgX or xHgX), we fix xΦ ¼ 2 without loss of generality
throughout this paper. This convention excludes the case
that the Uð1Þ0 gauge group is identical to the SM Uð1ÞY .
The choice of ðxH;xΦÞ¼ð0;2Þ corresponds to the Uð1ÞB−L
model. Another example is ðxH; xΦÞ ¼ ð−1; 2Þ, which
corresponds to the SM with the so-called Uð1ÞR symmetry.
When we choose ðxH; xΦÞ ¼ ð−16=41; 2Þ, the beta func-
tion of gX1 (g1X) at the one-loop level only has terms
proportional to gX1 (g1X) [13]. This is the orthogonality
condition between the Uð1ÞY and Uð1Þ0 at the one-loop
level, under which gX1 and g1X do not evolve once we have
set gX1 ¼ g1X ¼ 0 at an energy scale.
Imposing the classically conformal invariance, the scalar

potential is given by

V ¼ λHðH†HÞ2 þ λΦðΦ†ΦÞ2 þ λmixðH†HÞðΦ†ΦÞ; ð2:3Þ

where the mass terms are forbidden by the conformal
invariance. If λmix is negligibly small, we can analyze
the Higgs potential separately for Φ and H as a good
approximation. This will be justified in the following
subsections. When the Majorana Yukawa couplings Yi

M
are negligible compared to the Uð1Þ0 gauge coupling, the Φ
sector is identical to the original CW model [53], and thus
the radiative Uð1Þ0 symmetry breaking will be achieved.
Once Φ develops a VEV through the CW mechanism, the
tree-level mass term for the SM Higgs doublet is effectively
generated through λmix in Eq. (2.3). Taking λmix negative,
the induced mass-squared for the Higgs doublet is negative
and, as a result, the electroweak symmetry breaking is
driven in the same way as in the SM.

B. Radiative Uð1Þ0 gauge symmetry breaking

Assuming λmix is negligibly small, we first analyze the
Uð1Þ0 Higgs sector. Without mass terms, the Coleman-
Weinberg potential [53] at the one-loop level is found to be

VðϕÞ ¼ λΦ
4
ϕ4 þ βΦ

8
ϕ4

�
ln
�
ϕ2

v2ϕ

�
−
25

6

�
; ð2:4Þ

where ϕ=
ffiffiffi
2

p ¼ ℜ½Φ�, and we have chosen the renormal-
ization scale to be the VEV of Φ (hϕi ¼ vϕ). Here, the
coefficient of the one-loop quantum corrections is given by

βΦ ¼ 1

16π2

�
20λ2Φ þ 6x4Φðg2X1 þ g2XÞ2 − 16

X
i

ðYi
MÞ4
�

≃ 1

16π2

�
6ðxΦgXÞ4 − 16

X
i

ðYi
MÞ4
�
; ð2:5Þ

where in the last expression we have used λ2Φ ≪ ðxΦgXÞ4
as usual in the CW mechanism and set gX1 ¼ g1X ¼ 0
at hϕi ¼ vϕ for simplicity. The stationary condition
dV=dϕjϕ¼vϕ ¼ 0 leads to

λΦ ¼ 11

6
βΦ; ð2:6Þ

and this λΦ is nothing but a renormalized self-coupling at
vϕ defined as

λΦ ¼ 1

3!

d4VðϕÞ
dϕ4

����
ϕ¼vϕ

: ð2:7Þ

For a more detailed discussion, see Ref. [32].
Associated with this radiative Uð1Þ0 symmetry breaking

(as well as the electroweak symmetry breaking), the Uð1Þ0
gauge boson (Z0 boson), the Majorana RHNs ν1;2R , and the
RHN DM particle ν3R acquire their masses as
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mZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxΦgXvϕÞ2 þ ðxHgXvhÞ2

q
≃ xΦgXvϕ;

mN1;2 ¼
ffiffiffi
2

p
Y1;2
M vϕ; mDM ¼

ffiffiffi
2

p
Y3
Mvϕ; ð2:8Þ

where vh ¼ 246 GeV is the SM Higgs VEV, and we
have used xΦvϕ ≫ xHvh, which will be verified below.
In this paper, we assume degenerate masses for ν1;2R
(Y1

M ¼ Y2
M ¼ yM, equivalently, mN1;2 ¼ mN) for simplicity.

The Uð1Þ0 Higgs boson mass is given by

m2
ϕ ¼ d2V

dϕ2

����
ϕ¼vϕ

¼ βΦv2ϕ ≃ 1

8π2
ð3ðxΦgXÞ4 − 16y4M − 8y4DMÞv2ϕ

≃ 1

8π2
3m4

Z0 − 4m4
N − 2m4

DM

v2ϕ
; ð2:9Þ

where yDM ¼ Y3
M. When the Yukawa couplings are neg-

ligibly small, this equation reduces to the well-known
relation derived in the original paper by Coleman and
Weinberg [53]. For a sizable Majorana mass, this formula
indicates that the potential minimum disappears, so that
there is an upper bound on the RHN mass for the Uð1Þ0
symmetry to be broken radiatively. This is in fact the same
reason why the CW mechanism in the SM Higgs sector
fails to break the electroweak symmetry when the top
Yukawa coupling is large (as observed). In order to
avoid the destabilization of the Uð1Þ0 Higgs potential,
we simply set m4

Z0 ≫ m4
N in the following analysis, while

mDM ≃mZ0=2, as we will find in the next section. Note that
this condition does not mean that the Majorana RHNs must
be very light, even a factor difference between mZ0 and mN
is enough to satisfy the condition. For simplicity, we set
yM ¼ 0 at vϕ in the following RG analysis as an
approximation.

C. Electroweak symmetry breaking

Let us now consider the SM Higgs sector. In our model,
the electroweak symmetry breaking is achieved in a
very simple way. Once the Uð1Þ0 symmetry is radiatively
broken, the SM Higgs doublet mass is generated through
the mixing quartic term between H and Φ in the scalar
potential in Eq. (2.3),

VðhÞ ¼ λH
4
h4 þ λmix

4
v2ϕh

2; ð2:10Þ

where we have replaced H by H ¼ 1=
ffiffiffi
2

p ð0; hÞ in the
unitary gauge. Choosing λmix < 0, the electroweak sym-
metry is broken in the same way as in the SM [25,26].
However, we should note that a crucial difference from
the SM is that, in our model, the electroweak symmetry
breaking originates from the radiative breaking of the Uð1Þ0
gauge symmetry. At the tree level, the stationary condition

V 0jh¼vh ¼ 0 leads to the relation jλmixj ¼ 2λHðvh=vϕÞ2, and
the Higgs boson mass mh is given by

m2
h ¼

d2V
dh2

����
h¼vh

¼ jλmixjv2ϕ ¼ 2λHv2h: ð2:11Þ

In the following RG analysis, this is used as the boundary
condition for λmix at the renormalization scale μ ¼ vϕ. Note
that since λH ∼ 0.1 and vϕ ≳ 10 TeV by the large electron-
positron collider (LEP) constraint [97–99], jλmixj≲ 10−5,
which is very small.
In our discussion about the Uð1Þ0 symmetry breaking, we

neglected λmix by assuming it to be negligibly small. Here
we justify this treatment. In the presence of λmix and the
Higgs VEV, Eq. (2.6) is modified as

λΦ ¼ 11

6
βΦ þ jλmixj

2

�
vh
vϕ

�
2 ≃ 1

2v4ϕ

�
11

8π2
m4

Z0 þm2
hv

2
h

�
:

ð2:12Þ

Considering the current LHC Run-2 bound from the
search for Z0 boson resonances [95,96], mZ0 ≳ 4 TeV, we
find that the first term in the parentheses in the last
equality is 5 orders of magnitude greater than the second
term, and therefore we can analyze the two Higgs sectors
separately.

D. Solving the electroweak vacuum instability

In the SM with the observed Higgs boson mass of
mh ¼ 125.09 GeV [55], the RG evolution of the SM
Higgs quartic coupling shows that the running coupling
becomes negative at the intermediate scale μ≃ 1010 GeV
[100] for mt ¼ 173.34 GeV [54], and hence the electro-
weak vacuum is unstable. In our Uð1Þ0 extended SM,
however, there is a parameter region to solve this
electroweak vacuum instability problem [13,14].2 There
are only three free parameters in our model, xH, vϕ, and
gX, which are also interpreted as xH, mZ0 , and
αgX ¼ g2X=ð4πÞ. The inputs of the couplings at vϕ are
determined by these three parameters. In Fig. 1(a), we
show the RG evolution of the SM Higgs quartic coupling
in our model (solid line), along with the SM result
(dashed line). Here, we have taken xH ¼ −0.575,
mZ0 ¼ 4 TeV, and αgX ¼ 0.01, which corresponds to
vϕ ¼ 5.64 TeV and gXðvϕÞ ¼ 0.354, as an example.
The Higgs quartic coupling remains positive all the
way up to the Planck mass scale, so the electroweak
vacuum instability problem is solved.
In order to identify a parameter region to resolve the

electroweak vacuum instability, we perform parameter

2In the absence of the classical conformal invariance, the
electroweak vacuum instability problem was investigated in
Refs. [84,101–103].
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scans for the free parameters xH, vϕ, and gX. In this
analysis, we impose several conditions on the running
couplings at vϕ ≤ μ ≤ MP (MP ¼ 2.44 × 1018 GeV is the
reduced Planck mass): the stability conditions of the
Higgs potential (λH, λΦ > 0), and the perturbative con-
ditions that all the running couplings remain in the
perturbative regime, namely, g2i (i ¼ 1, 2, 3), g2X, g2X1,
g21X < 4π and λH, λΦ, λmix < 4π. For theoretical consis-
tency, we also impose the condition that the two-loop
beta functions are smaller than the one-loop beta func-
tions (see Ref. [14] for details). In Fig. 1(b), we show the
result of our parameter scans in the three-dimensional
parameter space of (mZ0 ; αgX ; xH). As a reference, we
show a horizontal plane corresponding to the orthogonal
case xH ¼ −16=41. There is no overlapping of the
plane with the resultant parameter regions to resolve
the electroweak vacuum instability.

E. Naturalness bounds from SM Higgs
mass corrections

Once the classically conformal symmetry is radiatively
broken by the CW mechanism, the masses for the Z0
boson and the Majorana RHNs are generated, and they
contribute to self-energy corrections of the SM Higgs
doublet. If the Uð1Þ0 gauge symmetry breaking scale is
very large, the self-energy corrections may exceed the
electroweak scale and require us to fine-tune the model
parameters to reproduce the correct electroweak scale.
See Ref. [104] for related discussions. As heavy states,
we have the RHNs and Z0 boson, whose masses are
generated by the Uð1Þ0 gauge symmetry breaking.
Since the original theory is classically conformal and

defined as a massless theory, the self-energy corrections to
the SM Higgs doublet originate from corrections to the

mixing quartic coupling λmix. Thus, what we calculate to
derive the naturalness bounds are quantum corrections to
the term λmixh2ϕ2 in the effective Higgs potential

Veff ⊃
λmix

4
h2ϕ2 þ βλmix

8
h2ϕ2ðln½ϕ2� þ CÞ; ð2:13Þ

where the logarithmic divergence and the terms indepen-
dent of ϕ are all encoded in C. Here, the major
contributions to quantum corrections are from the Z0
boson loops:

βλmix
⊃
12x2Hx

2
Φg

4
X

16π2
−
4ð19x2H þ 10xHxΦ þ x2ΦÞx2Φy2t g4X

ð16π2Þ2 ;

ð2:14Þ

where the first term is from the one-loop diagram, and
the second one is from the two-loop diagram [25,26]
involving the Z0 boson and the top quark. By adding a
counterterm, we renormalize the coupling λmix with the
renormalization condition,

∂4Veff

∂h2∂ϕ2

����
h¼0;ϕ¼vϕ

¼ λmix; ð2:15Þ

where λmix is the renormalized coupling. As a result, we
obtain

Veff ⊃
λmix

4
h2ϕ2 þ βλmix

8
h2ϕ2

�
ln

�
ϕ2

vϕ

�
− 3

�
: ð2:16Þ

Substituting ϕ ¼ vϕ, we obtain the SM Higgs self-energy
correction as

FIG. 1. (a) The evolutions of the Higgs quartic coupling λH (solid line) for the inputs mt ¼ 173.34 GeV and mh ¼ 125.09 GeV,
along with the SM case (dashed line). Here, we have taken xH ¼ −0.575, mZ0 ¼ 4 TeV. and αgX ¼ 0.01, which corresponds to
vϕ ¼ 5.64 TeV and gXðvϕÞ ¼ 0.354. (b) The result of the three-dimensional parameter scans for vϕ, gX , and xH , shown in the
(mZ0=GeV, αgX , xH) parameter space with mZ0 ≃ xΦgXvϕ. As a reference, a horizontal plane for xH ¼ −16=41 is shown, which
corresponds to the orthogonal case.
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Δm2
h ¼−

3

4
βλmix

v2ϕ

∼−
9

4π
x2HαgXm

2
Z0 þ 3m2

t

32π3v2h
ð19x2H þ 20xH þ 4ÞαgXm2

Z0 :

ð2:17Þ

For the stability of the electroweak vacuum, we impose
Δm2

h ≲m2
h as the naturalness bound. The most important

contribution to Δm2
h is the first term of Eq. (2.17)

generated through the one-loop diagram with the Z0
gauge boson, and the second term becomes important
in the case of the Uð1ÞB−L model, where xH ¼ 0.
If Δm2

h is much larger than the electroweak scale,
we need a fine-tuning of the tree-level Higgs mass
(jλmixjv2ϕ=2) to reproduce the correct SM Higgs VEV,
vh ¼ 246 GeV. We simply evaluate a fine-tuning
level as

δ ¼ m2
h

2jΔm2
hj
: ð2:18Þ

Here, δ ¼ 0.1, for example, indicates that we need to
fine-tune the tree-level Higgs mass-squared at the 10%
accuracy level.

III. RELIC DENSITY OF THE RHN DM

In this section, we calculate the thermal relic density of
the RHN DM and identify the model parameter region
to be consistent with the Planck 2015 measurement [94]
(68% confidence level):

ΩDMh2 ¼ 0.1198� 0.0015: ð3:1Þ

In our model, the RHN DM particles mainly annihilate into
the SM particles through the s-channel process mediated
by the Uð1Þ0 gauge boson Z0.
The Boltzmann equation of the RHN DM is given by

dY
dx

¼ −
xshσvi
HðmDMÞ

ðY2 − Y2
EQÞ; ð3:2Þ

where the temperature of the Universe is normalized by the
mass of the RHN DM x ¼ mDM=T, HðmDMÞ is the Hubble
parameter at T ¼ mDM, s is the entropy density, Y ¼ n=s is
the yield of the RHN DM which is defined by the ratio of
the number density n to s, YEQ is the yield in the thermal
equilibrium, and hσvi is the thermal-averaged product of
the RHN DM annihilation cross section σ and relative
velocity v. The explicit formulas for these are summarized
as follows:

s ¼ 2π2

45
g�

m3
DM

x3
;

HðmDMÞ ¼
ffiffiffiffiffiffiffiffiffiffi
π2

90
g�

r
m2

DM

MP
;

sYEQ ¼ gDM
2π2

m3
DM

x
K2ðxÞ; ð3:3Þ

where gDM ¼ 2 is the number of degrees of the freedom
for the RHN DM, g� is the effective total number of degrees
of freedom for particles in thermal equilibrium (in this
paper, we set g� ¼ 106.75 for the SM particles), and K2 is
the modified Bessel function of the second kind. The
thermally averaged annihilation cross section times veloc-
ity is given by

hσvi ¼ ðsYEQÞ−2g2DM
mDM

64π4x

Z
∞

4m2
DM

dsσ̂ðsÞ ffiffiffi
s

p
K1

�
x
ffiffiffi
s

p
mDM

�
;

ð3:4Þ

where the reduced cross section is defined as σ̂ðsÞ ¼
2ðs − 4m2

DMÞσðsÞ with the total cross section σðsÞ, and
K1 is the modified Bessel function of the first kind.
The total cross section of the RHN DM annihilation
process ν3Rν

3
R → Z0 → ff̄ (f denotes the SM fermion)3 is

calculated as

σðsÞ ¼ π

3
α2gX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

DMÞ
p

ðs −m2
Z0 Þ2 þm2

Z0Γ2
Z0

×

"
103x2H þ 86xH þ 37

3

þ 17x2H þ 10xH þ 2þ ð7x2H þ 20xH þ 4Þ m2
t
s

3

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
t

s

r

þ18x2H
ðs −m2

Z0 Þ2
sðs − 4m2

DMÞ
m2

DMm
2
t

m4
Z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
t

s

r #
; ð3:5Þ

where the total decay width of the Z0 boson is given by

3Although there are also other annihilation processes, such as
ν3Rν

3
R → ϕϕ, ν3Rν

3
R → ϕZ0 and ν3Rν

3
R → Z0Z0 (see, for example,

Ref. [105]), all of these cross sections are estimated to be much
less than 1 pb, which is a typical cross section to reproduce
ΩDMh2 ≃ 0.1, for αgX ∼ 0.01 (see Figs. 5 and 6), yDM ∼ gX, and
mDM ∼ 1 TeV.
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ΓZ0 ¼αgXmZ0

6

�
103x2Hþ86xHþ37

3

þ
17x2Hþ10xHþ2þð7x2Hþ20xHþ4Þ m2

t
m2

Z0

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
t

m2
Z0

s

þ2

�
1−

4m2
N

m2
Z0

�3
2

θ

�
m2

Z0

m2
N
−4

�

þ
�
1−

4m2
DM

m2
Z0

�3
2

θ

�
m2

Z0

m2
DM

−4

��
: ð3:6Þ

Here, we have neglected all SM fermion masses except for
the top quark mass mt.
By solving the Boltzmann equation (3.2) numerically,

we find the asymptotic value of the yield Yð∞Þ, and the
present DM relic density is given by

ΩDMh2 ¼
mDMs0Yð∞Þ

ρc=h2
; ð3:7Þ

where s0 ¼ 2890 cm−3 is the entropy density of the present
Universe, and ρc=h2 ¼ 1.05 × 10−5 GeV=cm3 is the criti-
cal density. Our analysis involves four parameters, namely,
αgX , mZ0 , mDM, and xH. In Fig. 2 we show the resultant
RHN DM relic density as a function of the RHN DM mass
mDM for mZ0 ¼ 4 TeV and xH ¼ −0.575, along with the
range of the observed DM relic density, 0.1183 ≤
ΩDMh2 ≤ 0.1213 [94] (two horizontal dashed lines).
The solid lines from top to bottom show the resultant
RHN DM relic densities for various values of the gauge
coupling: αgX ¼ 0.002, 0.00235, 0.003, 0.004, and 0.005.
The plots indicate the lower bound on αgX ≥ 0.00235 for

mZ0 ¼ 4 TeV and xH ¼ −0.575 in order to reproduce the
observed relic density. In addition, we can see that the
enhancement of the RHNDM annihilation cross section via
the Z0 boson resonance is necessary to satisfy the cosmo-
logical constraint, and hence mDM ≃mZ0=2.

IV. COLLIDER CONSTRAINTS
ON THE Uð1Þ0 Z0 BOSON

The ATLAS and CMS collaborations have searched
for the Z0 boson resonance at the LHC Run-1 withffiffiffi
s

p ¼ 8 TeV, and continued the search at the LHC Run-
2 with

ffiffiffi
s

p ¼ 13 TeV. The most stringent bounds on the Z0
boson production cross section times branching ratio have
been obtained by using the dilepton final state. For the so-
called sequential SM Z0 (Z0

SSM) model [106], where the
Z0
SSM boson has exactly the same couplings with the SM

fermions as those of the SM Z boson, the latest cross
section bounds from the LHC Run-2 results lead to lower
bounds on the Z0

SSM boson mass of mZ0
SSM

≥ 4.05 TeV in
the ATLAS 2016 results [95] and mZ0

SSM
≥ 4.0 TeV in the

CMS 2016 results [96], respectively. We interpret these
ATLAS and CMS results in the Uð1Þ0 Z0 boson case and
derive constraints on xH, αgX , and mZ0 .
We calculate the dilepton production cross section for

the process pp → Z0 þ X → lþl− þ X. The differential
cross section with respect to the invariant mass Mll of the
final-state dilepton is described as

dσ
dMll

¼
X
a;b

Z
1

M2
ll

E2
CM

dx1
2Mll

x1E2
CM

faðx1;M2
llÞ

× fb

�
M2

ll

x1E2
CM

;M2
ll

�
σ̂ðq̄q → Z0 → lþl−Þ;

ð4:1Þ

where fa is the parton distribution function for a parton a,
and ECM ¼ 13 TeV is the center-of-mass energy of the
LHC Run-2. In our numerical analysis, we employ
CTEQ5M [107] for the parton distribution functions. In
the case of the Uð1Þ0 model, the cross sections for the
colliding partons are given by

σ̂ðūu → Z0 → lþl−Þ

¼ πα2gX
81

M2
ll

ðM2
ll −m2

Z0 Þ2 þm2
Z0Γ2

Z0

× ð85x4H þ 152x3H þ 104x2H þ 32xH þ 4Þ;
σ̂ðd̄d → Z0 → lþl−Þ

¼ πα2gX
81

M2
ll

ðM2
ll −m2

Z0 Þ2 þm2
Z0Γ2

Z0

× ð25x4H þ 20x3H þ 8x2H þ 8xH þ 4Þ; ð4:2Þ

FIG. 2. The relic density of the RHN DM as a function of its
mass (mDM). We have fixed xH ¼ −0.575 and mZ0 ¼ 4 TeV, and
show the relic densities for various values of the gauge coupling:
αgX ¼ 0.002, 0.00235, 0.003, 0.004, and 0.005 (solid lines from
top to bottom). The two horizontal lines denote the range of the
observed DM relic density, 0.1183 ≤ ΩDMh2 ≤ 0.1213 in the
Planck 2015 results [94].
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where the total decay width of the Z0 boson is given in
Eq. (3.6). By integrating the differential cross section over a
range of Mll set by the ATLAS and CMS analyses,
respectively, we obtain the cross section as a function of
xH, αgX , and mZ0 , which are compared with the lower
bounds obtained by the ATLAS and CMS collaborations.
In interpreting the ATLAS and the CMS results for the

Uð1Þ0 Z0 boson, we follow the strategy in Ref. [80]. We first
analyze the sequential SM Z0 model to check the consis-
tency of our analysis with that of the ATLAS and the
CMS collaborations. With the same couplings as the SM,
we calculate the differential cross section of the process
pp → Z0

SSM þ X → lþl− þ X as in Eq. (4.1). According
to the analysis by the ATLAS Collaboration at the LHC
Run-2, we integrate the differential cross section for the
range 120 GeV ≤ Mll ≤ 6000 GeV [95] and obtain the
cross section of the dilepton production process as a
function of the Z0

SSM boson mass. Our result is shown as
a solid line in Fig. 3(a), along with the plots presented by
the ATLAS Collaboration [95] (Here we also show the
ATLAS 2015 result [56] for comparison. We can see that
the ATLAS 2016 result has dramatically improved the
bound obtained by the ATLAS 2015 result.). In Fig. 3(a),
the experimental upper bounds on the Z0 boson production
cross section are depicted as horizontal solid (red) curves.
The theoretical Z0 boson production cross section presented
in Ref. [95] is shown as the diagonal dashed line, and the
lower limit of the Z0

SSM boson mass is found to be 4.05 TeV,
which can be read off from the intersection point of the
theoretical prediction (diagonal dashed line) and the exper-
imental cross section bound [horizontal lower solid (red)
curve]. In order to take into account the difference of the
parton distribution functions used in the ATLAS analysis
and our analysis, and QCD corrections of the process, we
have scaled our resultant cross section by a factor k ¼ 1.16

in Fig. 3(a), with which we can obtain the same lower limit
of the Z0

SSM boson mass as 4.05 TeV. We can see that our
result (solid line) in Fig. 3(a) with the factor of k ¼ 1.16 is
very consistent with the theoretical prediction (diagonal
dashed line) presented by the ATLAS Collaboration. We
use this factor in the following analysis for the Uð1Þ0 Z0
production process, when we interpret the ATLAS 2016
result.
We apply the same strategy and compare our results for

the Z0
SSM model with those in the CMS 2016 results [96].

According to the analysis by the CMS Collaboration,
we integrate the differential cross section for the range
0.95mZ0

SSM
≤ Mll ≤ 1.05mZ0

SSM
[96] and obtain the cross

section. In the CMS analysis, the limits were set on the ratio
of the Z0

SSM boson cross section to the Z=γ� cross section:

Rσ ¼
σðpp → Z0 þ X → llþ XÞ
σðpp → Z þ X → llþ XÞ ; ð4:3Þ

where the Z=γ� production cross sections in the mass
window 60 GeV ≤ Mll ≤ 120 GeV were predicted to be
1928 pb at the LHC Run-2 [96]. Our result for the Z0

SSM
model is shown as the solid line in Fig. 3(b), along with the
plot presented in Ref. [96]. (Here we also show the CMS
2015 result [57] for comparison. We can see that the CMS
2016 result has dramatically improved the bound obtained
by the CMS 2015 result.) The analyses in the CMS paper
lead to a lower limit of the Z0

SSM boson mass of 4.0 TeV,
which is read off from the intersection point of the
theoretical prediction (diagonal dashed line) and the exper-
imental cross section bound [horizontal lower solid (red)
curve]. In order to obtain the same lower mass limits, we
have scaled our resultant cross section by a factor k ¼ 1.42
in Fig. 3(b). With this k factor, our result (solid line) is very
consistent with the theoretical prediction (diagonal dashed

FIG. 3. (a) The cross section as a function of the Z0
SSM mass (solid line) with k ¼ 1.16, along with the LHC Run-2 ATLAS result from

the combined dielectron and dimuon channels in Ref. [95]. (Here we have also shown the ATLAS 2015 result [56] for comparison.)
(b) The cross section ratio as a function of the Z0

SSM mass (solid line) with k ¼ 1.42, along with the LHC Run-2 CMS result from the
combined dielectron and dimuon channels in Ref. [96]. (Here we have also shown the CMS 2015 result [57] for comparison.)
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line) presented in Ref. [96]. We use this k factor in our
analysis to interpret the CMS result for the Uð1Þ0 Z0
boson case.
The search for effective four-Fermi interactions mediated

by the Z0 boson at LEP leads to a lower bound on mZ0=gX
[97–99]. Employing the limits from the final LEP 2 data
[99] at 95% confidence level, we follow Ref. [98]
and derive a lower bound on mZ0=gX as a function xH.
Our result is shown in Fig. 4.

V. COMBINED RESULTS

Now let us combine all of the constraints that we have
obtained in the previous sections from the RHN DM
physics, collider phenomenology, and the electroweak
vacuum stability. In Fig. 5, we show the allowed region
in the (mZ0 , αgX ) plane for fixed xH ¼ −0.575, as an
example. The shaded region indicates the parameter space
that solves for the electroweak vacuum instability. The
(blue) right solid line shows the lower bound on αgX as a
function ofmZ0 to reproduce the observed DM relic density
of the Planck result [94]. The (red) left solid (dashed) line
shows the upper bound on αgX obtained from the search
results for the Z0 boson resonance by the CMS [96]
(ATLAS [95]) Collaboration. The (green) shaded region
in between the two solid lines satisfies all constraints.
These three constraints work together to narrow the allowed
region to be 4TeV≲mZ0 ≲8TeV and 0.009≲ αgX ≲ 0.017.
We also show the naturalness bounds for 10% (right dotted
line) and 30% (left dotted line) fine-tuning levels.
In Fig. 6, we show the allowed parameter regions in the

(xH, αgX ) plane for various mZ0 values. Figure 6(a) is for
mZ0 ¼ 4 TeV. The shaded region indicates the parameter
space that solves the electroweak vacuum instability. The
(blue) convex-downward solid line shows the lower bound
on αgX as a function of xH to reproduce the observed DM
relic density. The (red) convex-upward solid (dashed) line
shows the upper bound on αgX obtained from the search

results for the Z0 boson resonance by the CMS [96]
(ATLAS [95]) Collaboration, and the (red) dashed-dotted
lines also show the LEP bounds. The (green) shaded region
in between the two solid lines satisfies all constraints.
These three constraints work together to narrow the allowed
region to be −1.1≲xH≲−0.4 and 0.002≲ αgX ≲ 0.02. We
also show the naturalness bounds for 10% (dashed line) and
30% (dotted line) fine-tuning levels. Figures 6(b), 6(c),
and 6(d) are the same as Fig. 6(a), but withmZ0 ¼ 3.75, 3.5,
and 3 TeV, respectively. From Fig. 6(b), the allowed region
to satisfy these three constraints indicates −0.9≲xH≲−0.5
and 0.003≲ αgX ≲ 0.015 for fixed mZ0 ¼ 3.75 TeV. As
mZ0 decreases, the LHC upper bound lines are shifted
downward, while the DM lower bound line remains almost
the same (it moves slightly downward). Therefore, the
allowed region between the LHC upper bounds and the
DM lower bound narrows. On the other hand, the shaded
region remains almost the same, so that the (green) shaded
region disappears for mZ0 ≲ 3.5 TeV.

VI. DIRECT DETECTION OF RHN DM

A variety of experiments are underway and also
planned for directly detecting a DM particle through its
elastic scattering off nuclei.4 In this section, we calculate
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FIG. 4. The lower bound on mZ0=gX as a function of xH,
obtained by the limits from the final LEP 2 data [99] at the
95% confidence level.

FIG. 5. The allowed regions to solve the electroweak instability
problem for mZ0 and αgX with a fixed xH ¼ −0.575 at the TeV
scale, along with the dark matter lower bound [(blue) right solid
line] on αgX , the LHC Run-2 (2016) CMS upper bound [(red)
solid line] on αgX , and the LHC Run-2 ATLAS (2016) upper
bound [(red) dashed line] on αgX from direct searches for the Z0
boson resonance. The (green) shaded region in between the two
solid lines satisfies all constraints. Here, the naturalness bounds
for 10% (right dotted line) and 30% (left dotted line) fine-tuning
levels are also depicted.

4We can also consider an indirect detection of the RHN DM
through cosmic rays from a pair annihilation of the RHN DM.
However, using the parameters in the allowed regions shown in
Sec. V, we have found that the pair annihilation cross section is
much smaller than the current upper bounds obtained from, for
example, the Fermi-LAT experiments [108].
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the spin-independent elastic scattering cross section of the
RHN DM particle via Higgs-boson exchange,5 and com-
pare our results with the current experimental results and
the prospective reach of future experiments.
From Eq. (2.8), the Uð1Þ0 Higgs VEV vϕ is expressed as

a function of mZ0 , αgX , and xH:

v2ϕ ¼ m2
Z0

16παgX

�
1 − 4παgX

�
xHvh
mZ0

�
2
�
≃ m2

Z0

16παgX
: ð6:1Þ

In Sec. III, we have also shown that mDM ≃mZ0=2 to
satisfy the experimental relic density of the Z0-portal RHN
DM, which means yDM ≃mZ0=2

ffiffiffi
2

p
vϕ ≃ ffiffiffiffiffiffiffiffiffiffiffiffi

2παgX
p

. Then,
Eq. (2.9) is approximately expressed as

m2
ϕ ≃ 1

8π2
23

8

m4
Z0

v2ϕ
≃ 23

4π
αgXm

2
Z0 : ð6:2Þ

Using the SM Higgs boson mass in Eq. (2.11), the scalar
mass matrix is found to be

M ¼
 

m2
h −m2

hðvhvϕÞ
−m2

hðvhvϕÞ m2
ϕ

!
: ð6:3Þ

The mass eigenstates h0 and ϕ0 are defined as

FIG. 6. Allowed parameter regions in the (xH , αgX ) plane for various mZ0 values. Panel (a) is for mZ0 ¼ 4 TeV. The shaded region
indicates the parameter space that solves the electroweak vacuum instability. The (blue) convex-downward solid line shows the
cosmological lower bound on αgX as a function of xH. The (red) convex-upward solid (dashed) line shows the upper bound on αgX
obtained from the Z0 boson search by the CMS [96] (ATLAS [95]) Collaboration, and the (red) dashed-dotted lines show the LEP
bounds. The (green) shaded region in between the two solid lines satisfies all constraints. Here, the naturalness bounds for 10% (dashed
line) and 30% (dotted line) fine-tuning levels are also depicted. Panels (b), (c), and (d) are the same as panel (a), but with mZ0 ¼ 3.75,
3.5, and 3 TeV, respectively.

5There is another process where the RHN DM scatters off
nuclei via Z0-boson exchange. Since the RHN DM is a Majorana
particle, it only has spin-dependent interaction with nuclei. We
have calculated this spin-dependent cross section to be
σSD ∼ 10−9 pb, which is far below the current upper bounds
σSD ≲ 10−4 pb obtained from the LUX [109] and IceCube [110]
experiments.
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�
h0

ϕ0

�
¼
�
cos θ − sin θ

sin θ cos θ

��
h

ϕ

�
; ð6:4Þ

with the mixing angle θ given by

tan 2θ ¼ 2m2
hðvh=vϕÞ

m2
h −m2

ϕ

; ð6:5Þ

and their mass eigenvalues are given by

m2
h0 ¼ m2

hcos
2θ þm2

ϕsin
2θ þ 2m2

h
vh
vϕ

sin θ cos θ≃m2
h;

m2
ϕ0 ¼ m2

hsin
2θ þm2

ϕcos
2θ − 2m2

h
vh
vϕ

sin θ cos θ≃m2
ϕ:

ð6:6Þ

Here, we have used the fact that (except for the special
case m2

h ≃m2
ϕ) the mixing angle is always small because

of the suppression by vh=vϕ, with vh ¼ 246 GeV and
vϕ ≳ 10 TeV. Thus, the mass eigenstate h0 is the SM-like
Higgs boson, while ϕ0 is the Uð1Þ0-like Higgs boson.
The spin-independent elastic scattering cross section

with a nucleon is given by

σSI ¼
1

π
ð
ffiffiffi
2

p
yDM sin θ cos θÞ2

�
μDM;N

vh

�
2

f2N

�
1

m2
h0
−

1

m2
ϕ0

�
2

≃ 4θ2αgX

�
μDM;N

vh

�
2

f2N

�
1

m2
h

−
1

m2
ϕ

�
2

; ð6:7Þ

where μDM;N ¼ mNmDM=ðmN þmDMÞ is the reduced mass
of the RHN DM–nucleon system with the nucleon mass
mN ¼ 0.939 GeV, and

fN ¼
 X

q¼u;d;s

fTq
þ 2

9
fTG

!
mN ð6:8Þ

is the nuclear matrix element accounting for the quark and
gluon contents of the nucleon. In evaluating fTq

, we use the
results from lattice QCD simulations [111]: fTu

þ fTd
≃

0.056 and jfTs
j ≤ 0.08. For our conservative analysis, we

take fTs
¼ 0 in the following. Using the trace anomaly

formula
P

q¼u;d;sfTq
þ fTG ¼ 1 [112–116], we obtain

f2N ≃ 0.0706m2
N . Using Eqs. (6.1), (6.2), and (6.5), σSI

is expressed as a function of only two free parameters: αgX
and mZ0 .
For a fixed xH ¼ −0.575, the resultant spin-independent

cross section σSI as a function of mZ0 is depicted in Fig. 7.
Here, for a fixed mZ0 value, αgX is taken from the shaded
region in Fig. 5 to solve the electroweak vacuum instability
problem. The (green) shaded region in between around 3.5
and 9 TeV corresponds to the (green) shaded parameter
region in Fig. 5, which satisfies all three constraints: the
electroweak vacuum stability condition, the LHC Run-2

bound, and the cosmological constraint from the observed
RHN DM relic density. The (red) upper solid (dashed)
line shows the XENON1T [117] (LUX 2016 [118]) upper
bound on σSI as a function of mZ0 ≃ 2mDM, and the (red)
dotted line shows the prospective reach for the upper bound
on σSI in the next-generation successor of the LUX
experiment, the LUX-ZEPLIN (LZ) DM experiment
[119]. Our resultant spin-independent cross section appears
below the future reach.
In Fig. 8, we show the resultant σSI in the (xH, σSI)

plane for various mZ0 values, corresponding to the param-
eter regions shown in Fig. 6. Figure 8(a) shows our results
for mZ0 ¼ 4 TeV. The shaded regions indicate the param-
eter space that solves the electroweak vacuum instability.
The (green) shaded region in the range −1.1≲ xH ≲ −0.4
corresponds to the (green) shaded region in Fig. 6(a),
which satisfies all three constraints: the electroweak vac-
uum stability condition, the LHC Run-2 bound, and the
cosmological constraint from the observed RHN DM relic
density. The (red) upper solid (dashed) line shows the
XENON1T [117] (LUX 2016 [118]) upper bound on σSI,
and the (red) dotted line shows the prospective reach for
the upper bound on σSI in the LZ DM experiment [119].
Figures 8(b), 8(c), and 8(d) are the same as Fig. 8(a), but
formZ0 ¼ 3.75, 3.5, and 3 TeV, corresponding to Figs. 6(b),
6(c), and 6(d), respectively. Figure 8(b) has a (green)
shaded region in the range −0.9≲ xH ≲ −0.5 to satisfy

FIG. 7. The resultant spin-independent cross section σSI as a
function of mZ0 for a fixed xH ¼ −0.575. Here, for a fixed mZ0

value, αgX is taken from the shaded region in Fig. 5 to solve the
electroweak vacuum instability problem. The (green) shaded
region between around 3.5 and 9 TeV corresponds to the (green)
shaded parameter region in Fig. 5, which satisfies all three
constraints: the electroweak vacuum stability condition, the LHC
Run-2 bound, and the cosmological constraint from the observed
RHN DM relic density. The (red) upper solid (dashed) line shows
the XENON1T [117] (LUX 2016 [118]) upper bound on σSI as a
function of mZ0 ≃ 2mDM, and the (red) dotted line shows the
prospective reach for the upper bound on σSI in the next-
generation successor of the LUX experiment, the LUX-ZEPLIN
(LZ) DM experiment [119].
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the three constraints, while Figs. 8(c) and 8(d) have no
such region.

VII. CONCLUSIONS

We have considered the DM scenario in the context
of the classically conformal Uð1Þ0 extended SM, with three
RHNs and the Uð1Þ0 Higgs field. The model is free from all
of the Uð1Þ0 gauge and gravitational anomalies in the
presence of the three RHNs. We have introduced a Z2 parity
in the model, under which an odd parity is assigned to one
RHN, while all of the other particles are assigned to be Z2

even. In our model, the Z2-odd RHN serves as a stable DM
candidate, while the other two RHNs are utilized for the
minimal seesaw mechanism in order to reproduce the
neutrino oscillation data and the observed baryon asym-
metry of the Universe through leptogenesis. In this model,
the Uð1Þ0 gauge symmetry is radiatively broken through the
CW mechanism, by which the electroweak symmetry

breaking is triggered. There are three free parameters in
our model: the Uð1Þ0 charge of the SM Higgs doublet (xH),
the new Uð1Þ0 gauge coupling (αgX ), and the Uð1Þ0 gauge
boson (Z0) mass (mZ0).
In this model context, we first investigated the

possibility of resolving the electroweak vacuum instability
with the current world average of the experimental data,
mt ¼ 173.34 GeV and mh ¼ 125.09 GeV. By analyzing
the RG evolutions of the couplings of the model at the
two-loop level, we performed a parameter scan for the three
parameters mZ0 , αgX and xH, and identified parameter
regions which can solve the electroweak instability prob-
lem and keep all coupling values in the perturbative regime
up to the Planck mass scale. We found that the resultant
parameter regions are very severely constrained. Next, we
calculated the thermal relic density of the RHN DM and
identified the model parameter region to reproduce the
observed DM relic density of the Planck 2015 measure-
ment. In our model, the RHN DM particles mainly

FIG. 8. The resultant σSI in the (xH , σSI) plane for various mZ0 values, corresponding to the parameter regions shown in Fig. 6. Panel
(a) shows our results for mZ0 ¼ 4 TeV. The shaded regions indicate the parameter space that solves the electroweak vacuum instability.
The (green) shaded region in the range −1.1≲ xH ≲ −0.4 corresponds to the (green) shaded region in Fig. 6(a), which satisfies all three
constraints: the electroweak vacuum stability condition, the LHC Run-2 bound, and the cosmological constraint from the observed RHN
DM relic density. The (red) upper solid (dashed) line shows the XENON1T [117] (LUX 2016 [118]) upper bound on σSI, and the (red)
dotted line shows the prospective reach for the upper bound on σSI in the LZ DM experiment [119]. Panels (b), (c), and (d) are the same
as panel (a), but with mZ0 ¼ 3.75, 3.5, and 3 TeV, corresponding to Figs. 6(b), 6(c), and 6(d), respectively.
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annihilate into the SM particles through the s-channel
process mediated by the Z0 boson. We obtained the lower
bound on αgX as a function ofmZ0 and xH from the observed
DM relic density. We also considered the LHC Run-2
bounds from the search for the Z0 boson resonance by the
recent ATLAS and CMS analysis, which lead to the upper
bounds on αgX as a function ofmZ0 and xH. The LEP results
from the search for effective four-Fermi interactions medi-
ated by the Z0 boson can also constrain the model parameter
space, but the LEP constraints are found to be weaker than
those obtained from the LHC Run-2 results. Finally, we
combined all of the constraints. The cosmological con-
straint on the RHN DM yields the lower bound on αgX as a
function of mZ0 and xH, while the upper bound on αgX is
obtained from the LHC Run-2 results, so that these
constraints work together to narrow the allowed parameter
regions. We found that only small portions of these allowed

parameter regions can solve the electroweak vacuum
instability problem. In particular, there is no allowed
region that satisfies all constraints for mZ0 ≲ 3.5 TeV.
For the obtained allowed regions, we calculated the
spin-independent cross section of the RHN DM with
nucleons. We found that the resultant cross section is well
below the current experimental upper bounds.
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