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ABSTRACT: In the quest for a cost-effective level of theory
able to describe a large portion of the ground and excited
potential energy surfaces of large chromophores, promising
approaches are rooted in various approximations to the exact
density functional theory (DFT). In the present work, we
investigate how generalized Kohn−Sham DFT (GKS-DFT),
time-dependent DFT (TDDFT), and spin-restricted ensem-
ble-DFT (REKS) methods perform along three important
paths characterizing a model retinal chromophore (the penta-
2,4-dieniminium cation) in a region of near-degeneracy (close
to a conical intersection) with respect to reference high-level multiconfigurational wave function methods. If GKS-DFT correctly
describes the closed-shell charge transfer state, only TDDFT and REKS approaches give access to the open-shell diradical, one
which sometimes corresponds to the electronic ground state. It is demonstrated that the main drawback of the usual DFT-based
methods lies in the absence of interactions between the charge transfer and the diradicaloid configurations. Hence, we test a new
computational scheme based on the State-averaged REKS (SA-REKS) approach, which explicitly includes these interactions into
account. The State-Interaction SA-REKS (SI-SA-REKS) method significantly improves on the REKS and the SA-REKS results
for the target system. The similarities and differences between DFT and wave function-based approaches are analyzed according
to (1) the active space dimensions of the wave function-based methods and (2) the relative electronegativities of the allyl and
protonated Schiff base moieties.

1. INTRODUCTION

The penta-2,4-dieniminium cation (PSB3), a protonated imine
featuring three conjugated double bonds (see Scheme 1), is
currently one of the most popular computational models of the
retinal chromophore found in visual pigments. Its electronic
structure has been recently studied using various levels of ab initio
multireference theory.1 In the vicinity of a conical intersection
(CI), which is characterized by a ca. 90°-twisted C2−C3 bond, the
electronic structure of PSB3 has been analyzed along a loop

spanned by the branching space vectors. It was found that a
covalent/diradicaloid electronic structure (ΨDIR), which leads to
the homolytic dissociation of PSB3 central double bond,
characterizes a large region on the ground state (S0) potential
energy surface (PES). The rest of the S0 PES, the extent of which
depends on the selected level of theory, is characterized by a
shifted positive charge from the Schiff base (N+−C1−C2) to the
allyl fragment (C3−C4−C5) and a wave function (ΨCT) with a
dominating charge transfer character similar to the first singlet
excited electronic state in the Franck−Condon region. Each of
the two regions features a unique transition state connecting the
2-cis and 2-trans conformations of PSB3, which will be denoted
TSCT and TSDIR.
The correct description of the PES around the CI requires an

accurate and balanced account of dynamic and nondynamic
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correlation effects. Recently, a series of multiconfigurational wave
function methods ranging from the complete active space self-
consistent field (CASSCF) method to post-CASSCF correlated
methods have been used to calculate the S0 electronic structure
along three pathways constructed on the PES from CASSCF
calculations.1 The first pathway connects TSDIR and TSCT and
intercepts the CI. This pathway is characterized by varying the
bond length alternation (BLA) coordinate, which is defined as
the difference between the average length of formally single
bonds and the average length of formally double bonds in PSB3.1

This coordinate approximately follows the unscaled gradient
difference vector.1 The remaining two pathways are constructed
as the minimum energy pathways (MEPs) connecting the
reactant (2-cis-PSB3) to the product (2-trans-PSB3), however,
intercepting either TSDIR (MEPDIR) or TSCT (MEPCT). These
MEPs correspond to a movement that twists the central C2−C3
double bond and, near the 90° of twist, are aligned with the
direction of the interstate coupling vector.1

The results of multireference calculations carried out by
Gozem et al.1 show that the inclusion of the dynamic electron
correlation can radically change the topology of the region
surrounding the CI, thus offering a good test for other correlated
methods. More recently, a series of the spin-flip (SF) equations-
of-motion (EOM) coupled-cluster methods have been applied to
study the ground and the excited state PES profiles along the
three MEPs in the PSB3 retinal model.2 In particular, it was
found that the SF-EOM-CCSD(dT) method based on the spin-
restricted open-shell Hartree−Fock (ROHF) triplet reference
state provides an excellent agreement with the MRCISD+Q
results. The spin-flip excitations included into the SF-EOM-
CCSD approach account for the multireference character of the
ground and excited states of the PSB3model. However, the steep
scaling of the computational time with the system size precludes
the application of the EOM-CCSD(dT) approach to large
molecular systems.
In the present paper, we evaluate the performance of a series of

computationally efficient electronic structure methods rooted in
density functional theory (DFT) in the calculation of the PSB3
PESs near the CI region obtained at the CASSCF level of theory.
DFT is a formally exact theory, although in practice one has to
approximate the unknown exchange-correlation (XC) functional
which accounts for all the many-body effects. Due to their low
computational cost, these methods can be easily applied to the
full retinal molecule or used for on-the-fly quantum chemical
calculations in molecular dynamics simulations.
In the following, we report the results obtained using DFT-

based computational schemes in the calculation of the three
pathways investigated in ref 1 which correspond to the strongly
correlated region on the PSB3 ground and excited state PESs and
the vicinity of the CI. Note that we are not concerned with the
determination of real conical intersections but mainly with the
quality of the description of the electron correlation captured by
the selected methods. The corresponding energy profiles and
parameters of the electronic structure are compared to the
CASSCF and MRCISD+Q ones, the latter being the most
accurate theoretical method applied for the PSB3 retinal model.

2. THEORETICAL REMARKS
The success of Kohn−ShamDFT (KS-DFT)3 is attributed to the
inclusion of electron correlation at a low computational cost via
the use of approximations to the exact XC functional. The
existing approximations to the XC functional of KS-DFT focus
primarily on the dynamic electron correlation, such as that

encountered in rare gas atoms.4 Although the current semilocal
XC functionals also provide for a certain nonspecific account of
nondynamic correlation,5 the treatment of strongly correlated
electronic systems still remains problematic and may require to
go beyond the conventional paradigm of KS-DFT.
KS-DFT is based on the notion that the ground state density of

a real many-electron system can be uniquely mapped on the
ground state density of a fictitious system of noninteracting
particles moving in a suitably modified external potential.3 The
possibility to represent the target density by a single KS
determinant built from the lowest eigenfunctions of a non-
interacting system is known as the pure-state v-representability
(PS-VR). CI regions are an example where PS-VR typically fails
and therefore are problematic for most widely used DFT
methods based on the KS approach. Indeed, topological
nonanalyticities in the density have been shown to occur in the
CI seam by R. Baer.6 Twisting about the double bond in ethene
clearly illustrates the PS-VR problem.7 When the molecule is 90°
twisted, there is a degeneracy of the π and π* molecular orbitals,
and the single-reference KS Ansatz breaks down. The same
occurs with a twisted PSB3 in the region of the PES close to the
CI. The choice of an approximate functional can modulate where
the orbital degeneracy occurs; however, irrespective of the
density functional employed, it is not possible to correctly
describe the ground state PES at all points. Another consequence
of the lack of genuine multireference character in KS-DFT is that
the ground and the excited states do not interact. Consequently,
the degeneracy obtained using KS-DFT is lifted along one degree
of freedom only, resulting in an intersection space of wrong
dimensionality (3N − 7 instead of 3N − 8), as in the case of
ethene7 and similarly observed in the present study.
At variance with ethene, PSB3 comprises two different

moieties with respect to the central chemical bond, a protonated
Schiff base and an allyl group featuring different electro-
negativities, which break the exact degeneracy of the π and π*
orbitals near the S0/S1 CI space. In this region, the minimal active
space comprises two electrons in two orbitals (Figure 1),
denoted by φN for the Schiff base part and φC (localized on the
allyl part). Two singlet electronic configurations are important to
represent the crossing between the states. The ΦDIR =
2−1/2(|φCφ̅N⟩ + |φNφ̅C⟩) configuration shows a diradicaloid

Figure 1. Kohn−Sham frontier orbitals (B3LYP/6-31G(d)).

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4003465 | J. Chem. Theory Comput. 2013, 9, 3917−39323918



character and, at the multireference wave function theory level,
represents the major contribution to theΨDIR wave function near
the CI seam. The ΦCT = |φNφ̅N⟩ configuration corresponds to a
(positive) charge transfer from the N-side to the C-side (with
respect to the Franck−Condon ground state charge distribution)
and is the leading configuration in the ΨCT wave function. Near
the CI which is near ca. 90° twisted about the C2−C3 double
bond, S0 changes its character fromΦDIR toΦCT (or back) when
moving along the BLA coordinate.
KS-DFT can only describe ΦCT, since ΦDIR is not a single-

reference state. Thus, at the geometries for which the ground
state is dominated by ΦDIR, KS-DFT yields the density of the
excited CT state. In this case, the application of linear-response
time-dependent DFT (hereafter simply denoted TDDFT) may
result in an imaginary excitation energy to the lower energy
diradicaloid state. It is worth noting that this imaginary excitation
energy has a different origin than the one that arises from an
(triplet or near singlet) instability of the restricted KS-DFT
solution whenever there exists a more stable (spin) broken-
symmetry solution.8,9 In the latter case, the use of the Tamm−
Dancoff approximation (TDA) largely remedies the instability;
however, it has little effect in the former case as it will be seen in
the present study.
Pure, hybrid, or range-separated DFT functionals have already

been used to study both ground and excited states of PSB3 or
other models of retinal. Tajkhorshid and Suhai studied the
environment effects on the structure of several retinal models
using the BLYP functional.10,11 In the context of plane-wave
molecular dynamics simulations of retinal inside the rhodopsin
protein, Röthlisberger and co-workers have employed the
restricted open-shell Kohn−Sham (ROKS) method.12 However,
the pure GGA functional used in these works does not correctly
describe the parts of the ground and excited state PESs with
which we are interested in, in the present study (see below).
Frauenheim, Elstner, and co-workers ran molecular dynamics
simulations of large models of the retinal+protein system using
the tight-binding DFT method.13−15 The latter, however, is
based on the single-reference KS-DFT description and cannot be
used for strongly correlated areas of the PSB3 PES.
In 2002, Torii performed geometry optimization and

vibrational analysis of retinal using the B3LYP hybrid func-
tional.16 Nakajima et al. investigated the protonation states of
bacteriorhodopsin using an integrated linear-scaling scheme in
which retinal and its close surroundings are modeled by means of
the B3LYP calculations.17 Gascon and Batista performed hybrid
QM/MM calculations using the B3LYP and TD-B3LYP
approaches to determine how the energy is stored when retinal
absorbs a photon.18 Touw et al.19 complement the previous
studies by molecular dynamics and static calculations using either
the BP86 pure functional or the B3LYP hybrid functional. At the
same time, Wanko et al.20 and Fantacci et al.21 simultaneously
published the first critical analyzes of the capability of TDDFT to
describe excited states of retinal models (including PSB3). While
vertical excitation energies from the TD-BP86 and TD-B3LYP
calculations are sufficiently accurate, as compared to experiment
or high level ab initio results, the energy gradient for the Franck−
Condon geometry points in the wrong direction, enlarging the
bond length alternation. The same observations have been made
by Aquino et al.22

Despite the warnings issued in these articles, the PESs of
retinal models were still investigated by TDDFT using the same
functionals. Send and Sundholm ran TDDFT calculations to
study the full retinal molecule, again with the B3LYP

functional,23,24 while others restrict their use to ground state
geometries and excitation energies.25 It is noteworthy that a
qualitative agreement is often found with the energies and
excited state structures computed at the ab initio CC2 level.23,24

Because the description of charge-transfer excited states is known
to be problematic for standard hybrid functionals, new range-
separated functionals were devised and applied to retinal models.
In 2006, Hirao and co-workers proposed long-range corrections
to several DFT pure or hybrid functionals.26 First excited state
geometries and excitation energies obtained with the LC-BOP
functional were closer to CASPT2 ones than those obtained with
the usual B3LYP functional. In the same spirit, other authors
have used the CAM-B3LYP functional and found a significant
improvement for both ground and excited state properties of
retinal.27,28 Recently, Valsson and Filippi have suggested that
M06-2X would give better ground state structures.29,30

In the present study, we test the ability of different flavors of
DFT functionals to deal with the PSB3 electronic structure
around the CI seam. This CI is in a region where the
noninteracting v-representability of KS-DFT breaks down.
When using pure density functionals, this manifests itself in the
lack of convergence of the self-consistent KS procedure due to
the vanishingHOMO−LUMOgap. The inclusion of a portion of
the Hartree−Fock exchange in hybrid, range-separated hybrid
and double hybrid functionals may improve the SCF
convergence away from the CI region; however, the convergence
problems still persist near the CI seam. We would like to make
the reader aware that the use of some portion of Hartree−Fock
exchange is possible only by generalizing the classic Kohn−Sham
equations to accept nonlocal potentials.31 For the sake of
readability, we keep hereafter the KS acronym. The selection of
functionals employed in the present work comprises two hybrid
functionals (B3LYP, BH&HLYP), a hybrid meta-GGA func-
tional (M06-2X), a range-separated hybrid (CAM-B3LYP), and
double-hybrid (mPW2PLYP) functional, which span four rungs
of the Jacob’s ladder of DFT.32

Theoretical approaches beyond KS-DFT accounting for static
correlation more accurately can potentially improve the quality
of description of the PSB3 electronic structure. Spin-flip TDDFT
(SF-TDDFT)33 is one of such methods. It relies on a triplet
reference state, in most cases correctly represented by the
standard KS-DFT, and uses the spin-flip Ansatz to reach singlet
ground and excited states. The main advantage of SF-TDDFT is
that it may accommodate some multireference character of the
singlet ground electronic state via inclusion of the singlet doubly
excited electronic configuration. Unfortunately, all our attempts
to apply SF-TDDFT to PSB3 have been unsuccessful, mainly due
to the spin-contamination that neither a restricted description of
the reference triplet state nor the use of a noncollinear XC kernel
helped to overcome. Even though spin-correction techniques
may be applied to correct a posteriori this spin-contamination
problem as shown by Xu et al.,34 we focus on alternative
approaches in the present study.
Ensemble DFT represents a promising route to ameliorate the

shortcomings of the conventional KS-DFT for the description of
nondynamic electron correlation, where going beyond the PS-
VR restriction might be required. It was theoretically
demonstrated already in the early days of DFT that some
physical densities cannot be obtained by a noninteracting pure
state potential. In the works of Lieb,35 H. Englisch and R.
Englisch,36 and Kohn and co-workers,37 it has been demon-
strated that many non-PS-VR physical densities are non-
interacting ensemble v-representable (E-VR). E-VR implies
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that the density is represented by a weighted sum (ensemble) of
densities of several KS determinants, which results in the
fractional occupation numbers (FONs) of the KS orbitals. The
works of Baerends and co-workers38 and Morrison39 have
demonstrated that ensemble representation of the density is not
merely a theoretical curiosity but may be practically applied to
DFT. Using the first principles approach based on the search for
a KS potential for the known exact density (density from high-
level ab initio calculations), it has been shown that one needs to
switch to the ensemble representation for the density of a
noninteracting reference system in the cases where the strong
nondynamic correlation is present in the interacting (physical)
limit.
The early attempts to employ the ensemble representation

have led to the realization that density functionals of KS-DFT
have to be specifically adapted to accommodate the ensemble
densities, or equivalently, the FONs of KS orbitals.40 A successful
construction of a generally applicable representation for the XC
functional in ensemble DFT has been achieved in the spin-
restricted ensemble-referenced KS (REKS) method.41 The
REKS method is based on a rigorous statement by Lieb35 that,
for any physical density represented by an ensemble of KS states,
the energy can be represented by an ensemble of the energies of
the individual states using the same weighting factors. The
derivation of ensemble representations for the density and the
energy, and the derivation of relationships between the ensemble
weighting factors and the FONs of the REKS orbitals, was guided
by the analysis of a number of model multireference problems at
the wave function theory level.41−43 In this way, the REKS
method inherits the nomenclature developed for the multi-
reference wave function methods. Thus, in the REKS(2,2) (two
active electrons in two active space orbitals) method, the
occupied KS orbitals are split in two subsets, a subset of the
doubly occupied core orbitals and a subset of two fractionally
occupied active space orbitals, the FONs of which are
variationally optimized together with the core and active REKS
orbitals.41 While the REKS method is capable of accurately
describing the strongly correlated ground states of molecules, the
state-averaged REKS (SA-REKS) method44 gives access to the
lowest singlet excited state of a molecular system typified by the
strong nondynamic electron correlation in the ground state, such
as ethene near 90° of twist or PSB3 near the CI. In this regard, the
REKS and the SA-REKS methods are very well suited for the
description of the states involved in the photoisomerization of
PSB3 (and retinal).

3. COMPUTATIONAL DETAILS

Details about optimization of the geometries used in this study
are given in ref 1. In short, they have been obtained at CASSCF
level of theory with two roots equally averaged (denoted SA-
CAS(6,6) in the following), whose active space includes 6
electrons in 6 π-type orbitals. The 6-31G(d) basis set was used in
the previous studies1,2 and is also used in the present one. SA-
CAS(6,6) and MRCISD+Q energies are taken from ref 1, while
SF-EOMCC ones are obtained from ref 2. For analysis purposes,
we also carried out the same kind of calculations based on a
smaller active space (2 electrons in 2 orbitals). The
corresponding calculations have been performed using the
Molcas 7 package.45

TDDFT Calculations. The TDDFT equations are solved
within the linear response approach. The full response TDDFT
equations are given by

ω
− * − *

=
⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
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A B
B A

X
Y

X
Y (1)

where the matrices A and B are defined as

δ δ ε ε= − + | |A ia f bj( ) ( )ai bj ab ij a i, Hxc (2)

= | |B ia f jb( )ai bj, Hxc (3)

The indexes a,b,... and i, j,... indicate virtual and occupied spin−
orbital indexes respectively, the εp are KS orbital energies, and
f Hxc is the Hartree-exchange-correlation kernel in the adiabatic
approximation,

δ ρ
δρ δρ

′ =
| − ′|

+
′

f r r
r r

E
r r

( , )
1 [ ]

( ) ( )Hxc

2
xc

(4)

The TDA to the full response equations consists in setting B = 0,
thus solving the TDDFT(TDA) equation

ω=AX X (5)

with the same definition of the A as for the full response
equations. The TDA approximation decouples the ground- and
the excited-states and can improve the results when the ground-
state is not well described. The TDA approximation is shown to
improve both singlet→triplet and singlet→singlet excitation
energies.9

The full response TDDFT equations have been performed
with Gaussian09.46 All TDDFT(TDA) calculations have been
carried out with GAMESS-US,47,48 apart from calculations with
mPW2PLYP functionals, which have employed the Orca
package.49

REKS and SA-REKS Calculations. The working equations
of the REKS method have been derived on the basis of rigorous
theoretical results concerning representation of the exact
physical density and the energy functional via ensembles
(weighted sums) of several PS-VR KS states (cf. Theorems 4.2
and 4.3 and eqs (4.5) and (4.7) in refs 35 and 38). Thus, the
energy and the density of a strongly correlated electronic state are
represented in the REKS method by weighted sums of the
energies and densities of several electronic configurations
represented by the respective KS determinants built on the
same set of the KS orbitals.41,43

Using this representation, the REKS(2,2) total density and
energy are given by eqs 6 and 7,

∑ρ φ φ φ= | | + | | + | |r r n r n r( ) 2 ( ) ( ) ( )
k

k a a b b
REKS(2,2)

core
2 2 2
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φφ φ φ
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E
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E
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E
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E
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[... ]

2
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( , ) [... ]
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2
[... ]

( , )
2

[... ]

a
a a

b
b b

a b a b
a b

a b

a b
a b

REKS(2,2)

(7)

where φk are the doubly occupied core orbitals, φa and φb are the
fractionally occupied active orbitals with the occupation numbers
na and nb, respectively, f(na,nb) is a function of the occupation
numbers, and the unbarred and barred orbitals are occupied with
spin-up and spin-down electrons, respectively.
The REKS density (eq 6) describes the ensemble density

associated with the first two terms on the right-hand side of eq 7
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whereas the KS densities of the last three terms in eq 7 sum up to
zero. Although the latter three KS states yield zero contribution
to the density, their contribution to the energy is nonvanishing
and it amounts to a DFT analogue of the exchange integral
between the fractionally occupied (active) orbitals. The
occurrence of such a term in the energy expression can be
illustrated by the following argument (see ref 41 for more
details). At a completely noninteracting KS limit, the KS density
with two fractionally occupied KS orbitals can be described by an
ensemble of two KS single determinant configurations
represented by the first two terms on the right-hand side of eq
7. Let us gradually switch on the electron−electron interaction
along the adiabatic connection path. Provided that the
interaction remains infinitesimally weak it should not affect the
wave functions and the energies of all but two electrons, namely
the two electrons in the fractionally occupied (and therefore
degenerate) KS orbitals.38,50 For such a case, the application of
quasi-degenerate perturbation theory to obtain the total energy
of the system leads to eq 7, in which f(na,nb) = (na,nb)

1/2.
The actual algebraic form of the function f(na,nb) is obtained

from interpolating between the limits of an ensemble KS state
(see above) and a single-reference KS state.43 This is done to
eliminate the double counting of the nondynamic electron
correlation and to guarantee that, for a state which is correctly
described by a single KS determinant, the REKS method yields
the same energy as the standard single-reference KS-DFT.41,43

Details of the derivation can be found in previous works on the
REKS methodology, see refs 41 and 43.
The REKS(2,2) energy is minimized with respect to the

orbitals and the fractional occupation numbers of the active
orbitals under the constraint of orbital orthonormality and the
constraint for active orbital occupation numbers na + nb = 2.41

The orbital orthogonality constraint is imposed by the use of the
method of Lagrange multipliers, which leads to the well-known
general open-shell self-consistent field equations.51 Note that,
because the REKS energy functional is explicitly dependent on
the fractional occupation numbers of the active orbitals which
preserve the correct number of particles,41 there is no need to
impose the occupation number constraint and the REKS
functional is optimized with respect to na and nb directly without
resorting to the use of Lagrange multipliers. However, as the
REKS energy (eq 7) is stationary with respect to the fractional
occupation numbers of the active orbitals, the respective
Lagrange multipliers, if they were obtained, would become
strictly degenerate, see ref 50 for more detail. Further details of
the REKS methodology can be found in refs 41 and 43. The
outlined REKS method can be used in connection with any
approximate local or semilocal density functional.
The REKS(2,2) method describes a diradicaloid state, for

which the noninteracting KS reference wave function is given by

φφ φ φΦ = | ̅⟩ − | ̅ ⟩
n n
2

...
2

...a
a a

b
b b0 (8)

The orbitals φa and φb can be localized on specific fragments in
the molecule, such as the φC and φN orbitals in Figure 1, or
delocalized over the two fragments as φa ≈ φC + φN and φb ≈ φC
− φN.

52 In the space of two active orbitals φa and φb, excitation of
a single electron from this state leads to an open-shell singlet
(OSS) state:

φφ φ φΦ = | ̅ ⟩ + | ̅⟩
1
2

...
1
2

...a b b a1 (9)

which represents the lowest singlet excited state of a biradical.52

In the localized representation of the active orbitals, that is φa =
φC and φb = φN, the latter state has a predominantly covalent
character, whereas the state described by eq 8 is largely ionic.
Note that the localized and delocalized representation of the
active orbitals in a diradical are complementary.52

The energies of the two states, Φ0 and Φ1, can be obtained
with the use of the SA-REKSmethod, in which a weighted sum of
the energies of these states is minimized with respect to the KS
orbitals and, for the Φ0 state, their fractional occupation
numbers.44 In the SA-REKS energy functional,

= + + =‐E C E C E C C, 1SA REKS
0 0

REKS(2,2)
1 1

ROKS
0 1

(10)

the ground state energy is calculated using the REKS(2,2)
method, and the OSS excited state energy is calculated using the
ROKS method.44,53 Typically, equal weighting factors C0 and C1
are chosen in practical calculations.
The OSS state (eq 9) represents the lowest excited state of a

homopolar biradical,52 such as the dissociating H2 molecule or
ethene at 90° of twist. For a heteropolar biradical, such as PSB3
near the CI, the two states, Φ0 and Φ1, can mix thus leading to
states with partial covalent and partial ionic character.52,54Within
the SA-REKS formalism, this mixing can be described by a simple
2× 2 secular problem in the space of the two states,Φ0 andΦ1.

55

The diagonal elements of the Hamiltonian matrix are given by
E0
REKS(2,2) and E1

ROKS, calculated using the SA-REKS orbitals, and
the off-diagonal element is given by

φ φ φ φ= ⟨ | ̂ | ⟩ − ⟨ | ̂ | ⟩

= −

H n n F n n F

n n W( )

a a b a a b b a b b

a b ab

12

(11)

which is obtained by the application of Slater−Condon rules and
the variational condition for the REKS orbitals.41,51,53 In eq 11, F̂a
and F̂b are the Fock operators for the orbitals φa and φb,
respectively, and Wab is the off-diagonal Lagrange multiplier for
the open-shell orbitals φa and φb. Provided that the equal
weighting factors are chosen in SA-REKS (eq 10), the state-
averaged energy functional remains unchanged upon the
application of the described procedure and the SA-REKS orbitals
do not need to be reoptimized. Although the correction to the
E0
REKS(2,2) and E1

ROKS energies is sufficiently small, the outlined
procedure yields a more realistic description of the ground and
excited states, especially when the excitation energy is very small,
such as in PSB3 near the CI. In the following, this approach will
be denoted as the state-interaction SA-REKS (SI-SA-REKS), for
brevity.
The REKS(2,2) and SA-REKS methods are implemented in

the COLOGNE2012 program,56 which was used in the
calculations. The analytic energy gradient is available for the
REKS(2,2) method; however, it is not yet implemented for the
individual states in the SA-REKS method. This implies that the
relaxed density matrix is not yet available for the ground and the
excited states in the SA-REKS approach and the electron density
distribution can be obtained using the state-averaged orbitals
only.

4. RESULTS
4.1. Energy Gaps and Bond Length Alternation

Coordinate. The BLA path intercepts three important
structures determined at the SA-CAS(6,6) level of theory
(TSDIR, TSCT, and the CI) whose relative stabilities govern the
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thermal or photochemical isomerization of PSB3. The accuracy
of the approximate methods selected in this work can be first
tested against reference levels of theory (SA-CAS(6,6), MRCISD
+Q, and SF-EOMCCSD(dT)/ROHF) for which the S0 → S1
energy gaps, ΔE, are computed at particular geometries, namely
the cis minimum and both TSCT and TSDIR. The corresponding
values are reported in Table 1. As it is well-known for retinal
models, the addition of dynamic electron correlation to CASSCF
dramatically affects ΔE.

The TDDFT ΔE values (obtained at the SA-CAS(6,6) S0
ground state cis geometry) are rather insensitive to the choice of a
functional. However, the use of the TDA systematically increases
the energy gap at 2-cis-PSB3, reducing its agreement with

MRCISD+Q. Interestingly, the two electrons in two orbitals SA-
REKS approach, using the BH&HLYP functional or even using
the Hartree−Fock functional, gives accurate ΔE values, very
close to the reference.
Because the restricted KS approach is only able to find the

closed shell ΦCT solution, some of the TDDFT excitation
energies are found to be imaginary (or negative for TDA), thus
indicating that a triplet instability is present and the true ground
state has a diradicaloid character as given by the ΦDIR
configuration. Such imaginary excitation energies are expected
near the TSDIR geometry. The fact that the BH&HLYP and
BH&HLYP(TDA) do not show such imaginary excitations can
be the result of the absence of TSDIR on the S0 potential energy
surface due to the crossing topology becoming sloped rather than
peaked. We recall that the geometries of the corresponding
pathways have not been reoptimized. More seriously, B3LYP and
B3LYP(TDA) are the only cases that result in a ΦDIR ground
state at both the TSCT and TSDIR geometries. This is due to a
strong instability of the ground state, which would be partially
resolved by using an unrestricted Kohn−Sham approach and the
TDA approximation.8 However, this approach is unreliable due
to the strong spin contamination of the excited states. These
results, along with the aforementioned gradient problem in the
Franck−Condon region,20 definitively exclude B3LYP TDDFT
as a suitable method for photoisomerization studies of PSB3 and
similar molecular systems. For these reasons, we exclude this
functional in the rest of this work.
Examination of the SA-REKS orbital occupation numbers

indicates a closed shell solution for all the three considered S0
geometries. At the TSDIR geometry, a small positive energy gap is
found (5.8 kcal/mol), similar to the TDDFT result obtained
using the same BH&HLYP functional. Accordingly, the choice of
the functional has a large impact on the relative stability of the
ΦDIR and ΦCT states and, consequently, on their crossing
topologies.
Figure 2 displays the energy profiles obtained along the BLA

path at the TDDFT level of theory, together with the reference
profiles obtained previously at the SA-CAS(6,6) and MRCISD
+Q levels of theory. For all the selected functionals, the ΦCT

Table 1. S0 → S1 Energy Gaps (ΔE, in kcal/mol) at TSCT,
TSDIR, and cis PSB3a

method ΔE at TSCT ΔE at TSDIR ΔE at 2-cis-PSB3

References
MRCISD+Q 10.2 0.6 101.4
SF-EOMCCSD(dT)/ROHF 11.1 0.6 102.1
SA-CAS(6,6) 4.5 7.4 110.3

TDDFT
B3LYP −8.1 −3.6 98.8
B3LYP(TDA) −7.9 −14.7 109.2
BH&HLYP 13.0 3.6 103.7
BH&HLYP(TDA) 13.3 3.9 112.1
M06-2X 5.2 −3.3 100.5
M06-2X(TDA) 5.7 −2.7 109.4
CAM-B3LYP 6.6 −1.9 101.2
CAM-B3LYP(TDA) 6.8 −1.3 110.0
mPW2PLYP(TDA) 3.1 −5.1 103.6

SA-REKS
HF 14.8 2.5 105.1
BH&HLYP 15.8 5.8 99.7
aNegative values indicate either an imaginary excitation energy or a
negative one when TDA is used. They correspond to the situation
where ΦDIR becomes more stable than ΦCT (see text).

Figure 2. S0 and S1 energy profiles along the BLA coordinate (in Å) at different levels of theory. The energy values (in kcal/mol) are given relatively to
the cis conformation. Crossing points are indicated with filled circles. The positions of TSCT, TSDIR, and the conical intersection (obtained at the SA-
CAS(6,6) level of theory) are also reported. Energy profiles beyond the 0.032 coordinate value are extrapolated by a fourth-order polynomial fitting
procedure.
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profiles are smooth and continuous. Even in the region of near-
degeneracy, the choice of the functional does not seem to be
significant if it features a φN − φC energy gap sufficiently large to
provide for a good SCF convergence forΦCT. On the other hand,
the calculated ΦDIR profiles sometimes show discontinuities in
the region between BLA values of 0.0 and 0.02. Note that
BH&HLYP does not suffer from this erratic behavior; however,
the corresponding ΦCT and ΦDIR profiles never cross in the
considered BLA region. Without TDA, it can be expected that a
similar erratic behavior would occur near the 0.040 BLA value.
This erratic behavior of full TDDFT, already shown by Xu et al,34

was attributed to a triplet instability which is symptomatic of a
lower energy broken-symmetry ground state density. As
explained above, the inability of KS-DFT to obtain the ΦDIR

solution is also a source of instability, as demonstrated by the
imaginary excitations to the trueΦDIR ground state from theΦCT

excited state. The same behavior was already observed in the case
of the butadiene conical intersection by Martinez and co-
workers.7 This instability cannot be simply cured by applying the
TDA.
The use of TDA seems to be mandatory in order to obtain

well-defined continuous curves.34 Using this approximation, the
ΦCT andΦDIR energy profiles cross using CAM-B3LYP or M06-
2X, between the BLA values of 0.01 and 0.02. While
TDDFT(TDA) stabilizes the BH&HLYP ΦDIR state, it still
does not cross ΦCT, the extrapolated crossing occurring at BLA
slightly longer than 0.04. Nevertheless, the BH&HLYP ΦDIR

profile is quantitatively similar to the referenceMRCISD+Q one.
On the other hand, the use of the double-hybrid functional
mPW2PLYP (only available with TDA) shows a crossing
topology very similar to the SA-CAS(6,6) one while the crossing
point energy is lower by 13 kcal/mol. Removing the perturbative
part from the CIS(D) procedure57 (i.e., the procedure that is
used for obtaining the excitation energies in connection with the
double hybrid density functionals58) does not change the
crossing point coordinate, but only shifts its energy relatively
to the ground state minimum (Figure S1, see the Supporting
Information).

REKS and SA-REKS energy profiles, using either the Hartree−
Fock or BH&HLYP functionals, are shown in Figure 3, together
with the SA-CAS(6,6) and MRCISD+Q ones. In order to
understand the effect of varying orbital occupation numbers, we
first started from simple restricted Hartree−Fock (RHF)
calculation of the ground state, ΦCT. As expected, allowing the
orbital occupation numbers to vary with REKS has a minor effect
on theΦCT energy profile; however, this can be used to converge
the ΦDIR state if φC and φN orbitals are filled with one electron
each at the beginning of the SCF cycles. Accordingly, a crossing
between ΦCT and ΦDIR can be identified at BLA coordinate
∼0.023. However, this procedure has the major disadvantage to
require two separate calculations, with different initial guesses for
the occupation numbers. Furthermore, the two states obtained in
separate calculations may not represent the ground and the
excited state of the same system, because the KS orbitals of the
one state are not orthogonal with respect to the orbitals of the
other state. Thus, an orthogonalization of the obtained states is
required,59 and the direct use of the energies obtained in separate
sets of calculations, as was done in ref 34, cannot be generally
recommended in the regions of the PES where electronic state
degeneracies are important. This can be remedied using the SA-
REKS method in which both ΦCT and ΦDIR states are obtained
simultaneously and which is free of the aforementioned
orthogonality issue. While the REKS and SA-REKS ΦCT energy
profiles are virtually the same, the SA-REKSΦDIR state is shifted
by 2 to 5 kcal/mol with respect to ΦCT. This modified energy
difference shifts the crossing point to the BLA value ∼0.033.
Using the BH&HLYP instead of HF, that is, reducing the

amount of Hartree−Fock exchange to 50% and adding the LYP
correlation functional, modifies only the relative energies of the
ΦCT profiles, the latter remaining parallel along the BLA path.
The situation is somewhat different for theΦDIR energy profiles.
When carrying out separate REKS calculations for the ΦCT and
ΦDIR states, the calculation for the ΦDIR state could not be
converged for the values of the BLA coordinate below −0.005,
because, in this region, the ΦDIR state becomes an excited state
and the energy gap betweenΦCT andΦDIR is larger than 10 kcal/
mol. SA-REKS helps to overcome this issue; however, both states

Figure 3. REKS and SA-REKS S0 and S1 energy profiles along the BLA coordinate (in Å). The energy values (in kcal/mol) are given relatively to the cis
conformation. Crossing points are indicated with filled circles. The positions of TSCT, TSDIR, and the conical intersection (obtained at the SA-CAS(6,6)
level of theory) are also reported.
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are destabilized by ca. 7 kcal/mol due to the orbital optimization
for an averaged state. Because this energy shifting is rather similar
for both states, their extrapolated intersections both occur
between the BLA values of 0.04 and 0.05. Finally, note a good
agreement between the REKS and MRCISD+Q ΦDIR energy
profiles, similar to what has been observed using BH&HLYP-
(TDA), indicating that this functional would be suitable in the
modeling of PSB3 photochemistry.
4.2. MEPCT. MEPCT has been constructed to investigate the

profile of the ground state PES of PSB3 in the forward and
backward directions of the pathway connecting the TSCT
geometry with the trans and cis conformations, respectively.
Figure 4 shows the same region of PES obtained using DFT and
TDDFT methods, as well as the reference SA-CAS(6,6) and
MRCISD+Q data. The full response TDDFT as well as the TDA
approaches are considered when available.
Note that, for all the density functionals employed, the

TDDFT excitation energies are positive, indicating that the
closed shell ΦCT configuration remains the ground state along
the full length of the path. Furthermore, the energy profiles of the
S0 state obtained in the DFT calculations are almost parallel to
the MRCISD+Q reference profile, and at the TSCT geometry,

they lie ca. 45 kcal/mol above the energy of the cis conformation.
The situation is different for the excited state, that is, the state
exhibiting the largest multireference character. All the func-
tionals, except the double-hybrid mPW2PLYP(TDA), feature a
pronounced cusp at the TSCT geometry, in a visible contradiction
with the smooth SA-CAS(6,6) and MRCISD+Q curves. The
presence of the cusp suggests a wrong description of the
interaction between the ΦDIR and ΦCT configurations. While
M06-2X and CAM-B3LYP give similar S1 profiles, resulting in an
energy gap of only 5 kcal/mol at TSCT close to the SA-CAS(6,6)
one, the BH&HLYPΔE is significantly larger (13 kcal/mol), in a
better agreement with MRCISD+Q. Using TDDFT(TDA), the
ΦDIR profiles near the TSCT geometry are only slightly affected.
However, the TDA effect becomes more pronounced when the
PSB3 geometry differs significantly from TSCT, in relation with
the increasing delocalization of the φN and φC orbitals. Finally,
the use of the double-hybrid functional has a dramatic effect on
the S1 profile. The energy gap at TSCT is the smallest one, only 3
kcal/mol. However, it seems that its slope near TSCT is less
peaked than the ones observed with the other functionals,
indicating that the perturbative addition of double excitations via
the CIS(D) scheme57,58 may be able to recover some amount of

Figure 4. SA-CAS(6,6), MRCISD+Q and DFT/TDDFT S0 and S1 energy profiles (in kcal/mol) along MEPCT.

Figure 5. SA-CAS(6,6), MRCISD+Q, and SA-REKS S0 and S1 energy profiles (in kcal/mol) along MEPCT.
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interaction between the ΦCT and ΦDIR configurations. Never-
theless, note that the energy gap still increases too rapidly along
the MEP coordinate.
The SA-REKS results using the HF and BH&HLYP XC

functionals are shown in Figure 5. As obtained from the analysis
of the φN and φC orbital occupations, the ground electronic state
is dominated by the ΦCT configuration and the excited state is
dominated by the ΦDIR configuration. It is noteworthy that,
without applying the SI-SA-REKS procedure (see section 3), the
SA-REKS S0 and S1 PES profiles do not consistently follow the
reference MRCISD+Q profiles. With the use of both XC
functionals, there is a very shallow energy barrier near the TSCT
geometry on the excited state PES. This can be attributed to the
combined effect of two factors: the use of the geometries
optimized in the CASSCF calculations and a much too restrictive
character of the excited state electronic configuration (pure
diradicaloid state) in the SA-REKS energy functional (eq 10).
Allowing the ground and the excited SA-REKS states to interact
via the SI-SA-REKS procedure considerably improves the shape
of the PES profiles (shown with dashed lines in Figure 5) and
brings them in a close agreement with the reference ones. A tiny
barrier on the order of 0.1 kcal/mol still persists on the SI-SA-
REKS excited state PES profiles.
Comparison of the REKS S0 and S1 PES profiles in Figure 5

with the TDDFT profiles in Figure 4 shows the importance of
the configuration interaction (lacking in TDDFT excited states)
to properly describe the multireference character of the S1 state.
The cusp on the S1 PES near the TSCT geometry produced by the
TDDFT calculations disappears and the SI-SA-REKS profiles are
in a qualitative agreement with the MRCISD+Q ones. The
energy gap at the TSCT geometry obtained in the SI-SA-REKS/
BH&HLYP calculation amounts for 15.8 kcal/mol, in a good
agreement with the MRCISD+Q gap of 10.2 kcal/mol. On the
other hand, the TDDFT gaps range from 3.1 to 13.3 kcal/mol.
Accordingly, the SI-SA-REKS and TDDFT results bracket the
reference value.
Mulliken atomic charges of the allyl moiety (see Figure 6)

obtained from the SA-CAS(6,6) and MRCISD reveal that the
ΦCT electronic configuration is dominant in the ground state

only in the close vicinity of the TSCT geometry.
1 Sharp peaks of

the SA-CAS(6,6) and MRCISD curves shown in Figure 6 reflect
a strong localization of the positive charge on the allyl moiety
near the TSCT geometry. Beyond the IRC values of ±0.05 Å·
amu1/2, the ΦDIR electronic configuration becomes dominant in
the S0 state and the overall charge on the allyl moiety returns to
the values typical for the planar cis conformation. Analysis of the
Mulliken charges obtained in the DFT calculations shows a
considerably reduced localization of the positive charge on the
allyl moiety near the TSCT geometry. This can be attributed to a
well-known tendency of the approximate density functionals to
yield overly delocalized density distribution due to the inherent
electron self-interaction error.60,61 Thus, the magnitude of the
overall charge transfer from the Schiff base to the allyl moiety in
the ground state of PSB3 as obtained in the DFT calculations
does not provide a clear distinction between the regions on the
MEPCT pathway where theΦCT orΦDIR electronic configuration
dominates the S0 state.
The use of the Mulliken charges to analyze the electronic

structure of the S0 and S1 states produced by the SI-SA-REKS
calculations is hampered by the absence of the relaxed density
matrix for the individual states (see section 3). Although the
overall Mulliken charge of the allyl moiety of PSB3 in the S0 state
calculated using the SI-SA-REKS orbitals only (see Figure 6)
follows the same trend as the other DFT methods, a fair
comparison with the MRCISD results cannot be done at the
moment and needs to be postponed until the relaxed density
matrix calculations for the individual states will be implemented
in the SI-SA-REKS method. On the other hand, the orbital
occupation numbers (Figure S2, see the Supporting Informa-
tion) confirm the closed-shell character of the ground state while
the first excited state is characterized by occupation numbers
varying between 1.5 and 1.0 for one active orbital and the
complement to 2.0 for the other one, as expected for a state with a
large multiconfigurational character.

4.3. MEPDIR. Following Gozem et al.,1 the geometries for the
MEPDIR pathway were generated from the ground state thermal
isomerization pathway connecting the cis conformation to the
trans conformation of PSB3 via TSDIR. The SA-CAS(6,6)
calculations predict that, along the whole MEPDIR pathway, the
ground state electronic structure of PSB3 is mainly diradicaloid.
The S1 state has a ΦCT character, and at the TSDIR geometry, it
lies 7.4 kcal/mol above the S0 state. Inclusion of the dynamic
electron correlation in theMRCISD+Qmethod narrows the S1−
S0 gap down to only 0.6 kcal/mol.
The DFT S0 and TDDFT S1 energy profiles along the MEPDIR

pathway are shown in Figure 7. Qualitatively, the S0 and S1
profiles look very similar to the ones obtained in the DFT and
TDDFT calculations for the MEPCT pathway. Irrespective of the
density functional employed, both the ground and the excited
state energy profiles feature cusps near the TSDIR geometry,
which, most likely, is a consequence of the absence of interaction
between theΦDIR andΦCT configurations. All functionals except
BH&HLYP show an imaginary excitation at TSDIR, consistent
with the fact that the correspondingΦCT andΦDIR profiles cross
before the TSDIR geometry along the BLA pathway.
The Mulliken analysis along this path is based on the

corresponding S0 density, even when the ΦDIR configuration
dominates. In all the packages used in this study, there is no
possibility to carry out the Mulliken analysis of the TDDFT-
(TDA) density matrix; however, it may be expected that the
TDDFT(TDA) Mulliken charges follow similar trends to the
TDDFT ones. Hence, in Figure 8, only the full TDDFTMulliken

Figure 6. SA-CAS(6,6), MRCISD, DFT, and SA-REKS (using averaged
orbitals) S0 Mulliken charge transfer (with respect to the cis
conformation reported in parentheses, in %) along MEPCT.
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charges for CAM-B3LYP and M06-2X functionals are reported
for the TSDIR structure. The Mulliken analysis (Figure 8) shows
that the DFT electronic structures for geometries different from
TSDIR are characterized by a strong and slowly varying charge
transfer, at variance with the more pronounced changes obtained
with SA-CAS(6,6) and MRCISD. Again, by construction KS-
DFT gives access to pure ΦCT state, explaining why the charge
transfer character remains high all along the path. However, at
the point of imaginary excitation (TSDIR), the TDDFT state
becomes the lowest, as shown by the sudden change of the S0 allyl
Mulliken charge.
The SA-REKS MEPDIR energy profiles obtained using the

BH&HLYP and HF XC functionals are reported in Figure 9.
Within the range of geometries optimized using the SA-
CAS(6,6) method for the BLA, MEPCT, and MEPDIR pathways,
the ground electronic state predicted by the SA-REKS method is

dominated by the ΦCT electronic structure. The extrapolated
crossing point on the SA-REKS/BH&HLYP BLA curve (see
Figure 3) is shifted beyond the range of geometries optimized
with SA-CAS(6,6), such that, at the TSDIR geometry, the ground
electronic state as predicted by the SA-REKS calculations retains
the ΦCT character. In this respect, the SA-REKS results are
similar to the QD-NEVPT2 results obtained by Gozem et al.1 At
variance with the TDDFT calculations, the shapes of the S0 and
S1 PES profiles obtained in the SI-SA-REKS/BH&HLYP and SI-
SA-REKS/HF calculations are smooth and follow sufficiently
closely the reference MRCISD+Q curves.

4.4. Analysis of Differences between DFT and Wave
FunctionMethods. In the previous sections, we presented data
along three scans for several representative DFTmethods. These
data deserve a further analysis, thanks to a fair comparison
between wave function-based (CASSCF, MRCISD) approaches
and DFT-based ones (KS-DFT, TDDFT, REKS). In the latter, it
is assumed that a major part of the electronic correlation can be
qualified as dynamic, with only the REKS(2,2) approach
including some static correlation thanks to its fractional
occupations of the HOMO and LUMO orbitals.
At variance with DFT results, the multiconfigurational wave

function-based reference data have been obtained using the full
set of π orbitals in the active space. Such an active space in the
CASSCF calculations enables one to take into account not only
the static correlation effects, as represented by the natural orbitals
(φN and φC in ΨDIR) with the occupation numbers significantly
different from 0 or 2, but also an unspecified fraction of the
dynamic correlation effects, as represented by the nearly doubly
occupied or nearly empty natural orbitals. Then, a more
complete account of the dynamic electron correlation is achieved
with the use of theMRCISD+Qmethod. Hence, limiting the size
of the active space to φN and φC orbitals (Figure 1) allows to
capture static correlation effects within a configurational space
more similar to the ones found in REKS(2,2) and TDDFT
approaches. In the following, the corresponding CASSCF and
MRCISD+Q calculations will be denoted as SA-CAS(2,2) and
MRCISD+Q(2,2).
We report the energy profiles along the BLA, MEPCT, and

MEPDIR pathways recomputed using the SA-CAS(2,2) and
MRCISD+Q(2,2) methods and compare them with the SA-
CAS(6,6) and MRCISD+Q ones and also the TDDFT and

Figure 7. SA-CAS(6,6), MRCISD, and DFT/TDDFT S0 and S1 energy profiles (in kcal/mol) along MEPDIR.

Figure 8. SA-CAS(6,6), MRCISD, DFT (or TDDFT), and SA-REKS
(using averaged orbitals) Mulliken charge transfer (with respect to the
cis conformation reported in parentheses, in %) along MEPDIR. Note
that the reported charge change at coordinate 0 has been obtained at the
TDDFT level of theory for BH&HLYP, M06-2X, and CAM-B3LYP
functionals.
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REKS energy profiles, using BH&HLYP only. In these
calculations, the molecular geometries obtained at the SA-
CAS(6,6) level are employed. All the energy profiles and changes
in the PSB3 allyl moiety Mulliken charge are shown in Figure 10.
In the case of the BLA pathway (Figure 10a), the use of a

reduced (2,2) active space leads to a 2−3 kcal/mol
destabilization of the diradical state while the charge transfer
state is stabilized by almost 10 kcal/mol relative to the SA-
CAS(6,6) curves. This causes a considerable displacement of the
extrapolated crossing position toward a more positive value of
the BLA coordinate as compared to the SA-CAS(6,6) method.
However, the MRCISD+Q results are less affected by the size of
the active space, and the position of the crossing is only slightly
shifted to a more positive value of the BLA coordinate. It is
noteworthy that the crossing point at the SA-CAS(2,2) level
occurs near the same BLA value as the MRCISD+Q or the
MRCISD+Q(2,2) crossing points.
Comparison with DFT and SI-SA-REKS intersection top-

ologies evidence a qualitative agreement: except in the SA-
CAS(6,6) case, all the crossing topologies are sloped and occur at
BLA coordinate value confined between 0.025 and 0.050.
Moreover, the BH&HLYP intersection point energy is very close
to the MRCISD+Q one (whatever the chosen active space),
whereas the SI-SA-REKS overestimates it by about 10 kcal/mol.
The MRCISD+Q energy profiles along MEPCT shown in

Figure 10b are largely insensitive to the size of the active space.
The ground state in the vicinity of TSCT has the charge transfer
character, as shows the analysis of the allyl Mulliken charges. Its
magnitude is reduced when a minimal active space is used,
especially at the CASSCF level of theory, echoing the significant
increase of the energy gap when going from SA-CAS(6,6) to SA-
CAS(2,2).
The shape of the DFT-based CT energy profiles, as well as the

corresponding Mulliken charge distribution, are closer to the SA-
CAS(2,2) and MRCISD+Q(2,2) ones than to the larger active
space counterparts. These results confirm a very similar
electronic structure between DFT and (2,2)-based multi-
reference methods. Regarding the DIR state, the DFT results
are less conclusive. As already mentioned, the TDDFT excited
state does not interact with the ground state, resulting in a peaked
S1 energy profile, while the SI-SA-REKS exhibits a qualitatively
correct shape. Moreover, it is noteworthy that SI-SA-REKS

compares better with SA-CAS(2,2) and MRCISD+Q(2,2),
highlighting again the importance of the active space.
For MEPDIR (Figure 10c), the quality of the ground state has a

stronger dependence on the size of the active space. While S0 at
the TSDIR geometry has the diradical character at the SA-
CAS(6,6) and the MRCISD+Q levels of theory, it is striking that
the SA-CAS(2,2) and the MRCISD+Q(2,2) methods yield the
charge transfer ground state. This reflects the fact that TSDIR is
geometrically close to an intersection point and a change of
theory may result in a change of the ground state electronic
structure. Because the geometry optimization at the MRCISD
+Q level can be too time-consuming, the reported energy profiles
suggest that the geometry optimized at the SA-CAS(2,2) level of
theory may be used instead.
Similarly to MEPCT, the CT energy profile along MEPDIR is

correctly described using DFT approaches, again with a closer
agreement to SA-CAS(2,2) and MRCISD+Q(2,2) results as
reflected by the charge distribution. However, the overestimation
and the slow variation of the DFT Mulliken charge firmly
demonstrate the lack of interaction ofΦCT withΦDIR at this level
of theory.

4.5. Role of the Electronegativities of the Allyl and
Protonated Schiff BaseMoieties. From the presented results,
it is clear that the shape of the ground and excited state PESs
along the MEPCT, MEPDIR, and BLA pathways depends strongly
on the relative stability of the electronic states dominated by the
ΦCT and ΦDIR electronic configurations. The latter, in turn, can
be rationalized using the relative electronegativity of the
fragments connected by the C2−C3 bond,

54,62 that is the Schiff
base and the allyl fragments of PSB3. Indeed, when two
fragments with approximately equal electronegativities are
connected by a double bond (such as CC bond in ethylene),
twisting about this bond results in a homolytic breaking of its π-
component via a diradical transition state for such a bond
breaking.54,62 When the two fragments have very different
electronegativities, such as in PSB3 cation, the heterolytic
breaking of the double bond becomes nearly isoenergetic with
the homolytic one and may even become the preferred
mechanism provided that the electronegativity difference is
sufficiently large.54,62 The SA-CAS(6,6) energy profiles (see for
instance the solid red lines in Figure 10a) indicate that the two π-
bond breaking mechanisms are nearly isoenergetic and the CI
occurs slightly above the energy levels of the two transition states,

Figure 9. SA-CAS(6,6), MRCISD, and SA-REKS S0 and S1 energy profiles (in kcal/mol) along MEPDIR.
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TSDIR and TSCT . The inclusion of the dynamic electron
correlation via the MRCISD method leads to a stabilization of
the TSCT structure relative to TSDIR, which implies that, at this

level of theory, the Schiff base fragment becomes more
electronegative relative to the allyl fragment than at the CASSCF
level. The stabilization of the TSCT structure is further increased

Figure 10. SA-CAS(6,6), SA-CAS(2,2), MRCISD+Q, and MRCISD+Q(2,2) S0 and S1 energy profiles (left panel, in kcal/mol) and Mulliken charge
transfer (without the Davidson correction, with respect to the cis conformation, right panel, in %) along the three MEPs. Crossing points are indicated
with filled circles. The positions of TSCT, TSDIR, and the conical intersection (obtained at the SA-CAS(6,6) level of theory) are also reported in the case
of the BLA pathway.
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by the inclusion of the size extensivity correction in theMRCISD

+Q method and the crossing, at this level of theory, occurs

virtually at the TSDIR structure. To demonstrate that it is the

balance of electronegativities of the allyl and the Schiff base

fragments that determines the shape of the ground and excited

state PESs along the BLA, MEPCT, and MEPDIR pathways, we

have undertaken an additional set of calculations using the SI-SA-

REKS(2,2) and the TDDFT methods using the BH&HLYP

Figure 11. S0 and S1 energy profiles along the BLA, MEPCT, and MEPDIR paths, obtained at different DFT levels of theory, using either no electric field
(left) or a −0.004 au electric field applied along the molecular axis (right).
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functional. In the new calculations, a weak electric field of−0.004
au is applied along the molecular axis. The action of the field
slightly destabilizes the ionic ΦCT configuration with respect to
the covalent ΦDIR configuration. The results of the new
calculations are summarized in Figure 11 along with the results
of the field-free calculations using the same methods.
As it can be seen in the case of the BLA coordinate in Figure

11, the shapes of the TDDFT and SI-SA-REKS PES profiles are
only slightly affected by the external field. However, the relative
positions of theΦCT andΦDIR energy profiles are modified, while
theΦCT profile is destabilized by 6 to 7 kcal/mol with respect to
the field-free profile, theΦDIR one is stabilized by 2 to 3 kcal/mol.
Consequently, theΦCT andΦDIR profiles now cross at the values
of the BLA coordinate of 0.009 Å and 0.012 Å for TDDFT and
SI-SA-REKS, respectively. After the crossing point, the SI-SA-
REKS ground state becomes diradicaloid. Along the MEPDIR
pathway, the ground electronic state, according to the SI-SA-
REKS calculations, remains diradicaloid between the IRC values
of ±0.02 Å·amu1/2 around the TSDIR geometry, as demonstrated
by the orbital occupation numbers (see Figure S3, Supporting
Information). This agrees closely with the MRCISD+Q results
for this pathway. It is noteworthy that, at the TDDFT and
TDDFT(TDA) levels of theory, theΦDIR state “crashes” into the
ΦCT state as one follows the MEPDIR pathway. A similar behavior
of the TDDFT excited states was already reported for the H3
molecular system.7 Finally, the MEPCT profile remains largely
unaffected by the application of the field.
From the results presented in Figure 11, it can be conjectured

that the major source of difference between the multireference
wave function calculations and the REKS calculations lies in the
description of the relative stabilities of the ΦCT and ΦDIR
electronic configurations. Because the use of the BH&HLYP
density functional yields a noticeable preference for the ΦCT
electronic configuration in the ground state of PSB3, the crossing
between the S0 and S1 states occurs farther along the BLA
pathway than is predicted by the SA-CAS(6,6) and MRCISD+Q
calculations.

5. CONCLUSIONS
In this study, following the seminal work by Martinez and co-
workers,7 we have used DFT-based calculations (KS-DFT,
TDDFT, and REKS) to describe three potentially important
regions in the isomerization of the retinal model system, PSB3.
While the ΦCT configuration is easily described with standard
KS-DFT approaches, linear-response TDDFT calculations are
required to reach the multideterminantalΦDIR configuration. It is
noteworthy that, in certain circumstances (corresponding to an
imaginary or negative excitation), the former can be an excited
state while the latter is actually the ground state. Alternatively, the
REKS approach can be used to reach any of these two
configurations, which can be described by different sets of
HOMO and LUMO occupations.
In its current state of development, the usual linear-response

TDDFT cannot be recommended for black-box investigations of
the potential energy surfaces of molecular systems undergoing
bond rearrangements, such as the isomerization of PSB3.
Because the ΦDIR and ΦCT states do not interact in the
TDDFT approach, the position of the state crossing will depend
on their relative stabilities which, in turn, is highly dependent on
the chosen DFT functional. At the point of degeneracy, the DFT
calculations are not easily converged due to the breakdown of the
pure-state v-representability. Only the double-hybrid functional
slightly mitigates this problem. In the situations when the ground

state can be faithfully described by a single Kohn−Sham
determinant, such as the rearrangement of PSB3 along the
MEPCT pathway, a wrong profile of the excited state PES is
obtained, due to the lack of interaction between ΦDIR and ΦCT.
Nevertheless, the ground state is qualitatively well described, as
can be judged from the shape of the energy profile and the
character of the state. The wrong description of theΦDIR state is
exacerbated by the presence of the strong nondynamic electron
correlation in the ground state, such as in the case of the MEPDIR
pathway. Near the crossing between the ground and the excited
states, the TDDFT description leads to certain artifacts
manifested by kinks on the excited state PES (e.g., see Figure
11). The amplitude of kinks can be reduced by the use of the
Tamm−Dancoff approximation; however, the TDDFT(TDA)
method shows the same artifacts as the full response TDDFT.
Partly, the deficiencies of the TDDFT calculations carried out
using the conventional GGA and hybrid density functionals can
be corrected by the use of the double hybrid density functionals.
More seriously, the absence of state interaction even leads to a
qualitatively wrong description when S0 corresponds mainly to
ΦDIR, such at TSDIR. Consequently, no ΦDIR transition state can
exist at this level of theory.
The use of the SA-REKS (and SI-SA-REKS) method leads to a

reasonable agreement with the reference MRCISD+Q data. The
shapes of the ground and the excited state PESs along the BLA,
MEPDIR, and MEPCT pathways are sufficiently accurately
reproduced by the SA-REKS calculations. It should, however,
be noted that the occurrence of state crossing and the transitions
states for the homolytic and the heterolytic mechanism of the
breaking of the C2−C3 bond of PSB3 (see Figure 1) depends
critically on the relative stability of the covalent (ΦDIR) and the
ionic (ΦCT) electronic configurations.62 Indeed, their relative
stability has been found to be dependent on the method
according to the multireference methods used to generate the
benchmark data in ref 1 and by the density functionals employed
in the present work in connection with REKS. While the SA-
CAS(6,6) calculations yield a slight preference in favor of the
ΦDIR electronic configuration, the MRCISD+Q method makes
the ΦCT configuration more stable.
Altering the relative stability of the ΦDIR and ΦCT

configurations by the application of a weak electric field brings
the DFT results in a closer agreement with the benchmark
MRCISD+Q data. This observation underlines the importance
of a balanced and correct description of the dynamic correlation
effects, which are responsible for the relative stability of the
covalent and the ionic configurations. At the multireference ab
initio level of theory the relative stability of these configurations
depends on many factors such as the size of the active space, the
size of the basis set, and the molecular geometry employed.
Preferably, the reference benchmark data are to be obtained
using sufficiently large basis set or extrapolated to the basis set
limit by the use of a systematically convergent sequence of the
basis sets with the MRCISD+Q method. The observed close
agreement between the SA-CAS(2,2) and the MRCISD+Q
methods (due to error compensations) suggests that a reduced
active space could be employed in the multireference ab initio
calculations for obtaining the molecular geometries. Further
investigations are required in order to assess the general validity
of this last observation (with respect to other basis sets and to
larger parts of the potential energy surfaces).
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