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Abstract 

Antibiotic resistance is a growing problem in the field of healthcare. Antibiotics are 

becoming less effective as species of bacteria adapt and share resistance 

mechanisms. If transmission of mechanisms can be better understood at the 

molecular level, inhibitors could be developed to lessen the likelihood of antibiotic 

resistance. In this study, Rahnella spp were isolated from environmental sources on 

MacConkey plates containing 100 µg ml-1 ampicillin, and confirmed by 16S rRNA 

gene sequencing. Whole genomic DNA was extracted from isolates and initial 

amplifications were performed by polymerase chain reaction (PCR) using primers 

specific for 16S amplification. New primers were designed based on the sequence of 

a β-lactamase gene identified in a Rahnella genome.  These primers provided strong 

amplification. The products of these amplifications were sequenced, with the 

predicted protein products showing high sequence similarities to a previously 

identified Rahnella β-lactamase gene.  Individual sequences were compared and 

found to cluster into two distinct groups, with each being distinct from the known 

Rahnella β-lactamase.  Additional sequence data was used to determine the full 

sequences of this class A beta-lactamase gene predicted to be responsible for beta-

lactam resistance. Primers were produced to amplify the full gene and a High 

Fidelity PCR Kit by Qiagen was used to amplify the gene and furthermore, sequence 

the full gene. Ongoing research is being conducted to understand more about the 

mechanism by which the class A beta-lactamase gene confers resistance and 

additionally how this resistance is transferred between bacteria.  
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Introduction 

Antibiotic resistance is a growing problem in the treatment of bacterial infection. 

Once easily treatable infections are becoming increasingly more dangerous and 

antibiotics are becoming less effective. In the 19th century, before antibiotics, it is 

believed that more than one-third of the population died from some sort of infectious, 

now treatable, disease.1 With the discovery of penicillin these numbers fell drastically, 

but as antibiotic resistance increases among pathogenic organisms, death by bacterial 

infection is becoming more common and harder to prevent.1 One important factor to 

consider when thinking about antibiotic resistance is the role antibiotics play in 

agriculture. Almost 70% of the antibiotics used for farming are of human importance and 

are used medically to treat human infections.2 Antibiotic resistance in humans is now 

thought to be a byproduct of this “nontherapeutic use” of antibiotics in agriculture.2 

Resistant bacterial strains are being easily transmitted from animals to humans through 

direct contact, ingestion of food carrying resistant pathogens, and exposure to animal 

manure.2 Antibiotics were once thought to be a sort of “miracle” drug but are now of 

little use in certain treatments of bacterial infections. For example, diagnosis of 

multidrug-resistant Tuberculosis (MDR-TB), caused by Mycobacterium tuberculosis, 

accounts for about 3% of all new TB diagnoses.4 MDR-TB is resistant to two front-line 

treatments for the disease: rifampicin and isoniazid.4 Because of multidrug-resistance, 

treatment of MDR-TB is longer, more intense and leads to worse outcomes than 

traditional TB treatment.4 

Additionally, bacteria strains commonly found in soil confer resistance to front-

line antibiotics. Rahnella species confer resistance to many beta-lactam antibiotics and 
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have the ability to spread this resistance to other more pathogenic bacteria. Rahnella 

strains are naturally occurring soil organisms that confer resistance to beta-lactam 

antibiotics through use of beta-lactamases.3 Beta-lactamases are gene products that are 

secreted from gram-negative cells upon introduction of antibiotics. Beta-lactams contain 

a highly reactive four-membered beta-lactam ring that is responsible for the efficacy of 

this class of antibiotic.5 Beta-lactamases have the ability to hydrolyze this four-membered 

beta-lactam ring and therefore impede the success of the antibiotic.5 Many bacteria 

species confer such resistance through translation of inherent genes imbedded in their 

genome; some species confer resistance through easily transmittable genes residing on a 

plasmid.3,5 Rahnella is thought to use a class A beta-lactamase gene imbedded on a large 

plasmid, about 500,000 bps in length. Understanding the genetic basis of bacterial 

resistance to antibiotics plays an important role in preventing the irreversible spread of 

resistance. Rahnella is an organism that can be used as a laboratory model to identify and 

understand resistance mechanisms in more pathogenic strains of bacteria. Amplification 

and sequencing of the full class A beta-lactamase gene responsible for resistance against 

beta-lactam antibiotics is the first step in gaining pertinent knowledge regarding how to 

effectively continue the fight against antibiotic resistance.  

 

Materials and Methods 

Soil samples were collected from Northeast Ohio coordinates 40°46’30’’N 

81°20’09’’ W. Soil samples were diluted with distilled water and spread plated onto 

MacConkey with ampicillin agar. Plates were incubated overnight at 30 degrees Celsius. 

Lactose fermenting (red) bacteria colonies, a total of 9 morphologically different 
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colonies, were isolated from the plates and streaked for isolation on additional 

MacConkey with ampicillin plates. All 9 isolates (named S1-S9) were grown in 

individual overnight cultures using large glass test tubes with 3 mL liquid LB broth in a 

30 degree Celsius shaker. Polymerase chain reaction (PCR) was done using 1 l of 

overnight culture growth and 16S amplification protocol. Flat cap PCR tubes (0.2 mL) by 

USA Scientific were used to conduct PCR. Each flat cap PCR tube contained a total of 50 

l, made up of 5 l 10X Taq buffer, 1 l dNTPs, 1 l 16S forward primer 27F, 1 l 16S 

reverse primer 1492R, 40 l ddH20, 1 l Taq. Polymerase, and 1 l overnight broth 

culture from each of the 9 samples. PCR was run using 16S amplification protocol in a 

BIO-RAC T100 thermal cycler. 16S amplification protocol consisted of 34 cycles of 30 

seconds at 94°C followed by 30 seconds at 60°C, followed by 1 min 15 seconds at 72°C. 

This was followed by 5 min at 72°C and an infinite hold at 12°C. Gel electrophoresis was 

completed by adding 2 l of loading buffer dye to 10 l of PCR products and running on 

a 1% agar gel. Agar gel was made using .8g of agar and 80 mL of Tris/Borate/EDTA 

buffer. Agar mixture was microwaved for 1.5 minutes until solid agar was dissolved in 

buffer.  4 l of ethidium bromide was added to the mixture and the gel was poured and let 

solidify for 15 minutes. Wells were loaded with 2-log ladder size standard in lane 1, 

negative control in lane 2, and S1-S9 samples sequentially in the following lanes (3-11). 

Gel electrophoresis was conducted at 120 volts for 1 hour. Sample S1-S9 PCR products 

(12 l of each) were sent with 27F and 1492 primers (to the University of Chicago for 

CRC DNA sequencing.  

Samples S1-S9 were amplified using primers specific for a class A beta-lactamase 

gene in Rahnella aquatilis. PCR was conducted using custom Rahnella primers named 
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RAHN-Up and RAHN-Down. The sequence of RAHN-Up was 5′-

CTGGAAAAAGAAAGCGGCG-3′. 6 The sequence of RAHN-Down was 5′ -

TCAATAACCCTGCGTCACA-3’. 6 Flat top PCR tubes were filled to 50 l by adding 5 

l 10X Taq buffer, 40 l ddH20, 1 l RAHN-Up primer (50 picomol concentration), 1 l 

RAHN-down primer (50 picomol concentration), 1 l dNTPS, 1 l Taq polymerase, and 

1 l of S1-S9 overnight culture. PCR was run in a BIO-RAD T100 thermal cycler on the 

RAHN protocol with cycles as follows: 34 cycles of 30 seconds at 94°C followed by 30 

seconds at 60°C, followed by 1 min 15 seconds at 72°C. This was followed by 5 min at 

72°C and an infinite hold at 12°C. Gel electrophoresis was conducted using a 1% agar gel 

prepared by adding 80 ml of TBE buffer to 0.8g of agar. Size standard 2-log ladder was 

used along with a negative control. 4 l of ethidium bromide was added to the gel and gel 

electrophoresis was run at 120V for 1 hour. PCR products (12 l of each) were sent along 

with 90 l RAHN-Up primer at a concentration of 5 picomol to the University of 

Chicago for CRC DNA sequencing.  

Custom primers were made to amplify the full beta-lactamase class A gene. The 

forward primer, named ORA0711, had the following sequence: 5’-

CGCGAATTCACCATGATGAAAAATACCCTG CG-3’. ORA0712, the reverse primer, 

had a sequence of 5’-GCGTTCGAATCAATAACCC TGCGTCACAA-3’. Before 

amplification of the full gene, DNA purification of S1-S9 was done using a Wizard® 

Genomic DNA Kit by Promega.  Wizard® genomic DNA purification instructions found 

on page 14 and 15 of the following protocol was used: https://www.promega.com/-

/media/files/resources/protocols/technical-manuals/0/wizard-genomic-dna-purification-

kit-protocol.pdf. PCR amplification of S1-S3 samples with primers ORA0711 and 

https://www.promega.com/-/media/files/resources/protocols/technical-manuals/0/wizard-genomic-dna-purification-kit-protocol.pdf
https://www.promega.com/-/media/files/resources/protocols/technical-manuals/0/wizard-genomic-dna-purification-kit-protocol.pdf
https://www.promega.com/-/media/files/resources/protocols/technical-manuals/0/wizard-genomic-dna-purification-kit-protocol.pdf
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ORA0711 was done using a Phusion High Fidelity PCR kit. Each flat top PCR tube was 

filled with 34.5l ddH20, 10l Phusion 5X high fidelity buffer, 1l dNTPs, 1 l 

ORA0711 primer, 1l ORA0712 primer, 0.5 l Phusion polymerase, 1l DMSO, and 1l 

of DNA from S1-S3 in 9 tubes total. One control tube was made using the above amounts 

without the addition of 1l DNA. PCR was run in a BIO-RAD T100 thermal cycler on 

the RAHNHF protocol. RAHNHF protocol consisted of the following: 34 cycles of 30 

seconds at 96°C followed by 30 seconds at 60°C, followed by 2 min 30 seconds at 72°C. 

This was followed by 5 min at 72°C and an infinite hold at 5°C. Gel electrophoresis was 

conducted using a 1% agar gel, prepared as described previously. Phusion Lambda ladder 

was used as a size standard and the gel was run at 130V for 30 minutes. Using QIAquick 

PCR Purification Kit by Qiagen PCR products from S1-S9 amplified with ORA0711 and 

ORA0712 primers were purified. S1-S9 purified PCR products were sent to the 

University of Chicago for CRC DNA sequencing.  

 

Results 

Upon initial spread plating of soil samples collected, 9 phenotypically distinct 

lactose-fermenting bacteria colonies were observed (named S1-S9). Distinctions were 

made based on size and color. Amplification and gel electrophoresis of the 16S gene of 

S1-S9 resulted in positive results: bands in every lane of the 1% agar gel with exception 

of the negative control lane. Bands signify amplification of 1500 bps in length.  
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Fig. 1. Gel Electrophoresis results for amplification of 16S gene of S1-S9, numbered 

sequentially from left to right starting in lane 3. Amplification shown by fluorescent 

bands suggests the 16S gene to be about 1500 bps in length, as indicated by the 2-log 

ladder in lane 1 (furthest left).  

 

University of Chicago CRC DNA sequencing of the 16S gene resulted in 8 

Rahnella aquatilis organisms and 1 pseudomonas sp. (sample S4). All samples, with the 

exception of S4, were 100% identical.  

Cross-referencing BLAST database entries with the sequencing data received 

from the University of Chicago determined the full gene sequence, approximately 900 

bps long. Amplification of the full class A beta-lactamase gene using ORA0711 and 

ORA0712 primers resulted in positive bands for S1-S3 and S5-S9 upon gel 

electrophoresis.  
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Fig. 2. Gel Electrophoresis results of High fidelity PCR kit amplification of S1-S9 with 

ORA0711 and ORA0712 primers. Bands show positive result for S1-S3 and S5-S9. No 

band seen in lane 2 signifying a negative result for negative control. S4 shows 

degradation of the amplified gene by experimenter error.  

 

CRC DNA sequencing of High Fidelity Kit PCR products by the University of Chicago 

resulted in clean sequences that were 100% identical, with the exception of S3 (appendix 

1).  
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Fig. 3.  Gross alignment of S1-S9 class A beta-lactamase genes. Arrows show base pair 

differences in S3 from the consensus sequence of S1-S2, and S4-S9. S1, S2, and S4-S9 

were all identical in sequence.  

Gene sequencing results of 16S amplification compared to gene sequences results 

of class A beta-lactamase amplification reveal discrepancies in similarity. Sample S4 is a 

pseudomonas sp. sharing an identical class A beta-lactamase gene with S1, S2 and S4-S9, 

all of which are Rahnella sp.. Additionally, S3 carries a class A beta-lactamase gene with 

multiple base pair differences from the consensus sequence of S1, S2 and S4-S9. 

However, S3 has a 16S gene sequence identical to the other Rahnella sp. samples (S1, S2 

and S5-S9).   
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Discussion 

In the present study, amplification of the 16S gene and subsequent gel 

electrophoresis gave way to sequencing of the species-specific gene that proved the 

bacteria to be all Rahnella aquatilis with one Pseudomonas spp.. Further comparison 

revealed the full sequence of the gene responsible for beta-lactam resistance. Knowledge 

of the full sequence was used to produce new primers to amplify the entire gene 

sequence. This amplification could lead to insertion into a plasmid and cloning in order to 

prove that this gene is in fact responsible for the antibiotic resistance. Successful 

amplification of the full gene proved possible, and showed distinctions between one 

strain in particular and the rest of the samples. These differences in genetic make up 

could help explain how transmission of genetic material such as beta-lactamase genes 

occurs.  

 There is little data regarding the antibiotic resistance patterns of R. aquatilis due 

to its scarcity in clinical cases and antimicrobial resistance studies.7 However, the present 

study confirmed the use of a class A beta-lactamase gene within a 500,000 base pair 

plasmid as a means of antibiotic resistance for Rahnella aquatilis and Pseudomonas spp. 

Through amplification and sequencing it was found that Pseudomonas spp. carried a 

genetically identical beta-lactamase gene as R. aquatilis. Additionally, it was found that 

one sample of R. aquatilis housed a class A beta-lactamase gene that was genetically 

different in numerous places than the majority of R. aquatilis strains. Discrepancies in 

sequence data suggest uncomplicated gene transmission between species. Though Ruimy 

et al. suggests the class A beta-lactamase amplified in the present study to be 
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chromosomal, this study found the gene sequence on a large plasmid and not within the 

R. aquatilis chromosome.  

 Further studies should be conducted to prove that the class A beta-lactamase gene 

amplified in this study is responsible for resistance against beta-lactam antibiotics. 

Additionally, cloning should be completed to better understand the evolution and 

transmission of genetic material, specifically beta-lactamase genes, in Rahnella sp. The 

data from this study is helpful in understanding the genetic similarities and differences 

between bacteria species housing the same plasmid with resistance genes. Limitations 

when conducting the present study relate to the low pathogenicity of R. aquatilis. 

Antibiotic resistance mechanisms in Rahnella sp. specifically are not of clinical 

significance.7 however, the class A beta-lactamase gene focused on for this study is 

within a plasmid capable of transmission to more pathogenic species of bacteria. 

Studying the mechanisms in less pathogenic organisms, such as Rahnella sp., as 

laboratory models can be helpful in gaining knowledge about more pathogenic species 

and can aid in the fight against antibiotic resistance.  
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