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FLUX RECOVERY FROM PRIMAL HYBRID FINITE
ELEMENT METHODS∗

SO-HSIANG CHOU† , DO Y. KWAK‡ , AND KWANG Y. KIM‡

SIAM J. NUMER. ANAL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 40, No. 2, pp. 403–415

Abstract. A flux recovery technique is introduced and analyzed for the computed solution of
the primal hybrid finite element method for second-order elliptic problems. The recovery is carried
out over a single element at a time while ensuring the continuity of the flux across the interelement
edges and the validity of the discrete conservation law at the element level. Our construction is
general enough to cover all degrees of polynomials and grids of triangular or quadrilateral type.
We illustrate the principle using the Raviart–Thomas spaces, but other well-known related function
spaces such as the Brezzi–Douglas–Marini (BDM) or Brezzi–Douglas–Fortin–Marini (BDFM) space
can be used as well. An extension of the technique to the nonlinear case is given. Numerical results
are presented to confirm the theoretical results.

Key words. recovery technique, primal hybrid method, nonconforming method, conservative
method

AMS subject classifications. 65N15, 65N30

PII. S0036142900381266

1. Introduction. We consider the second-order elliptic boundary value problem{
−div(K∇u) = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded polygonal domain in R
2 with the boundary ∂Ω, and K = K(x) is

assumed to be symmetric and uniformly positive definite, i.e., there exist two positive
constants c1 and c2 such that

c1ξ
T ξ ≤ ξTK(x)ξ ≤ c2ξ

T ξ ∀ξ ∈ R
2, x ∈ Ω.

In many applications, it is more important to gain accurate approximation for
the vector variable σ = −K∇u (e.g., Darcy velocity) rather than the scalar variable
u (e.g., pressure). A common way of achieving that goal is to use the mixed finite
element methods, which have been a very active area of research since the late 1970s;
see, for example, [4, 5, 6, 9, 20, 22]. All mixed methods have the further advantage
of maintaining the discrete conservation law at the element level.

However, mixed methods lead to an indefinite symmetric algebraic system which
may be hard to solve iteratively. An efficient way to solve for the mixed finite element
method is to further introduce the Lagrange multipliers on the edges of the mesh to
ensure the continuity of normal components of the velocity variable. This is sometimes
called the mixed-hybrid method. In this fashion the velocity and the pressure finite
element spaces have no continuity constraints at all, and thus both variables can be

∗Received by the editors November 15, 2000; accepted for publication (in revised form) January
10, 2002; published electronically May 29, 2002.

http://www.siam.org/journals/sinum/40-2/38126.html
†Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH

(chou@bgnet.bgsu.edu). The research of this author was supported by NSF grant DMS–0074259.
‡Department of Mathematics, Korea Advanced Institute of Science and Technology, Taejon, Ko-

rea 305-701 (dykwak@math.kaist.ac.kr, kky@mathx.kaist.ac.kr). This work was supported by grant
2000-2-10300-001-5 from the Basic Research Program of the Korea Science & Engineering Founda-
tion.

403

D
ow

nl
oa

de
d 

08
/0

5/
14

 to
 1

29
.1

.6
2.

22
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



404 SO-HSIANG CHOU, DO Y. KWAK, AND KWANG Y. KIM

eliminated to obtain a symmetric and positive definite matrix system which involves
only the Lagrange multipliers. It can be shown that this matrix system is equivalent
to some nonconforming finite element method for the original problem (1.1); see, for
example, [1, 2, 7]. The nonconforming method for the pressure requires fewer degrees
of freedom than the mixed finite element method, and moreover, its solution can be
computed by a fast solver such as multigrid algorithms (cf. [3, 8, 10, 11]). By using this
nonconforming solution, the vector approximation can be obtained through a simple
formula, for example, as done in [17]. The rectangular case with piecewise constant
diagonal tensor was considered in [8]. For the triangular case, see [1, 2, 7, 8, 17].

Our objective in this paper is to show that similar equivalence results can be
derived through the primal hybrid finite element methods for the problem (1.1) which
were analyzed in [21] as a general approach of constructing nonconforming finite
element approximations. We first present a technique of recovering from the primal
hybrid solution an optimal flux approximation σh based on the local Raviart–Thomas
spaces. Although the construction is carried out in a local manner (over a single ele-
ment at a time), it is ensured that σh is continuous across the interelement boundaries
and that the discrete conservation law holds locally. Also, instead of the Raviart–
Thomas spaces, other mixed finite element spaces such as the Brezzi–Douglas–Marini
(BDM) spaces or the Brezzi–Douglas–Fortin–Marini (BDFM) spaces can be used as
well.

The main advantage of our technique is that it is general enough to cover all
degrees of polynomials and all types of grids, triangular or quadrilateral. In particular,
our technique can be applied to any nonconforming finite element method which can
be viewed as a primal hybrid finite element method.

As good examples of how the technique can be applied, we will derive simple
formulas for σh in the lowest-order cases on triangular and quadrilateral grids, which
lead to the P1 and the rotated Q1 nonconforming finite element methods, respectively
(see [21] or section 4).

The rest of the paper is organized as follows. In the next section the primal finite
element methods are introduced for the problem (1.1). In section 3, we present a
technique of flux recovery from the primal hybrid finite element methods and establish
optimal error estimates for the vector approximation thus obtained, and in section 4 a
detailed description of how the technique can be applied for the lowest-order elements
is given. In section 5, our results are extended to nonlinear problems. Finally, in
section 6, some numerical results are presented to confirm the theoretical results.

2. Primal hybrid finite element methods. In this section we give a brief
description of the primal hybrid finite element method for the problem (1.1). The
reader can find much more detail on this subject in [21].

Let Th be a partition of Ω into triangles or convex quadrilaterals which satisfies
the usual regularity assumption

C1h
2
T ≤ |T | ≤ C2h

2
T ∀T ∈ Th,

where hT denotes the diameter of T , |T | is the area of T , and h = maxT∈Th
hT .

Denote by T̂ a standard reference element, i.e., the unit square or the unit tri-
angle with the vertices x̂i’s. Then there exists a unique bijective bilinear or linear
transformation FT : T̂ → T such that xi = FT (x̂i) for all i. We set

JT = Jacobian matrix of FT , JT = detJT .
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FLUX RECOVERY FROM PRIMAL HYBRID METHODS 405

Based on the triangulation Th we define the spaces

X = {v ∈ L2(Ω) : v|T ∈ H1(T ) ∀T ∈ Th} =
∏

T∈Th

H1(T ),

M =
{
µ ∈

∏
T∈Th

H−1/2(∂T ) : there exists τ ∈ H(div,Ω) such that

τ · nT = µ on ∂T, ∀T ∈ Th
}
,

where nT is the unit outward normal along ∂T . Let | · |m,Ω and ‖ · ‖m,Ω denote the
usual seminorm and norm, respectively, on the Sobolev space Hm(Ω). We define the
mesh-dependent norms

|||v|||X =

(∑
T∈Th

|||v|||21,T
)1/2

, v ∈ X,

‖µ‖h =

(∑
T∈Th

hT ‖µ‖2
0,∂T

)1/2

, µ ∈
∏

T∈Th

L2(∂T ),

where

|||v|||21,T = |v|21,T + h−2
T ‖v‖2

0,T .

Now the primal hybrid formulation for the problem (1.1) is given as follows: find
a pair (u, λ) ∈ X ×M such that

a(u, v) + b(v, λ) = (f, v) ∀v ∈ X,(2.1a)

b(u, µ) = 0 ∀µ ∈ M,(2.1b)

where

a(u, v) =
∑
T∈Th

∫
T

K∇u · ∇v dx, b(v, µ) =
∑
T∈Th

∫
∂T

vµ ds,(2.2)

(f, v) =

∫
Ω

fv dx.(2.3)

It was shown in [21] that u belongs toH1
0 (Ω) and is the unique solution of the standard

weak formulation ∫
Ω

K∇u · ∇v dx =

∫
Ω

fv dx, v ∈ H1
0 (Ω),

and that

λ = −K∇u · nT on ∂T ∀T ∈ Th.(2.4)

We use the standard notation for the spaces of polynomials, i.e., Pr(T ) denotes
the space of polynomials on T of total degrees at most r, and Qr,s(T ) denotes the
space of polynomials on T of degrees at most r and s in x and y, respectively. We
also set Qr(T ) = Qr,r(T ). On any element T we define

Rr(T ) =



Pr(T ) if T is a triangle,

Qr(T̂ ) ◦ F−1
T if T is a quadrilateral
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406 SO-HSIANG CHOU, DO Y. KWAK, AND KWANG Y. KIM

and

Sr(∂T ) = {µ ∈ L2(∂T ) : µ|e ∈ Pr(e) ∀e edges of T}.

In order to discretize the primal hybrid formulation (2.1), we introduce a finite-
dimensional subspace X̂ of H1(T̂ ) such that Rk(T̂ ) ⊂ X̂ for some k ≥ 1. Then we
define a pair Xh ×Mh of finite element spaces on Th by

Xh = {v ∈ X : v|T ∈ Xh(T ) ∀T ∈ Th},(2.5)

Mh =

{
µ ∈

∏
T∈Th

Sk−1(∂T ) : µ|∂T1
+ µ|∂T2

= 0 on ∂T1 ∩ ∂T2(2.6)

if T1 and T2 are adjacent elements

}
,

where we set Xh(T ) = {v̂ ◦ F−1
T : v̂ ∈ X̂}.

Now the primal hybrid finite element method is defined as follows: find a pair
(uh, λh) ∈ Xh ×Mh such that

a(uh, v) + b(v, λh) = (f, v) ∀v ∈ Xh,(2.7a)

b(uh, µ) = 0 ∀µ ∈ Mh.(2.7b)

Examples for the space X̂ are given in [21] for all k ≥ 1 which ensures the existence
and uniqueness of a solution (uh, λh) for the system (2.7) and satisfy the following
optimal error estimates (cf. [15, 21]).

Theorem 2.1. For u ∈ Hk+1(Ω) we have

|||u− uh|||X + ‖λ− λh‖h ≤ Chk|u|k+1.

The following observation is crucial to decouple the mixed system (2.7): uh is the
solution of the nonconforming finite element method

a(uh, v) = (f, v), v ∈ Vh,(2.8)

where

Vh = {v ∈ Xh : b(v, µ) = 0 ∀µ ∈ Mh}.(2.9)

This implies that we may compute uh directly from (2.8) and then compute λh from
uh locally by (2.7a), which reduces to∫

∂T

vλh ds =

∫
T

fv dx−
∫
T

K∇uh · ∇v dx, v ∈ Xh(T ).(2.10)

Thus, the Lagrange multiplier λh may be interpreted as the (weak) local residuals of
the nonconforming approximation uh.

3. Flux recovery technique. To begin with, we define the Raviart–Thomas
space of index r ≥ 0 on Th as follows:

RTr = {τ ∈ H(div,Ω) : τ |T ∈ RTr(T )},

D
ow

nl
oa

de
d 

08
/0

5/
14

 to
 1

29
.1

.6
2.

22
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



FLUX RECOVERY FROM PRIMAL HYBRID METHODS 407

where the local space RTr(T ) is defined as

RTr(T ) = {PT τ̂ : τ̂ ∈ (Rr(T̂ ))
2 + (x, y)Rr(T̂ )},

and PT τ̂ = J−1
T JT τ̂ ◦ F−1

T . We also set for r ≥ 1

Ψr(T ) =

{
(Pr−1(T ))

2 if T is a triangle,

{J−t
T τ̂ ◦ F−1

T : τ̂ ∈ Qr−1,r(T̂ )×Qr,r−1(T̂ )} if T is a quadrilateral.

Let us point out that if T is a rectangle, then

Ψr(T ) = Qr−1,r(T )×Qr,r−1(T ).

Now we present a technique of recovering an optimal vector approximation. Once
the solution (uh, λh) of the system (2.7) is computed, one can construct a unique
σh ∈ RTk−1(T ) on each T ∈ Th:

σh · nT = λh on ∂T,(3.1a) ∫
T

(σh +K∇uh) · τ dx = 0, τ ∈ Ψk−1(T ) (k ≥ 2)(3.1b)

(cf. [6, 20, 22]). By construction we immediately obtain the following two proposi-
tions.

Proposition 3.1. The normal components of σh are continuous across the
interelement boundaries, i.e., we have σh ∈ RTk−1.

Proof. This is a direct consequence of (3.1a).

Proposition 3.2. We have for all v ∈ Rk−1(T )∫
T

divσh v dx =

∫
T

fv dx.

This implies that the discrete conservation law holds locally.

Proof. By using (3.1a) and Green’s theorem, (2.7a) becomes∫
T

(σh +K∇uh) · ∇v dx+

∫
T

divσh v dx =

∫
T

fv dx ∀v ∈ Xh(T ).(3.2)

There is nothing to be done for k = 1, since ∇v = 0 for v ∈ R0(T ). For k ≥ 2 we
have ∇v ∈ Ψk−1(T ) for v ∈ Rk−1(T ), which proves the desired result by (3.1b).

Remark 3.1. We could use other mixed finite elements instead of RTk−1. For
example, when one wants to use the BDMk−1(T ) space on a triangle T (k ≥ 2), (3.1)
is replaced by

σh · nT = λh on ∂T,(3.3a) ∫
T

(σh +K∇uh) · ∇v dx = 0, v ∈ Pk−2(T ),(3.3b) ∫
T

(σh +K∇uh) · curl(bT v) dx = 0, v ∈ Pk−3(T ) (k ≥ 3),(3.3c)D
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408 SO-HSIANG CHOU, DO Y. KWAK, AND KWANG Y. KIM

where bT is the cubic bubble function on T . If the space X̂ contains only Pk(T̂ ) on a
quadrilateral T , one may use the BDFMk(T ) space, in which case (3.1) is replaced by

σh · nT = λh on ∂T,(3.4a) ∫
T

(σh +K∇uh) · τ dx = 0, τ ∈ Ψk−1(T ) (k ≥ 2),(3.4b)

where we set

Ψr(T ) = {J−t
T τ̂ ◦ F−1

T : τ̂ ∈ (Pr−1(T̂ ))
2}.

For a review of the degrees of freedom (3.3) and (3.4), we refer to [4, 5, 6].
Before going to an error estimate, we prove the following key lemma.
Lemma 3.3. Given β ∈ L2(∂T ) and q ∈ (L2(T ))2, let ξh ∈ RTr(T ) satisfy∫

∂T

ξh · nT µds =

∫
∂T

βµ ds ∀µ ∈ Sr(∂T ),∫
T

ξh · τ dx =

∫
T

q · τ dx ∀τ ∈ Ψr(T ) (r ≥ 1).

Then we obtain

‖ξh‖0,T ≤ C(‖q‖0,T + h
1/2
T ‖β‖0,∂T ).

Proof. By considering the L2 projections, we may assume that β ∈ Sr(∂T ) and
q ∈ RTr(T ). Then the proof is done by using a simple scaling argument [2, 6].

Now we derive an error estimate for the vector approximation σh constructed by
(3.1). It is well known (see, e.g., [6, 20, 22, 23]) that the Raviart–Thomas projection
Πh : (H1(Ω))2 → RTr can be defined by∫

∂T

Πhσ · nµds =

∫
∂T

σ · nµds, µ ∈ Sr(∂T ),(3.5) ∫
T

Πhσ · τ dx =

∫
T

σ · τ dx, τ ∈ Ψr(T ),(3.6)

possessing the following approximation properties:

‖σ −Πhσ‖0 ≤ Chl ‖σ‖l, 1 ≤ l ≤ r + 1,

for all σ ∈ (H l(Ω))2, and

‖div(σ −Πhσ)‖0 ≤ Chl ‖divσ‖l, 0 ≤ l ≤ r + 1,

for all σ ∈ (H l(Ω))2 with divσ ∈ H l(Ω).
Theorem 3.4. Let σ = −K∇u. Then we have for u ∈ Hk+1(Ω)

‖σ − σh‖0 ≤ Chk(|σ|k + |u|k+1).

Proof. It suffices to prove that

‖Πhσ − σh‖0,T ≤ Chk(|σ|k + |u|k+1).

D
ow

nl
oa

de
d 

08
/0

5/
14

 to
 1

29
.1

.6
2.

22
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



FLUX RECOVERY FROM PRIMAL HYBRID METHODS 409

From (3.5) and (3.6) it follows that∫
∂T

(Πhσ − σh) · nT µds =

∫
∂T

(λ− λh)µds, µ ∈ Sk−1(∂T ),∫
T

(Πhσ − σh) · τ dx = −
∫
T

K∇(u− uh) · τ dx, τ ∈ Ψk−1(T ) (k ≥ 2).

By applying Lemma 3.3 and then Theorem 2.1, we obtain

‖Πhσ − σh‖0,T ≤ C(|u− uh|1,T + h
1/2
T ‖λ− λh‖0,∂T )

≤ Chk(|σ|k + |u|k+1).

This completes the proof.

4. Examples. In this section f̄ indicates the piecewise constant average of f on
Th, i.e.,

f̄ |T =
1

|T |
∫
T

f dx.

4.1. P1 nonconforming method. Let Th be composed of triangles. We con-
sider the lowest-order element, i.e., k = 1:

Xh(T ) = P1(T ), Mh =
∏

T∈Th

S0(∂T )
⋂

M.

Then it is easy to see that Vh (defined by (2.9)) is the P1 nonconforming finite element
space.

Let T be an arbitrary element of Th with the edges e1, e2, e3 and the barycenter
xT , and let φi ∈ Xh(T ) be the basis function associated with the edge ei, namely,
1

|ei|
∫
ei
φj ds = δij . Then λh|ei is given by (see (2.10))

λh|ei =
1

|ei|
(∫

T

fφi dx−
∫
T

K∇uh · ∇φi dx

)
.

Using the formula ∇φi =
ni|ei|
|T | results in

λh|ei = −K̄∇uh · ni +
1

|ei|
∫
T

fφi dx.

By comparing the normal components σh ·ni for each i, one can show that the vector
σh constructed by (3.1) is identical to the one given in [13]:

σh = −K̄∇uh +
f̄

2
(x− xT ) +CT ,(4.1)

where CT is determined by any two of the three equations

|ei|ni ·CT =

∫
T

fφi dx− |T |
3

f̄ , i = 1, 2, 3.

In particular, when f is a constant on T , we obtain CT = 0 and

σh|T = −K̄∇uh|T +
f

2
(x− xT ),(4.2)

which is the formula obtained by Marini [17].
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410 SO-HSIANG CHOU, DO Y. KWAK, AND KWANG Y. KIM

Remark 4.1. It is straightforward to extend the above results to higher-order
elements of odd degrees k ≥ 3:

Xh(T ) = Pk(T ), Mh =
∏

T∈Th

Sk−1(∂T )
⋂

M.

Once uh is computed, λh can be computed at k Gauss–Legendre points on each edge
by using the basis functions associated with these points.

Now let us consider the primal hybrid finite element method with the right-hand
side f replaced by f̄ . By Proposition 3.2 we then have∫

T

divσh dx =

∫
T

f̄ dx,(4.3a)

or divσh = f̄ . This, together with (3.2), implies that∫
T

(σh +K∇uh) dx = 0.(4.3b)

The equations (4.3a)–(4.3b) form the finite volume box method introduced by Courbet
and Croisille [14]. Thus the primal hybrid finite element method along with our
technique of flux recovery provide an alternative approach to the finite volume box
method. A different approach is given in [13]; see also [12].

4.2. Rotated Q1 nonconforming method. Let Th be composed of quadri-
laterals, and

X̂ = span{1, x̂, ŷ, x̂2 − ŷ2}, Mh =
∏

T∈Th

S0(∂T )
⋂

M.

Then it is easy to see that Vh is the parametric rotated Q1 nonconforming finite
element space introduced by Rannacher and Turek [19]. One could use the nonpara-
metric version as well which, on rectangular grids, is given by

Xh(T ) = span{1, x, y, x2 − y2}, Mh =
∏

T∈Th

S0(∂T )
⋂

M.

As in the P1 nonconforming method, λh|ei is given by

λh|ei =
1

|ei|
(∫

T

fφi dx−
∫
T

∇uh · ∇φi dx

)
,

where φi ∈ Xh(T ) is the basis function associated with the edge ei.
Now we derive a simple formula for σh for the nonparametric version on rect-

angular grids. Suppose that f is piecewise constant. Then we obtain divσh = f
and ∫

T

(σh +K∇uh) · ∇v dx = 0 ∀v ∈ Xh(T ).(4.4)

Let us decompose σh|T into

σh|T = σh,0|T + aT (h
2
Ty
(x− xT ), h

2
Tx
(y − yT )),
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FLUX RECOVERY FROM PRIMAL HYBRID METHODS 411

where σh,0|T belongs to

∇Xh(T ) = {(a+ bx, c− by) : a, b, c ∈ R},
and hTx and hTy are the width and the height of T , respectively. Since we have
divσh,0|T = 0, it follows that

aT =
f |T

h2
Tx

+ h2
Ty

.

Now, by means of the orthogonality relation∫
T

(h2
Ty
(x− xT ), h

2
Tx
(y − yT )) · ∇v dx = 0, v ∈ Xh(T ),

it is easy to see from (4.4) that

σh,0 = −P0(K∇uh),(4.5)

where P0 is the L2 projection which locally maps onto the space ∇Xh(T ). Combining
the results obtained thus far, we obtain

σh|T = −P0(K∇uh)|T +
f |T

h2
Tx

+ h2
Ty

(h2
Ty
(x− xT ), h

2
Tx
(y − yT )).(4.6)

Remark 4.2. Similar results using the lowest-order rectangular Raviart–Thomas
mixed finite element method can be found in [1, 8]. Our results show the primal
hybrid approach provides a clear way of constructing the vector approximation from
the Q1 nonconforming solution.

5. Extension to nonlinear problems. The previous results can be extended
to the nonlinear second-order elliptic boundary value problem{

−div a(u,∇u) = f in Ω,

u = 0 on ∂Ω.
(5.1)

The primal hybrid formulation is to find a pair (u, λ) ∈ X ×M such that

a(u, v) + b(v, λ) = (f, v) ∀v ∈ X,(5.2a)

b(u, v) = 0 ∀µ ∈ M,(5.2b)

where

a(u, v) =
∑
T∈Th

∫
T

a(u,∇u) · ∇v dx.(5.3)

Analysis of the primal hybrid finite element methods for this nonlinear problem is
given in [18] for k ≥ 2.

The previous technique of recovering a vector approximation can be applied as
well. After computing the primal hybrid solution (uh, λh), one constructs a unique
σh ∈ RTk−1(T ) on each T ∈ Th by

σh · nT = λh on ∂T,(5.4a) ∫
T

[σh + a(uh,∇uh)] · τ dx = 0, τ ∈ Ψk−1(T ) (k ≥ 2).(5.4b)
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412 SO-HSIANG CHOU, DO Y. KWAK, AND KWANG Y. KIM

Setting σ = −a(u,∇u), we can derive the bound for ‖σ − σh‖0 in the same way
as before. By applying Lemma 3.3 to the error equations∫

∂T

(Πhσ − σh) · nT µds =

∫
∂T

(λ− λh)µds, µ ∈ Sk−1(∂T ),∫
T

(Πhσ − σh) · τ dx =−
∫
T

[a(u,∇u)− a(uh,∇uh)] · τ dx,

τ ∈ Ψk−1(T ) (k ≥ 2),

we obtain

‖Πhσ − σh‖0,T ≤ C(‖a(u,∇u)− a(uh,∇uh)‖0,T + h
1/2
T ‖λ− λh‖0,∂T ).

Note that if a has bounded derivatives, then there exists a constant C > 0 independent
of h such that

|a(u,∇u)− a(uh,∇uh)| ≤ C(|u− uh|+ |∇(u− uh)|),
which implies that

‖a(u,∇u)− a(uh,∇uh)‖0,T ≤ C‖u− uh‖1,T .

Thus it follows by Theorem 2.1 that

‖Πhσ − σh‖0,T ≤ Chk(|σ|k + |u|k+1).

Theorem 5.1. We have for u ∈ Hk+1(Ω)

‖σ − σh‖0 ≤ Chk(|σ|k + |u|k+1).

6. Numerical results. To confirm the theoretical results established in the
previous sections, numerical experiments are carried out on the unit square Ω = (0, 1)2

for three test problems. The first problem has a discontinuous tensor coefficient, and
the second one has a smooth coefficient, but its solution has a very weak “layer”
near the right boundary. Finally the third problem is taken from [16]. For numerical
results on triangular grids, we refer to [13].

Errors for the velocity and the pressure approximations are computed in the
discrete L2 norms

‖σ − σh‖2
0,h =

∑
T∈Th

∑
e∈∂T

[∫
e

(σ − σh) · n ds

]2
,(6.1)

‖u− uh‖2
0,h =

∑
T∈Th

∫
T

(u− uh)
2 dxdy,(6.2)

where the integrals are evaluated by the midpoint rule, i.e., if S denotes an edge e or
an area T , then we evaluate

∫
S
g by |S|×g(xS), where xS is the mass center of S. All

the results below show second-order convergence in the velocity. They are tabulated
as Tables 6.1–6.3.

Problem 1.

K =


104 0

0 1


 for 0 < x < .5,


1 0

0 2


 for .5 < x < 1,
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Table 6.1
Problem 1. Discontinuous tensor coefficients.

h ‖œ − œ h‖0,h ‖u− uh‖0,h
1/8 2.58135e-1 5.60052e-4

1/16 2.64380e-1 1.39916e-4

1/32 7.91115e-2 3.49786e-5

1/64 1.97629e-2 8.74365e-6

1/128 4.93600e-3 2.18584e-6

Table 6.2
Problem 2. Weak layer at the right boundary.

h ‖œ − œ h‖0,h ‖u− uh‖0,h
1/8 9.30579e-2 8.34233e-2

1/16 2.67894e-2 2.21723e-2

1/32 7.01984e-3 5.63162e-3

1/64 1.77762e-3 1.41354e-3

1/128 4.45865e-4 3.53740e-4

Table 6.3
Problem 3. Distorted grids, β = 60◦, θ = 45◦.

Grid size ‖œ − œ h‖0,h ‖u− uh‖0,h
8 × 8 2.0878e-1 4.1977e-2

16 × 16 5.2684e-2 1.0989e-2

32 × 32 1.3526e-2 2.7816e-3

64 × 64 3.4843e-3 6.9757e-4

128 × 128 8.9701e-4 1.7453e-4

and

u(x, y) = x(1− x)y(1− y).

The domain Ω is partition into the squares of size h. By simple calculations it is easy
to see that the velocity σ = −K∇u has continuous normal components across the line
of discontinuity x = 1/2. We use the parametric rotated Q1 nonconforming method
for this problem.

Problem 2. In this problem we let K = I, the identity matrix. The exact
solution is

u(x, y) = x(1− x)y(1− y) exp(5x),

which has a boundary layer. We use rectangular grids.
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✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✂

(0, 0) (1, 0)

(0, 1) (1, 1)

(.5, .5)

β✩

Fig. 6.1. Distorted grids for Problem 3.

Problem 3.

K =


 cos θ sin θ

− sin θ cos θ




1 0

0 0.01




cos θ − sin θ

sin θ cos θ


 ,

and u(x, y) = cos(πx) cos(2πy). The grids are obtained through successive refinements
of the initial grid shown in Figure 6.1. The refinement is done by connecting the
midpoints of opposite edges of every quadrilateral. We use the parametric rotated Q1
nonconforming method for this problem.
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