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ABSTRACT

Electrooptical sensors consisting of a conjugated chromophore undergoing a change in color and a redox-active moiety such as quinone
fused to the chromophore were synthesized. Strong changes in colorimetric and electrochemical properties were observed in the presence
of inorganic anions. A unique anion-specific response was observed for fluoride, pyrophosphate, and acetate. DFT (B3LYP/6-31G*) calculations
performed for both “on/off” states of a sensor-fluoride model are in good agreement with the observed electrochemical and spectroscopic
data.

The ubiquity of anions and their importance as agricultural
fertilizers and industrial raw materials necessitates the
development of highly sensitive anion sensors.1 Here, materi-
als capable of reversible anion-induced changes in color are
particularly attractive2 because they may be used as dip-stick
sensors. Unfortunately, few colorimetric anion sensors are
able to differentiate selectively between anionic substrates
of similar basicity and surface charge density.2b,c An ad-
ditional problem is the compatibility of most of the anion
sensors with water and electrolytes. To limit potentially
ambiguous results, we synthesized sensors that utilize
independent, optical, and electrochemical output signals.
Although known, such materials are still rare and their
synthesis is often complex.2,3

The potential disadvantage of anion sensors utilizing
hydrogen bonding in water may be circumvented by using

optically transparent polymeric anion exchange films as
analyte preconcentration layers into which analyte ions
partition.4 Such materials capable of stripping the bulk of
the water and/or accompanying electrolytes off the target
analyte would be ideal host materials for embedding sensor
moieties generating the spectroelectrochemical response and
may provide a future generation of highly reliable anion
sensors. This, however, requires viable sensor molecules that
operate in water/electrolyte matrices.

Here we report on sensors1-3 (Figure 1) comprising a
chromophore capable of undergoing an intensive change in
color and a redox-active quinone moiety5 to generate strong
colorimetric and electrochemical signals. The quinone moiety
is directly fused to the chromophore and the hydrogen bond
donors prone to bond polarization and partial charge transfer
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due to hydrogen bonding to the anion. Our proof-of-principle
experiments were performed using the sensors1-3.

Sensors1 and 2 utilize the 2,3-dipyrrolylquinoxaline
(DPQ)-like moiety recently rediscovered by Sessler as a
potent anion binder.6 Compounds1 and 2 were prepared
(Scheme 1) by condensation of dipyrrolylethane-1,2-dione

46b with 1,2-diaminoanthraquinone5 and 2,3-diamino[1,4]-
naphthoquinone8,7 respectively. To prove that this design
is general, we prepared sensor3 with sulfonamide moieties
described previously by Crabtree and Kavallieratos.8

Unfortunately, condensation of dione4 with tetraamino-
1,4-benzoquinone10 (Scheme 2) yielded only traces of
product11 and copious amounts of polymer.9 Similarly, the
mild conditions used to prepare 2,3,6,7-tetramethyl-1,4,5,8-
tetraaza-9,10-anthraquinone10 did not give11 in good yield
(∼2%), and the synthesis of11 was not pursued further.

Visual inspection of solutions of sensors1-3 (25 µM in
MeCN with 0.5% water) before and after addition of anion
salts11 showed a dramatic change in color in the case of
fluoride, cyanide, acetate, and pyrophosphate (HP2O7

3-,
PP3-) suggesting strong binding, whereas the addition of
dihydrogenphosphate (H2PO4

-, H2P-), benzoate, or chloride
did not result in appreciable change in color (Figure 2). We

believe that this is due to a difference in sizes of binding
sites (1, 2 vs 3), as well as the direct result of acidity of
protons involved in hydrogen bonding.

Quantitative measurements of anion affinity were per-
formed by monitoring the changes in the UV-vis spectra
of sensors1-3 upon addition of an anion. The titrations were

(5) (a) The first theses of this work were published as early as 2001;
see: Anzenbacher, P., Jr.; Karpov, G. V.; Jursı´ková, K. Anion sensors with
dual mode of detection. Abstracts of Papers, 222nd ACS National Meeting,
Chicago, IL, 2001; ORGN-065. Later we became aware that our sensor1
was also described in (b) Ghosh, T.; Maiya, B. G.; Wong, M. W.J. Phys.
Chem. A2004, 108, 11249. This paper describes the properties of sensor
1. Unfortunately, the reported results differ significantly from our observa-
tions. There, sensor1 displays an anodic shift in the presence of anions,
which also contradicts the general trends proposed in Beer, P. D.; Gale, P.
A.; Chen, G. Z.J. Chem. Soc., Dalton. Trans.1999, 12, 1897.

(6) (a) Black, C. B.; Andrioletti, B.; Try, A. C.; Ruiperez, C.; Sessler, J.
L. J. Am. Chem. Soc.1999, 121, 10438. (b) Oddo, B.Gazz. Chim. Ital.
1911, 41, 248.

(7) Diaz, R.; Reyes, O.; Francois, A.; Leiva, A. M.; Loeb, B.Tetrahedron
Lett. 2001, 42, 6463.

(8) (a) Kavallieratos, K.; Hwang, S.; Crabtree, R. H.Inorg. Chem.1999,
38,5184. (b) Kavallieratos, K.; Bertao, C. M.; Crabtree, R. H.J. Org. Chem.
1999, 64, 1675.

(9) Wallenfels, K.; Draber, W.Tetrahedron Lett.1959, 1, 24.
(10) Sendt, K.; Johnston, L. A.; Hough, W. A.; Crossley, M. J.; Hush,

N. S.; Reimers, J. R.J. Am. Chem. Soc. 2002, 124, 9299.

(11) Hydrated tetrabutylammonium (TBA) salts of the anions were used
in this study: fluoride (‚6H2O), chloride, phosphate (‚2H2O), and pyro-
phosphate (‚2H2O). The degree of hydration was estimated from elemental
analyses. The supporting electrolyte was TBAClO4.

Figure 1. Structures of sensors1-3 with integrated chromophore,
redox-active moieties, and hydrogen bond donors.

Scheme 1. Synthesis of Sensors1, 2, and3

Scheme 2. Synthesis of Sensor11

Figure 2. (Left panel) Solutions of sensors1-3 (25µM in MeCN)
in the presence of anions (50 equiv). (Right panel) Examples of
UV-vis spectra of sensors1-3 (1/F-, 2/AcO-, 3/HP2O7

3-).
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performed in MeCN both with and without the presence of
supporting electrolyte (0.1 M TBAClO4) (Table 1). Interest-
ingly, the presence of the supporting electrolyte does not
seem to affect significantly the receptor-anion affinity.

To obtain the second “validating” signal output, the anion
binding by sensors1-3 was also investigated by cyclic (CV)
and square-wave voltammetry (SWV).13 Both methods
confirm that the anion binding is accompanied by an anion-
specific change in redox potential as well as by decrease in
current, a behavior attributed to the formation of the sensor-
anion complex with a lower diffusion coefficient.13 Also,
reduction waves of1-3 show cathodic shifts due to the fact
that the electron-rich sensor-anion complex is difficult to
reduce. Figure 3 shows an example of the SWV of1 titrated

by H2PO4
-. The changes in current or potential may be used

to calculate binding constants.
Inspection of the data in Tables 1 and 2 reveals that the

SWV titrations show measurable changes in peak current
and reduction potential even in the case of anions that induce
only a weak color change insufficient for reliable determi-
nation by absorption spectroscopy (e.g., H2PO4

-).
The binding isotherms obtained from titration experiments

carried out by UV-vis spectroscopy (∆A ) f[anion]) and

square-wave voltammetry (∆I ) f[anion]) showed remarkable
similarity and also yielded similar affinity constants (within
the 15% error margin). For example, the affinity constant
for sensor2 and F- by UV-vis and SWV was 28,300 and
33,400 M-1, respectively (Figure 4).

Although the agreement in the electrochemical and spec-
trophotometric titration suggests that both types of changes
originate from sensor-anion association, the data in Tables
1 and 2 reveal that the magnitude of the association constant
does not necessarily correspond to the actual magnitude of
anion-induced changes in current and reduction potential.
For example, the magnitude in changes of the redox prop-
erties in1-3 recorded for H2PO4

- matches the magnitude
of changes in electrical properties recorded for F-. However,
the affinity constants calculated from absorption spectra for
F- are higher than for H2PO4

-. The same behavior was also
reported for pyrrole-ferrocene systems.14 The phenomena
that raise this disparity are still not entirely clear.14c

Because most anionic analytes are administered predomi-
nantly as aqueous solutions, we have investigated the sensing

(12) The binding and fitting data are shown in Supporting Information.
(13) (a) Kaifer, A. E.; Gomez-Kaifer, M.Supramolecular Electrochem-

istry; Wiley-VCH: Weinheim, 1999. (b) Bard, A. J.; Faulkner, L. R.
Electrochemical Methods; Wiley: Hoboken, 2000.

(14) (a) Scherer, M.; Sessler, J. L.; Gebauer, A.; Lynch, V.Chem.
Commun.1998, 85. (b) Gale, P. A.; Hursthouse, M. B.; Light, M. E.; Sessler,
J. L.; Warriner, C. N.; Zimmerman, R. S.Tetrahedron Lett.2001, 42, 6759.

Table 1. Affinity Constants (Ka)a for Compounds1, 2, and3
(M-1) and Anionic Substrates in MeCN (25µM, 0.5% water at
22 °C)12

anion sensor 1 sensor 2 sensor 3

F- 482 200 150 700 >106

CN- 6 630 16 800 11 900
HP2O7

3- 316 000 626 000 1 428
AcO- 1 200 3 800 <100
H2PO4

- <100 525 220
PhCO2

- 100 400 <50
Cl- <50 <50 <50

a The binding constant were calculated with error lower than 15%.

Figure 3. Changes in redox properties of1 (50µM) upon addition
of H2PO4

- observed by SWV (frequency) 15 Hz, increment)
0.004 V; 0.1 M TBAClO4).

Table 2. Changes in Color and Current at Saturation in
Sensors1-3 in the Presence of Anions in MeCN (25µM, 0.5%
water, 22°C)a

a SWV (frequency) 15 Hz, increment) 4 mV, amplitude) 25 mV;
0.1 M TBAClO4). Pt wire and Ag/Ag+ reference electrodes were used.
The ferrocene/ferrocenium couple was determined to be+0.121.b b b b
indicates strong color change;O O O indicates no color change (determined
as naked-eye observation).c The data suggest passivation of the electrode.
d The data were obtained from the CV titration.e Partial decomposition of
acetate coincides with reduction of sensor3.

Figure 4. Examples of binding isotherms for2 titrated with TBAF
obtained from UV-vis and SWV measurements, both in MeCN/
TBAClO4.

Org. Lett., Vol. 7, No. 22, 2005 5029



process with anions added as a solution in water (25 mM).
Here, the sensing process is rendered more complex due to
multiple equilibria including hydration:

Given the time scale of the voltammetric experiments and
the fast and reversible nature of the association/hydration
processes, the ternary species composed of sensor, anion,
and water, i.e., eqs 3, 4, and 5, would appear as one (eqs
3-5). From the above equilibria proposed for sensor1 we
should observe three different redox-active species in the
voltammogram: free sensor, hydrated sensor (eq 1), and
hydrated anion-sensor complex (eqs 3-5). Furthermore, we
assume that in order for the hydration process to be
energetically favorable, the hydrated sensor-anion complex
(eqs 3-5) would show a lower reduction potential compared
to the nonhydrated anion-sensor complex. Indeed, the SWV
traces show three peaks as expected (Figure 5).

The three peaks in the SWV traces (A/B/C) were identified
as follows: peakA corresponds to the hydrated sensor, from
eq 1. This peak is almost undetectable in the SWV trace of
sensor1 alone and becomes easier to discern upon addition
of hydrated anion samples.11 PeakC appears upon addition
of anion in both aqueous and nonaqueous anion samples and
corresponds to the sensor-anion complex, from eq 2. The
new peak,B, appears in the aqueous anion sample but does
not appear when the anion is administered in MeCN
suggesting thatB corresponds to the hydrated sensor-anion
complex, from eqs 3-5.

From the results described above and DFT calculation
(B3LYP/6-31G* level),5b we have inferred the qualitative
insight into the binding mode and signal transduction process
in sensors1. In the resting state, the pyrrole moieties prefer
coplanar arrangement with the aromatic chromophore. The
highest HOMO density is localized on the pyrroles, while

the highest LUMO density is localized at the anthraquinone.
The red shift in UV-vis spectra indicates that the anion
binding results in a conformational change affecting the
HOMO level (∆EHOMO ∼0.65 eV) and the partial negative
charge transfer15 from pyrrole to the quinoxaline-anthraqui-
none. This is confirmed by the electrochemical experiments,
where we observe a smaller increase in LUMO energy cor-
responding to the cathodic-shift (∆ELUMO ∼0.10 eV) (Table
2). These observations were supported by DFT calculations
for the1‚F-‚TBA+ complex that show remarkable agreement
with the recorded data supporting our binding model.

In summary, we have demonstrated an easy-to-do approach
to anion sensors that respond to the presence of anion by
both change in color and redox properties. We have
demonstrated that these two methods (UV-vis and SWV)
may be used to cross-examine the anion sample while
providing two independent output datasets to be used to
distinguish between different analytes in the cases when
either colorimetric or redox-based measurements may pro-
vide an ambiguous output signal. The preliminary experi-
ments suggest that this approach may yield anion sensors
potentially useful for sensing of anions in the presence of
water and electrolytes. The efforts toward incorporation of
these sensors into a thin-film polymer matrix and fabrication
of sensing devices are under way.

Acknowledgment. Financial support from Alfred P.
Sloan Foundation to P.A., BGSU (TIE grant to P.A.), Kraft
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Supporting Information Available: Experimental pro-
cedures and spectroscopic data for sensors1-3 and examples
of SWV and UV-vis titration data. Details on the DFT
calculations are also included. This material is available free
of charge via the Internet at http://pubs.acs.org.
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1 + H2O h 1‚H2O (1)

1 + anionh 1‚anion (2)

1‚H2O + anionh 1‚H2O‚anion (3)

1 + anion‚H2O h 1‚anion‚H2O (4)

1‚anion+ H2O h 1‚anion‚H2O (5)

Figure 5. SWV reduction traces of sensor1: (black line) sensor
1; (red line) 1 with H2PO4

- (0.10 mmol/L); (blue line)1 with
aqueous H2PO4

- (25 mmol/L).

Figure 6. (Top) Signal transduction in sensor1: hydrogen bonding
to an anion causes a conformational change and partial charge
transfer to the quinone chromophore. (Bottom) Data derived from
spectroelectrochemical experiments correspond to the theoretical
model derived from the above binding mode.
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