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Abstract – Permanent Magnet Generator has been widely used in Variable-Speed Wind Energy 
Conversion System (VSWECS). Fuzzy Logic Control (FLC) of the generator side converter has the 
ability to have a good regulation of the DC-link voltage to meet the requirements necessary to 
achieve optimal system operation, regardless of the disturbances caused by the characteristics of 
the drive train or some changes into the DC-load. The main focus of this paper is to present a 
model for a three phase voltage source space vector pulse width modulation (SVPWM) rectifier 
which is connected to a PMSG in a wind turbine system, where a direct voltage control (DVC) us-
ing FLC based on voltage orientation strategy is used to control the mentioned rectifier. The con-
trol algorithm employs fuzzy logic controller to effectively achieve a smooth control of DC-link 
voltage under wind/load perturbation conditions. Some simulation results, using Matlab/Simulink, 
are presented to show the effectiveness of the SVPWM rectifier Connected to a PMSG WECS with 
the proposed control strategy.  
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I. Introduction 

Recently, the AC-DC converter applications are in-

creasing in industry, commerce and house utility. Tradi-

tionally, the main parts of converters have been the dio-

des and thyristors bridges to rectify the AC power. These 

rectifiers have the advantages of being simple, robust and 

having low cost. However, they generate harmonics and 

reactive power in AC side, which results voltage distor-

tion, poor power factor at power supply side and slowly 

varying rippled DC output at DC side. Therefore, a three-

phase PWM rectifier is a more cunning solution for in-

dustrial applications, since it has more advantages such 

as adjustment and stabilization of DC-link voltage, sinu-

soidal line current, power factor control and bidirectional 

power flow [1]. One of the most considerable industrial 

applications is wind energy. Nowadays, there are two 

types of generators which are used in large scale wind 

turbines to transform the wind power into electrical ener-

gy, such as: DFIG and PMSG [2]. Because of its ability 

to operate in all wind speed range and do not require 

excitation current, PMSG shows good performance in 

wind farm. As the fast development of wind power tech 

 

 

nology [3], the efficiency of converter device in wind  

power generation system has become another knotty 

problem to improve wind power generation system per-

formance [2]. 

The three-phase voltage source PWM rectifier control 

based on DVC issues are traditionally treated by fixed 

gain PI controllers [4]. However, the fixed gain control-

lers are very sensitive to parameter variations and gener-

ally cannot provide good dynamic performance, Such as 

discussed in [5]. So, the controller parameters have to be 

continually adapted. This problem can be solved by sev-

eral adaptive control techniques such as sliding mode 

control (SMC) [6]. The design of all of the above con-

trollers depends on the exact system mathematical model. 

For the same purpose around solving these problems, the 

idea that a linear system is adopted as the consequent part 

of a fuzzy rule has evolved into the innovative Takagi-

Sugeno (TS) model [7], which has become quite popular 

today. The fuzzy logic have gained great important, wit-

nessed a rapid growth in industrial applications, proved 

their dexterity of many respects. FLC can achieve satis-

factory results in dealing with system, which is difficult 
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to de-scribe mathematically or is highly nonlinear beha-

viour, as described in [8], [9] which relates to the control 

of PWM Rectifier whose energy derives from a purely 

electrical source.  

In this paper, a detail dynamic model and a simple di-

rect voltage control (DVC) strategy using fuzzy logic 

controller for three-phase voltage source SVPWM rec-

tifier connected to a PMSG wind turbine with voltage 

orientation to improve the system’s robustness and dy-

namic response of the dc bus voltage is proposed. In 

order to improve the dynamic performances of the source 

current loop, the simulation results show that the FLC 

can significantly reduce the three-phase rectifier’s vol-

tage fluctuation, improve the dynamic response of the dc-

bus significantly and assist the system to operate in unit 

power factor with low harmonic content of current. 

II. Wind Energy Conversion System 

The topology of the WECS presented in this study is 

depicted in Fig. 1. It consists of a wind turbine, a gear-

box, a PMSG, Generator side converter and grid side 

converter. In our strategy studied, the converter on the 

generator is used to control the DC link voltage whatever 

the disturbances caused by the characteristics of the wind 

turbine drive train or the variation in the DC load. 
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  Figure 1. Wind energy conversion chain based on PMSG 

 

The converter on the generator is used to control the 

DC link-voltage whatever the disturbances caused by the 

characteristics of the WECS drive train or the variation in 

the DC load. 

II.1. Aerodynamic subsystem model 

The aerodynamic power is dependent on the power 

coefficient. It is given by [10], [11]: 
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Where:  – air density [ 3mKg ], R – blade length 

[m ], V – wind velocity [ sm ].  

The power coefficient pC  depends on the ratio   and 

the pitch angle   is shown in Fig. 2. 

The aerodynamic torque aerT  is calculated by the ra-

tio of the aerodynamic power aerP  to the shaft 

speed t : 
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Figure 2. Power coefficient variation against tip speed ratio and pitch 

angle 

 

The turbine is usually attached to the generator via a 

gearbox whose gear ratio G  is chosen to adjust the speed 

of the generator column at the required speed range. The 

torque and shaft speed of generator are given by: 


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GTT

tg

aerg
1

 
(3) 

Where: g – generator shaft speed, gT – torque of the 

generator. 

By using the equation (3), the shaft system dynamics 

can be described as [12]:  

gvemgg fTTJ 
 

(4) 

Where: emT – electromagnetic torque, J – equivalent 

inertia, vf – viscous friction. 

Fig. 3 illustrates a typical characteristic giving the 

aerodynamic power of a WT-s which is also used in the 

simulation section. The extractable power is shown ver-

sus the rotor speed for different wind speed values. Each 

diagram for a constant wind speed has a peak value in 

which the pair ( opt,g , max,aerP ) are relevant. 
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Figure 3. Aerodynamic powers various speed characteristics 

 

II.2. Electrical subsystem model 

The  circuit  diagram  of  the  three-phase  two level 

voltage source rectifier structure  Connected to a PMSG 

Wind Energy Conversion System is  shown  in  Fig.  4.  

In  order to  set up  math model,  it’s assumed  that the  

filter reactor  is linear, IGBT is ideal switch  and  lossless  

[13]. 
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Figure 4. Circuit schematic of PWM rectifier Connected to PMSG 

WECS 

 

Where asi , bsi and csi , are phase  currents, C is 

smoothing capacitor across the DC bus, LR  is the load 

resistance, and Li is load current. The classical electrical 

equations of the PMSG and converter in the PARK frame 

are written as follows [14], [15]: 
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With d,emf and q,emf are the crosses coupling terms be-

tween the d-axis and q-axis: 
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Where sR , sL , rR , rL ,are the stator phase resistance 

and inductance, the rectifier line resistance and induc-

tance, respectively and  pmsgg p  is the electrical 

speed and pmsgp  is the pair pole number, dsi  and qsi  are 

the direct and quadrate stator currents, f  is magnetic 

flux. dS , qS are input voltage of  rectifier, switch func-

tion in synchronous rotating d-q coordinate, respectively 

and dcv is the dc-bus voltage. 

The electromagnetic torque is expressed as [16]: 

qsfpmsgem ipT   
2

3
 (7) 

III. Direct Voltage Control (DVC) Strategy 

In this section, the principle of this control (DVC) 

based on voltage orientation consists of using a current 

loop, developed by analogy with the vector control of 

electrical machines. It consists of orienting the current 

vector in the same direction as that of the voltage vector, 

by controlling the current vector in the two revolving d-q 

axes. Regarding Fig. 5, the current of the d-axis is set to 

zero while the reference current qsi  is set by the DC link 

voltage regulator. 

 

 
Figure 5. Voltage orientation 

 

Once the rectifier is connected to an existing load, the 

transit of direct and quadrature axis currents must be 

controlled separately. To obtain a decoupled currents 

control of rectifier, the method based on voltage orienta-

tion can be regarded as the efficient one. 

There are three control loops in the DVC strategy. The 

error between the reference dc-bus voltage *dcv  and the 

sampled dc-bus voltage dcv  is processed by FLC, which 

produces the reference active current *qsi . As in the inner  

loops, d-axis  currents  loop  and  q-axis  current loop  

use PI  controllers  to  make  the  actual currents  ( dsi   

and qsi )  track  their  reference  values ( *dsi   and *qsi ).  

Then, the errors are processed in two conventional PI 

controllers to produce the output signals of *dsv and *qsv , 

after  coordinates  transformation, *sav , *
sbv and *scv  
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which  can  be  obtained  and  used  to  produce switch-

ing  signals aS , bS  and cS  by two-level space vector 

pulse with modulation (SVPWM). 

Consequently, the proposed  currents control  can  then  

be  applied,  as  depicted  in  Fig. 6,  Considering that the 

direct and quadrature axis currents considered as va-

riables to be controlled. 

With:    srssrs LLTRRA  1;1
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Figure 6. The block diagram of direct and quadrature axis currents 
control 

IV. Controller Design 

IV.1. PI regulator synthesis 

In order to control the converter used, we must per-

form a decoupling by compensation. To make the “d” 

and “q” axes completely independent. The parameters of 

the corrector are calculated with a method of imposition 

of the poles. It is possible to generate reference voltages 

from given reference quantities. The design of this con-

troller is simple. Fig. 7, 8 shows the system scheme regu-

lated by a PI corrector. 

Consequently, the proposed currents control can then   
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Figure 8. Quadrature current regulation loop 

 

In fact, the errors ( ds
*
ds ii  ) and the errors  qs*qs ii   

are processed by the PI corrector, in order to design the 

reference voltages * s,dqv . Using the Laplace transforma-

tion, the closed-loop transfer function is given as follows: 
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The calculated terms are in these tables: 
 

TABLE 1.  The calculated PI gains 

 spK ,  siK ,  

PI controller   ss AT /1-2 0  ss AT /2
0  

Value 150 10 
 

 

4.2. Fuzzy Logic Controller (FLC) 
To regulate the DC voltage, FLC is used because of 

the nonlinearity of the system. The basic formation of a 

FLC is consisted of four parts: Fuzzification block de-

termining inputs membership values. The Fuzzy Infe-

rence System FIS evaluates at each time which control 

rules are appropriate, using the fuzzy knowledge based 

block. The  deffuzification block calculates the  crisp  

output  of  the  rules  leading  to  the  optimal  plant con-

trol [17, 18]. Fig. 9 shows the block diagram of the fuzzy 

control.  
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Figure 9. Fuzzy logic controller structure 

 
 

The input and output linguistic variables of the fuzzy 

controller have been quantized in the following five 

fuzzy subsets. Where the error e  and its rate of change 

de are the input variables; eK , deK  and uK  are inputs 

and outputs scaling gains. For the proposed FLC of DC 

link voltage, we use diagram scheme of Fig. 10. 
 

TABLE 2.  Fuzzy rule-base for the controller 

          ε 

dε 
NL NS ZE PS PL 

NL NL NL NL NS ZE 

NS NL NS NS ZE PS 

ZE NL NS ZE PS PL 

PS NS ZE PS PS PL 

PL ZE PS PL PL PL 
 

There are two input signals to the FLC; the first input 

is the error between the reference and the measured value 

of the DC voltage, the second one represents the varia-
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tion of this error. These two signals are expressed by: 
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V. Results and discussion 

The fuzzy sets have been determined as: NL, Negative 

Large, NS, Negative Small and ZE,  Zero, PS, Positive 

Small, PM positive medium, PL, Positive Large, respec-

tively. The input/output variables used in this paper are 

fuzzified by seven symmetrical and triangular member-

ship functions (MFs) (Fig. 10(a), (b) and (c)) normalized 

in the universe of discourse between -1 and +1. The FLC 

surface is depicted in Fig. 10(d). Then, the outputs of the 

DC-link voltage fuzzy controller are *qsi . 

Finally, the overall simulation scheme of a three phase 

PWM Rectifier under DVC strategy connected to a 

PMSG WECS is given in Fig. 11. 
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Figure 10.  The memberships of the: (a) – Error, (b) - Error variation,  

(c)- Command variation, (d) - Control surface 
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Figure 11.  The block diagram of the proposed DVC approach 

Fig. 12a shows the input phase current of SVPWM-

rectifier. As can be seen in this figure, the current wave 

has a sinusoidal shape with very low harmonic distortion. 

The FFT analysis is applied to the line current of phase A 

of the rectifier. This analysis gives 0.62 [pu] as an effec-

tive value for the fundamental component of line current 

(THD about 2.25%) that is shown in Fig. 12b, is im-

proved when compared to conventional voltage orienta-

tion technique (THD=16.06%) [5]. So, It is found that 

most of the harmonics are low ranks. 
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  (b)                                                 Harmonic order  
Figure 12. Harmonic spectra of line current of phase A of the rectifier 

 

 

All the simulation results were elaborated with a 

fixed-step size of 0.1 [ms] with a view to digital imple-

mentation in future works.  

Three tests are under study to prove the robustness 

dynamic response of the proposed DVC approach, firstly 

the variation on the wind speed (9 to 7 [m/s]) at t=0.5[s] 

as shown in Fig. 13a, then the variation on the reference 

voltage of DC link (0.8 to 1 [pu]) at t=1[s] is shown in 

Fig. 13c and DC load resistance variation (500 to 

5*500[Ω]) at t=1.5[s] is seen in Fig. 13b. 

 

Fig. 13c shows the output DC voltage. As can be seen 

in this figure, the DC-Link voltage, after a short transient 

time, is correctly regulated at its reference voltage (0.8 

then 1 [pu]) with soft regulation without over-hoots. The 

mechanical speed of the PMSG shaft is given in Fig. 13d, 

it is clear that it takes the same shape as the wind speed. 



Y. Saidi et al. 

IJECA-ISSN: 2543-3717. June 2019                                                                                                                         Page 42 
 

The electromagnetic torque is shown in Fig. 13e, with a 

negative value, which proves that the machine used func-

tions as a generator. Fig. 13f shows the setting of direct 

and quadrature axis currents. The d-axis current is main-

tained at its zero reference value, while the q-axis current 

regulation is done by reference DC-voltage control. 

However, the effect of the coupling between the two 

control axes (d and q) is observed, since the variation on 

the reference DC voltage at time t=1[s] induces low os-

cillation on the d-q axis currents. 
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Figure 13. Simulation results: (a) Wind speed profile, (b) Load resis-

tance variation, (c) DC-Link voltage, (d) Generator speed, (e) Electro-

magnetic torque, (f) d-q axis current 

Appendix 

In this part, simulations are investigated with a 1.5 

MW generator wind turbine [19]. The parameters of the 

turbine are presented below: 

 

Turbine PMSG Rectifier 
3/22.1 mKg  MWPsn 5.1  mHRr 37  

mR 25.35  80pmsgp   3,0rL  

deg0   mRs 17.3  FC  1100  

30G  mHLs 07.3   

 Wbf 7.0172   

VI. Conclusion 

A cascaded control algorithm was properly designed 

to ensure the optimal operation of the whole system, 

based on fuzzy logic controller (FLC) with voltage orien-

tation technique. Furthermore output DC link voltage is 

smooth despite a wind/load fluctuation. The control sys-

tem based on DVC includes two PI controllers which are 

used to regulate the AC current and an outer DC voltage 

loop is composed by FLC strategy. 

The  simulation  results  shows  a good  performance 

and a robust control  of  DVC proposed method at start-

up and during  wind/load  variations, providing  a  good  

regulation of output DC voltage, sinusoidal AC current 

and low total harmonic distortion. It can be concluded 

from the simulation results, which demonstrate the inhe-

rent ability of the DVC fuzzy logic controller to deal with 

this kind of noise operation under wind/load disturbance 

conditions. 
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