
Bowling Green State University Bowling Green State University 

ScholarWorks@BGSU ScholarWorks@BGSU 

Management Faculty Publications Management 

2008 

Assuring quality at the source with varying worker skills: Assuring quality at the source with varying worker skills: 

economic justification of the online repair policy economic justification of the online repair policy 

Dooyoung Shin 

Hokey Min 
Bowling Green State University, hmin@bgsu.edu 

Follow this and additional works at: https://scholarworks.bgsu.edu/management_pub 

 Part of the Operations and Supply Chain Management Commons 

Repository Citation Repository Citation 
Shin, Dooyoung and Min, Hokey, "Assuring quality at the source with varying worker skills: economic 
justification of the online repair policy" (2008). Management Faculty Publications. 5. 
https://scholarworks.bgsu.edu/management_pub/5 

This Article is brought to you for free and open access by the Management at ScholarWorks@BGSU. It has been 
accepted for inclusion in Management Faculty Publications by an authorized administrator of 
ScholarWorks@BGSU. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bowling Green State University: ScholarWorks@BGSU

https://core.ac.uk/display/234762399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.bgsu.edu/
https://scholarworks.bgsu.edu/management_pub
https://scholarworks.bgsu.edu/management
https://scholarworks.bgsu.edu/management_pub?utm_source=scholarworks.bgsu.edu%2Fmanagement_pub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=scholarworks.bgsu.edu%2Fmanagement_pub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.bgsu.edu/management_pub/5?utm_source=scholarworks.bgsu.edu%2Fmanagement_pub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages


   

 

   

   
 

   

   

 

   

   Int. J. Services and Operations Management, Vol. 4, No. 6, 2008 709    
 

   Copyright © 2008 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Assuring quality at the source with varying  
worker skills: economic justification of the  
online repair policy 

Dooyoung Shin 
Department of Management 
College of Business 
Minnesota State University, Mankato 
Mankato, MN 56001, USA 
Fax: (507) 389–5497 
E-mail: dooyoung.shin@mnsu.edu 

Hokey Min* 
James R. Good Chair in Global Supply Chain Strategy 
Department of Management, Room 3008C 
College of Business Administration 
Bowling Green State University, USA 
Fax: (419) 372–6057 
E-mail: hmin@bgsu.edu 
*Corresponding author 

Abstract: Traditionally, quality control on an assembly line has been 
conducted by quality inspectors at the end of the assembly line. Defective or 
incomplete parts identified during the production cycle are typically transferred 
to a separate repair shop where such parts are reworked, retested, re-inspected 
or replaced. In contrast, today’s repetitive manufacturing companies have 
begun to delegate the power and responsibility of quality inspection and control 
to assembly workers on the line. This so-called online (line-stop) repair policy 
has been receiving increased attention from many manufacturing companies. 
Through a series of computational experiments, this paper examines the 
effectiveness of the online repair policy, which empowers workers to assure 
quality on the assembly line. Under varied assembly line configurations, quality 
failure costs of the two repair policies are estimated and compared to verify the 
superiority of the online repair policy. The computational results indicate that 
the online repair policy can be far more effective in assuring quality and saving 
costs than the traditional offline repair policy. 
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1 Introduction 

In the past decade, many manufacturing companies have begun to focus their attention on 
quality improvement initiatives, such as Total Quality Management (TQM), Continuous 
Quality Improvement (CQI) and Six Sigma, in an effort to overcome the pressure of 
mounting costs, fierce competition and customer dissatisfaction arising from poor quality. 
Noteworthy in such a quality movement has been the debate on assembly workers’ 
significant roles in assuring quality in daily assembly operations. One of the key issues in 
this debate has been whether or not quality can be assured more effectively by delegating 
the responsibility and the power of quality control and inspection from quality specialists 
to the hands of assembly workers who are heavily involved with assembly operations 
(see, e.g., Thirugnanam et al., 2007). Work incompletion or defects occur owing to 
human and nonhuman factors. Typically, an abnormality may arise when:  

• parts from the previous process are wrongly assembled, or found defective 

• work instructions and guidelines cannot be followed 

• a major delay or incompletion is caused by a shortage of part components, defective 
raw materials and poorly maintained machine/equipment 

• a major delay or incompletion is caused by human factors such as fatigue, 
distraction, low skill levels and poor job attitudes and behaviours. 

In a traditional assembly line, the primary responsibility of quality assurance is in the 
hands of quality specialists and final inspectors. Such a line typically adopts an offline 
repair policy in which incomplete or nonconforming parts, which are removed from the 
assembly line by workers or tagged ‘defective’ by inspectors, are often sent to a separate 
repair shop or other field rework facilities where such parts are reworked, retested,  
re-inspected, or replaced (Carter and Silverman, 1984). A correction or completion can 
be done either in a separate repair shop or by running the assembly line overtime after  
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regular work is over. Feigenbaum (1991) refers to this separate repair shop as a ‘hidden  
plant’, which typically accounts for 15% to 40% of production capacity. Such a 
traditional offline repair policy also stresses full capacity utilisation (manpower and 
machine/equipment) and tries to avoid line disruptions as much as possible by keeping 
the assembly line moving at all costs.  

Even though the offline repair policy has the benefit of not causing any major line 
disruptions or loss of production rate, its advantages can be negated by a potentially long 
repair time (e.g., disassembly, repair, re-inspection, retesting and reassembly) and high 
operational cost (extra machines and equipment, workers, floor space, etc.). Robinson  
et al. (1990) suggested that a ‘rule of 10’ (off-the-line repair costs are ten times higher 
than online repair costs) should discourage the plant from using an offline repair policy 
and instead encourage the plant to use an online repair strategy. Perhaps the main 
drawback of the offline repair policy may be that assembly workers are not actively 
involved with quality assurance activities (Buzacott, 1999). When workers discover 
defective or incomplete units, they may not be able to pay immediate attention to the 
causes of the quality problems, owing to the very nature of the continuously moving 
assembly line. Under the offline repair policy, most problems are overlooked and go 
unnoticed during regular shop operations until after defective or incomplete units are 
discovered and transferred to a separate repair shop. This often results in higher costs 
associated with scraps, increased idle time and disturbances (Bock et al., 2006). Also, the 
presence of a separate repair shop and end-of-the-line inspectors may weaken workers’ 
awareness of quality problems. 

In contrast, a contemporary perspective in today’s quality assurance stems from 
workers at the source stations. Recognising that workers are the best source of 
improvement, many companies have brought workers into the thought process of daily 
operations by empowering them and making them cognisant and skilful through intensive 
training and education (Foster, 2006). In this approach, every workstation is considered  
a critical quality inspection and control point, and therefore each worker has to ensure 
that a defective or incomplete part never slips through its source station without being 
identified and fixed. This type of philosophy, called ‘quality at the source’, which is a 
basis of the online repair policy (also called the line-stop repair policy), is a valuable way 
of controlling and assuring quality at each worker’s workstation and reducing appraisal 
costs at the final inspection. Quality at the source is one of the dominant principles of 
today’s quality philosophies. It promotes the idea of ‘right from the start’ rather than 
‘detect and correct’ (Mergen and Stevenson, 2002). 

Under the online repair policy, the power and the primary responsibility for 
controlling and inspecting quality are delegated to workers on the assembly line instead 
of quality inspectors at the end of the assembly line. When abnormalities occur during  
the production process, each worker has the authority and the responsibility to stop the 
assembly line so as to prevent defects and carry out immediate, on-the-spot corrections. 
When a line is stopped, not only is each problem fixed, but every error or problem is also 
systematically traced to its cause, and a correction is made so that the same errors or 
problems cannot occur again. When the online repair policy was first initiated by Taiichi 
Ohno at Toyota assembly plants, the company reported that the production lines were 
stopped frequently and the workers became easily discouraged; however, as workers 
gained experience in identifying and tracing problems to their ultimate cause, the number  
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of errors began to drop dramatically. Womack et al. (1990) reported that Toyota  
plants, where every worker was authorised to stop the line, rarely stopped its line and 
consequently increased its productivity. At Canon, such a management principle is called 
TSS. TSS stands for the Japanese words ‘tomete’ – stop; ‘sugu’ – right away; and ‘shochi 
o toru’ – take measures to correct it (Japanese Management Association, 1987). While 
stopping the assembly line is discouraged in a traditional production system that relies 
heavily on conveyors, TSS gives workers the authority to stop the line. TSS is part of a 
quality control programme designed to prevent problems at their sources rather than 
trying to detect them after they have occurred.  

The major benefit of the online repair policy is that it heightens workers’ awareness 
of human mistakes or machine malfunctions that can cause defects and, subsequently, 
deteriorate quality. Another important benefit of the online repair policy is the 
development of teamwork between workers and management. Workers and management 
can foster a favourable environment for teamwork when they work together to achieve 
the same goals for the company (Feigenbaum, 1956; Womack et al., 1990; Goyal and 
Deshmukh, 1992; Shenawy et al., 2007; Feigenbaum, 2009). While the online repair 
policy has a greater potential to bring many managerial benefits and better quality 
assurance than the offline repair policy, many companies have been reluctant to adopt the 
policy due to scepticism involved in the online repair strategy. Management and workers 
have been uncertain as to whether these potential benefits can be translated into 
substantial cost savings, and if there exists an appropriate systematic mechanism that can 
properly measure the true cost of stopping the assembly line against the cost of repairing 
defects at the separate workstations. The difficulty of nurturing an organisational culture 
in which the online repair policy can fully flourish may also have contributed to this 
reluctance (Caudron, 1995; Joiner, 2007). The purpose of this paper is to provide a 
corroborative result that can help management better realise and measure the potential 
benefits of the online repair policy. In doing so, this paper examines the impact of two 
different repair policies on quality assurance on an assembly line. Two quality failure 
cost models that can measure the effectiveness of the two policies on assembly lines  
will be developed and the performance of these policies under different assembly line 
configurations will also be measured. Given the lack of such measures that allow the  
firm to assess the true benefits of quality assurance, the proposed quality failure cost 
model can provide the firm with a viable quality performance indicator (Franceschini  
et al., 2006). 

1.1 Literature review 

Even though the benefits of the online repair policy have been well documented in recent 
studies on the automobile manufacturing industry, little research has been conducted as to 
how these benefits can be measured in terms of cost savings, especially with respect  
to quality failure costs (Feigenbaum, 1991). Although few previous studies have directly 
compared the two repair policies, the following research examined similar problems.  
In the most closely related paper, Robinson et al. (1990) compared the performances  
of three approaches (line-stop (online repair) policy, repair-shop (offline repair) policy, 
and asynchronous line-stop policy) based on production performance measures, such as 
work-in-process, average utilisation of workers in the repair shop, average number of  
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items waiting for offline repair and defective rate. They observed that the line-stop policy 
performed better on shorter assembly lines and the probability of producing a defect 
decreased owing to an increased awareness of quality. 

Lau and Shtub (1987) examined the effectiveness of a ‘hybrid’ line (i.e., a paced  
line that can be stopped or slowed down for incompletion). They considered the factor of 
product quality via an incompletion cost component, but did not estimate quality failure 
costs explicitly. Buzacott (1990) proposed that if high quality and high labour 
productivity are to be pursued in typical manual assembly lines, assembly workers must 
be able to stop the line to avoid any defects that may be due to insufficient time to 
complete the task. Even though he recognised the importance of a line-stop policy for 
continuous quality improvements, he did not develop cost measures for evaluating the 
effectiveness of the line-stop policy. Leung and Lai (1996) compared the effects of online 
and offline repairing strategies on productivity in automatic assembly systems. Through 
simulated experiments, they concluded that the two different repairing strategies did not 
show any significant differences in their impacts on productivity unless a high defective 
percentage in assemblies was encountered.  

Considering the uncertain and random nature of quality failures, Shin and Min (1995) 
examined the cost-effectiveness of a line-stop policy under the condition of stochastic 
task times using an expected cost model similar to the one proposed by Silverman and 
Carter (1986). More recently, Shin and Min (2001) first considered the cost of quality as 
part of performance measures and discovered that the line-stop policy outperformed the 
offline repair policy with respect to savings in total quality failure costs. However, they 
did not take into account the impact of varying worker skills on the efficiency of repair 
and the subsequent quality failures.  

As this literature review reveals, few of the prior studies on the online repair policy 
consider quality failure costs as a key performance measure, even though quality costs 
are becoming an area of increasing concern. Crosby (1980) found that the average 
Cost of Quality (COQ) for the US companies ranged from 15% to 20% of every sales 
dollar. This usually includes the cost of reworking, scrapping, repeating service, 
inspection, tests, warranties and other quality-related expenses. Recognising the 
importance of COQ, especially quality failure costs, our current study surpasses previous 
works by proposing a quality failure cost framework within which we examine the 
cost-effectiveness of the online repair policy over the offline repair policy. The primary 
research question of the study is concerned with whether assuring quality at the source on 
the basis of the online repair policy will provide sizable savings over a traditional 
policy, which relies heavily upon an end-of-line inspection and an offline repair, 
and how efficiently those savings can be measured. In an effort to answer this question, 
this paper introduces a framework that measures the quality failure costs of the 
two different repair policies. In addition, to overcome the shortcoming of previous 
studies, which neglected the impact of varying worker skills on quality failures, 
this paper examines the effectiveness of the online repair policy under different 
assembly line configurations involving varying worker skills. To elaborate, this 
paper assesses the effects of the assembly line length, the different arrangements of 
assembly workers according to their skill levels, and the unit quality failure cost (internal 
and external) on cost savings through a series of computational experiments under 
different scenarios.  
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2 The framework of total quality failure costs 

As defined by Crosby (1980), the cost of quality can be classified into the cost of ‘good’ 
quality (cost of conformance) and the cost of ‘poor’ quality (cost of nonconformance). 
Since the cost of poor quality is usually much higher than the cost of good quality owing 
to penalties associated with product defects, it is important for the firm to estimate it and 
then to develop built-in quality strategy (e.g., Six Sigma philosophy) that enables the firm 
to prevent future quality failures. The next subsections will introduce and derive 
mathematical models that are designed to calculate the cost of poor quality.  

2.1 Background of the proposed models 

The quality failure costs can be categorised into internal failure and external failure  
costs. Internal failure costs are associated with correcting a defect before the customer 
receives the item. These costs include the costs related to scrap, rework, lost labour  
hours and machine capacity, failure analysis, re-inspection and retesting, downgrading, 
longer lead times and higher inventory. External failure costs are associated with defects 
that are found after a finished product is shipped to the customer. These include costs of 
handling customer complaints, customer returns and product recalls, warranty repairs and 
replacement, and legal liability and lawsuits. 

Quality failure costs are genuine losses that can be avoided if the quality is perfect. 
On the other hand, prevention and appraisal costs are incurred to reduce failure costs. For 
simplicity, our proposed models focus exclusively on quality failure costs. The rationale 
is that a higher percentage of the COQ (between 70% and 90%) is usually associated  
with failure costs (Juran, 1989). For example, Taruntaev (1993) observed that the cost of 
maintaining and repairing engine assembly equipment was sometimes equal to the 
original purchase cost of the equipment if an equipment failure occurred. Juran and 
Gryna (1988) assert that failure cost elements provide a major opportunity for cost 
savings and for removal of the causes of defects.  

Prevention costs are not included in our cost models because of the unstructured 
nature of prevention efforts, such as quality planning activities, training and education  
of workers, and supplier training programmes. Another reason for the exclusion of 
prevention costs from our models is that prevention costs may be proportional to 
company-specific quality standards. In other words, such costs may change as 
manufacturing firms raise their quality standards and set their own tolerance limits for  
the range of acceptable products. Harrington (1987) also argued that prevention 
costs should be considered a cost-avoidance investment rather than a cost. Appraisal 
costs are also excluded because of the difficulty involved in comparing two repair 
policies. For example, the offline repair policy relies heavily on quality inspectors’ 
final inspections, whereas the line-stop policy mainly relies on workers’ 
on-the-spot inspections. 

2.2 Notations and assumptions 

The two quality failure cost models that will be introduced in the following sections are 
based on the notations denoted below. These models are based on manual assembly lines 
manned by only one assembly worker per station. 
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Q = number of total production in units (target production units) 

yi = total number of units transferred from station i to station i + 1 (e.g., y0 = Q) 

m = number of workstations (workers) on an assembly line. All workers are  
  connected in series, and can indicate m possible opportunities for error in each  
  production cycle.  

pi = reliability of the i-th workstation (worker). (i.e., (1–pi) indicates the probability  
  that a defect occurs at the i-th workstation, and is assumed to be statistically  
  independent and identical for each of the m opportunities for error) 

qi = reliability of the appraisal (inspection) process at the i-th station (i.e., the  
  probability of detecting a defect that has occurred at the i-th workstation) 

ri = reliability of the repair job at the i-th station (i.e., the probability that an identified  
  defect will be correctly repaired at the i-th station). ri is considered only in a  
  situation where a worker is responsible for correcting his/her own mistakes (i.e.,  
  online repair policy). 

Cs = internal failure cost per unit 

IFC = Expected Total Internal Failure Cost 

Ce = external failure cost per unit 

EFC = Expected Total External Failure Cost 

TFC = Expected Total Failure Cost (i.e., TFC = IFC + EFC). 

3 Measuring the impact of quality failures under the offline repair policy 

To compare and contrast the efficiency and effectiveness of the traditional offline repair 
policy with the proposed online repair policy, we need to assess the impact of the offline 
repair policy on the cost of poor quality (i.e., total quality failure cost). In doing so, 
mathematical equations are developed to determine the total quality failure cost under the 
offline repair policy. The following subsections delineate the detailed procedure for 
deriving such mathematical equations. 

3.1 Controlling quality at the end-of-line and at the repair shop: the offline 
repair policy 

Under this policy, quality is primarily controlled by final inspectors and offline repair 
shop workers. When an assembly worker detects a defective or incomplete part during 
the predetermined cycle time, he/she is required to remove the defective or incomplete 
part immediately from the assembly line, and start working on the next part. Each 
incomplete or defective part is tagged ‘incomplete’ or ‘defective’, and is transferred to a 
separate repair shop. Workers at an offline repair shop will examine each defective or 
incomplete part and decide whether it should be scrapped or reworked and sold at a 
discounted price. If a defective part is detected at the final inspection station, it is tagged 
defective by inspectors and sent to the repair shop. Not all defective parts transferred to 
an offline repair shop can be saved. Some defective parts may be reworked successfully 
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at additional costs, while some will never be corrected. Maintaining an offline repair 
shop, however, necessitates the retention of extra workers, floor space, machines and 
equipment, thereby incurring extra costs and resulting in a loss of productivity. 

The number of good parts produced by station (worker) i depends on the reliability of 
station i, pi. Typically, pi is determined on the basis of a worker’s skill level, experience 
and the amount of prevention efforts a company makes for its workers and quality 
system. Efforts such as education and training, quality planning and reporting, quality 
data acquisition and analysis, improvement of product and process design and control can 
work favourably for the improvement of pi. At each workstation, bad or incomplete parts 
are identified and removed from the line and transferred to a repair shop. The number of 
parts being transferred to station (i + 1) depends on the reliability of station i and its 
reliability of inspection, qi. 

A quality inspection may be done by assembly workers, final inspectors and  
repair shop workers. Workers’ own inspections may not be as rigorous as the ones 
done by quality inspectors because the offline repair policy mandates that workers 
should perform assigned tasks and inspect their work simultaneously during a 
predetermined, very tight cycle time before parts are transferred to a succeeding station. 
Also, because the primary objective of the offline repair policy is to minimise cycle time 
and maximise the production rate as much as possible, workers and management 
believe that workers are not primarily responsible for on-the-spot inspection and 
correction. It is generally accepted that inspection should be carried out at the end of the 
line by quality inspectors and correction should be done by the repair shop workers. 
Therefore, the reliability of inspection by workers may suffer and, consequently, a 
portion of bad parts may be erroneously passed to the next workstation. It is not 
unreasonable to assume that the reliability of inspection (i.e., qi) under this policy is 
inferior to the one under the online repair policy that is discussed in the following section. 
A schematic of the offline repair policy framework is summarised in Figure 1. As 
explained earlier, the offline repair policy can avoid line disruptions that may arise from 
frequent line stoppages, and resultant assembly line idle times. In general, capacity 
(manpower and machine/equipment) utilisation may be higher than that of the online 
repair policy.  

3.2 Quality failure costs model for the offline repair policy 

Note that the proportion of good parts over the total production will be 
1

p .
m

i
i=
∏  As 

mentioned earlier, bad parts may be delivered to customers mistakenly because of 
workers’ imperfect or insufficient inspection time, thereby incurring external failure 
costs. The Expected Total External Failure Costs (EFC) can be obtained by multiplying 
unit external failure cost, Ce, by the number of bad parts delivered to customers because 
of imperfect inspection. That is: 

1
1

EFC C (1 q ) y Q p .
m

e m m i
i

−
=

⎧ ⎫⎛ ⎞
= ⋅ − −⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
∏  (1) 
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Figure 1 A schematic of the offline repair policy at station k 
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At each workstation, a worker can identify defective parts with a probability of qi. If 
tagged defective, these defective or incomplete parts will be transferred to a separate 
repair shop and will incur internal failure costs. The Expected Total Internal Failure Costs 
(IFC) is calculated by multiplying unit internal failure cost, Cs, by the total number of 
parts found to be defective at the end of the line. That is: 

1 1 1
2 1

IFC C (1 p )q Q q y Q p .
hm

s h h i
h i

−
= =

⎡ ⎤⎧ ⎫⎛ ⎞
= ⋅ − + −⎢ ⎥⎨ ⎬⎜ ⎟

⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦
∑ ∏  (2) 
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Hence, the Expected Total Failure Cost (TFC) is obtained by summing IFC and EFC: 

1 1 1 1
2 1 1

TFC C (1 p )q Q q y Q p C (1 q ) y Q p .
h mm

s h h i e m m i
h i i

− −
= = =

⎡ ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞
= ⋅ − + − + ⋅ − −⎢ ⎥⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭⎣ ⎦
∑ ∏ ∏  (3) 

The parts found to be defective and/or incomplete at the end of the line are typically 
transferred to a separate repair shop, and are reworked, retested and re-inspected. This 
model does not specifically include rework costs associated with such activities. It is 
assumed that the unit internal failure cost, Cs, implicitly represents part of the cost of 
operating a repair shop. The amount of repair time required to correct each defective (or 
incomplete) item will be problem specific, and dependent on the nature of repair, thereby 
making such cost calculations very difficult. For example, if a correction requires a total 
disassembly of the part rather than a simple attachment on the end item, the impact on the 
cost of repair could be considerably significant. The percentage of defective units that can 
be successfully reworked will also play an important role when determining the total 
number of reworked units that can be shipped to customers. 

4 Measuring the impact of quality failures under the online repair policy 

To examine whether the proposed online repair policy outperforms the traditional offline 
repair policy in terms of cost-saving opportunities, we develop mathematical equations 
that can assess the true impact of the online repair policy on the cost of poor quality (i.e., 
total quality failure cost). The following subsections delineate the detailed procedure for 
deriving such mathematical equations. 

4.1 Assuring quality at the source: the online repair policy 

Under the online repair policy (a line-stop repair policy), workers are empowered to have 
the authority and the responsibility to stop the line when abnormalities occur. With the 
exception of extreme circumstances (e.g., safety hazards, emergencies), workers are 
strongly encouraged to stop the line whenever work cannot be done according to work 
standards or production requirements. Management and workers should make every 
effort to anticipate or bring problems to the surface beforehand so that line stoppages can 
be avoided. If a problem still persists, the worker stops the line and switches on the 
abnormality indicator (e.g., Andon, Poka Yoke devices, buzzer, line-stop buttons). Once a 
line is stopped, a ‘help team’, which consists of maintenance crews, supervisors, 
engineers, utility workers and/or available workers from adjacent workstations, is 
summoned to the spot immediately. Personnel that may be affected by the problem 
should also come to the station for on-the-spot confirmation as soon as a line stop is 
signalled. As problems are identified and solved promptly, resultant feedback will speed 
up workers’ learning processes, thereby contributing to continuous productivity and 
quality improvement.  

4.2 Quality failure cost model for the online repair policy 

Under this policy, the primary responsibility of inspecting and controlling quality lies in 
the hands of workers who perform the assigned tasks, not quality inspectors. At each 
workstation, a worker is required to assure quality by inspecting and correcting his/her 
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own work after performing the assigned tasks, and is fully responsible for the quality of 
the performed tasks. Since the online repair policy inherently requires workers to have 
reliable inspection capabilities and to work within a time commitment for inspection and 
repair, the probability of passing defective parts to the next station would be minimal and 
negligible. Increased spending on prevention efforts such as education and training, 
product and process design, and inspection technology would work favourably in 
enhancing the reliability of the workers’ skill level for inspecting and repairing defective 
parts. Figure 2 shows a schematic of the online repair policy. 

Figure 2 A schematic of the online repair policy at station k 

Station k

 Good partsBad parts

Inspection
reliability: qk

Parts found
defective

Bad parts
inspected wrongly

Scrap

Irreparable bad parts Corrected parts

1yk −

(1 p )k− pk

1(1 p ) yk k −− 1p yk k −

qk (1 q )k−

1(1 p )q yk k k −− 1(1 p )(1 q ) yk k k −− −

(1 r )k− rk

1(1 p ) q (1 r ) yk k k k −− −
1(1 p ) q r yk k k k −−

1y y {p (1 p )(1 q ) (1 p ) q r }k k k k k k k k−= + − − + −
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The number of good parts to be produced at the end of the line will be a function of pi, qi 
and ri. Bad parts are also produced with the probability of (1–pi) at each workstation but 
inspected rigorously with the probability of qi and repaired with the probability of ri. 
Corrected parts are included in the computation of good parts. When workers cannot 
perform assigned tasks as specified, bad parts may be produced with the probability of 
(1–pi) at each workstation. These bad parts are identified by the worker’s inspection. If 
bad parts are repairable and fixed correctly, rectified parts will be transferred to the next 
workstations. If bad parts are irreparable because they are severely damaged, or workers 
do not have the proper skills to fix them, or parts are corrected improperly, they are 
scrapped from the line, thereby incurring internal failure costs. Thus the Expected Total 
Internal Failure Cost (IFC) is computed by multiplying Cs by the number of bad parts 
found to be defective at the end of the line: 

1
1

IFC C (1 p )q (1 r ) y .
m

s k k k k
k

−
=

⎧ ⎫
= ⋅ − −⎨ ⎬

⎩ ⎭
∑  (4) 

There may be a chance that a certain portion of bad parts will still be transferred  
to succeeding stations because of workers’ unreliable inspection techniques (skills), 
inappropriate inspection methods, outdated inspection technology, or maladjusted and 
misaligned testing equipment. Human factors such as lack of motivation, fatigue and 
distraction could also contribute to poor inspections. However, it is not unreasonable to 
assume that the probability of defective parts passing a series of rigorous inspections 
(especially in a long assembly line) at every workstation is very small and negligible. 
Thus, the proportion of these parts has not been considered in the proposed models.  
The expected number of bad parts to be delivered to customers because of imperfect 
inspection (BPC), which results in external failure costs, can be obtained as follows: 

1

BPC Q (1 p )(1 q ).
m

k k
k =

= ⋅ − −∏  (5) 

The Expected Total External Failure Costs (EFC) can then be obtained by multiplying 
BPC by Ce: 

1

EFC Q (1 p )(1 q ) .
m

e k k
k

C
=

⎧ ⎫
= ⋅ − −⎨ ⎬

⎩ ⎭
∏  (6) 

Thus, the Expected Total Failure Costs (TFC) of the online repair policy is given as: 

1
1 1

T FC C (1 p )q (1 r ) y C Q (1 p )(1 q ) .
mm

s k k k k e k k
k k

−
= =

⎧ ⎫⎧ ⎫
= ⋅ − − + ⋅ − −⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∑ ∏  (7) 

5 Computational experiments 

To verify the efficiency and effectiveness of the proposed online repair policy relative to 
the traditional offline repair policy, we conducted a series of computational experiments 
comparing the cost saving potentials of the online repair policy to those of the offline  
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repair policy under various scenarios involving different worker skills for solving 
Equations (1) through (7) specified in Sections 3 and 4. The following subsections 
provided the detailed results of the computational experiments. 

5.1 Experimental scenarios 

The purpose of this experiment is to investigate the impact of two different repair policies 
on quality assurance in terms of total quality failure costs. We measure the performance 
of the online repair policy by considering three key line configuration parameters:  
the length of an assembly line in terms of the number of assembly workstations, the 
arrangement of assembly workers on an assembly line with respect to their skill levels, 
and the effect of unit failure costs (Cs and Ce). More specifically, this study makes an 
attempt to find answers for the following questions: 

• Q1: What will be the effect of longer assembly lines on quality failure costs under  
    two different repair policies? The longer assembly lines tend to have more tasks  
    to be performed and consist of more workers (workstations), thus entailing  
    more room for errors and variations. We investigate the effectiveness of two  
    repair policies by examining whether the length of an assembly line has any  
    impact on the performance under different line configurations.  

• Q2: Will the different arrangements of workers, with respect to their skill levels, have  
    any effect on quality failure costs under two different repair policies? Typically,  
    in the absence of the need for special skill matching, workers are placed on  
    workstations randomly without much emphasis on their skill levels, except at the  
    final inspection station under the offline repair policy. Under the online repair  
    policy, the responsibility and the power of quality assurance are delegated to  
    workers on the line. We investigate the effectiveness of two repair policies under  
    four different arrangements.  

Arrangement 1 Arrange workers in random order without recognising the different 
skill levels of the workers. 

Arrangement 2 Arrange workers in ascending order. A worker with the lowest 
skill (least experienced) will be placed on the first workstation, and 
a worker with the highest skill (most experienced) will be placed 
on the last workstation. 

Arrangement 3 Arrange workers in descending order. A worker with the highest 
skill will be placed on the first workstation, and a worker with the 
lowest skill will be placed on the last workstation. 

Arrangement 4 Assume that worker capabilities (skill levels, experiences, etc.)  
are equal. 

• Q3: What will be the impact of unit failure costs (i.e., unit internal failure cost, Cs  
    and unit external failure cost, Ce) on the performance of the two different repair  
    policies, when there is a significant difference between Cs and Ce? We examine  
    the impact of Cs and Ce on the performance of the two different repair policies  
    by recognising a possible difference between Cs and Ce. 
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With this in mind, we have designed the experiment so that the results can reasonably 
reflect the goals of the experiment. Two computer programs have been written in MS 
Excel 2000 with Visual Basic. Each computer program calculates the IFC, EFC and TFC 
of each repair policy based on the proposed failure cost models. The cost savings (or loss) 
are then computed to observe the effectiveness of the online repair policy over the offline 
repair policy. The framework of the computational experiment is as follows: 

• The length of an assembly line (the number of workstations, m): ten different cases 
(m = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100). These values of m reflect small to fairly 
large assembly lines. 

• Different skill levels of workers: The values of pi, qi and ri are randomly generated 
within the range of 0.8 and 1.00. For example, in the case of Arrangement 2 with  
m = 10, ten different values of pi, qi and ri are randomly generated and arranged in 
ascending order. The lowest values of pi, qi and ri are assigned to the novice (e.g.,  
a worker who may have just finished basic training and has been assigned to 
assembly operations), and the highest values of pi, qi and ri are assigned to the most 
experienced (skilled) worker. While there is a possibility that a skilled worker’s 
inspection reliability (qi) could be worse than that of a less-skilled worker, for the 
simplicity of the experiment we have assumed that skilled workers would have 
higher values of pi, qi and ri than less-skilled workers. 

• Three different scenarios of unit failure costs per problem: Cs > Ce, Cs = Ce, Cs < Ce 
(assumed to be the same for both policies). As discussed before, Cs represents a unit 
internal failure cost and Ce represents a unit external failure cost. In this experiment, 
we have considered three different cases. The first case (Cs > Ce) reflects a traditional 
quality costing system in which internal failure costs are assumed to be larger  
than external failure costs, and the definition of quality is based on ‘conformance  
to specifications’. Feigenbaum (1991) suggests that internal failure costs are 
approximately four times as much as external failure costs, and this ratio has been 
used in the experiment. In the second case (Cs = Ce), we assume that there is no 
noticeable difference between the two unit failure costs. The third case (Cs < Ce) 
reflects today’s emerging perspective that recognises the importance of customer 
satisfaction and the impact on potential and current customers when defective  
items are delivered to customers. These issues are discussed in further detail in the 
later sections. 

A total of 3200 test problems were randomly generated. For each test problem, IFC,  
EFC and TFC were computed for both repair policies, and the average savings of the 
online repair policy over the traditional offline repair policy were estimated. The savings 
were calculated as follows: Let TFCOFF = Expected Total Failure Cost resultant from the 
offline repair policy and TFC  ON = Expected Total Failure Cost resultant from the online 
repair policy. Then, the savings (or loss in terms of negative savings) of the online repair 
policy over the offline repair policy were computed as follows: 

(TFC TFC )
Savings (%) 100.

TFC
OFF ON

OFF

−
= ×  
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5.2 The results of the computational experiment 

Both Tables 1 and 2, along with Figures 3 and 4, summarise the experimental results 
showing that the online repair policy outperformed the offline repair policy substantially 
in all possible comparisons. In regard to Q1, both tables and figures clearly indicate that 
the average savings of the online repair policy decrease gradually as an assembly line 
becomes longer, regardless of the different arrangement of workers and unit failure costs. 
In general, an inverse relationship between the length of the assembly line and the 
amount of cost savings shows that the longer the assembly line, the less effective the 
online repair policy. This result was expected because when all machines, tools and 
operators are not 100% reliable, longer assembly lines will entail more room for errors, 
thereby increasing the probability of producing incomplete and defective parts. This 
result has also been confirmed by Robinson et al. (1990).  

Table 1 Average cost savings (%): arrangement of workers with respect to skill levels 

Average savings (%) 

m Descending Random Equal Ascending 

10 98.73 94.38 86.11 84.20 

20 97.23 93.59 84.59 77.82 

30 95.12 92.52 83.00 72.68 

40 91.85 90.73 81.35 68.73 

50 87.43 89.47 79.64 66.12 

60 80.34 88.37 77.88 64.03 

70 72.08 87.21 76.08 62.67 

80 61.77 86.01 74.26 61.59 

90 51.18 84.53 72.41 60.84 

100 40.43 82.82 70.55 60.64 

Mean 77.62 88.96 78.59 67.93 

SD 20.57  3.89  5.26  8.00 

Note: Each figure is based on 50 test problems generated randomly. 

In regard to Q2, Table 1 and Figure 3 show the effectiveness of the online repair policy 
under four different arrangements of assembly workers in accordance with their skill 
levels. The results show that an arrangement of workers in ‘descending’ order will bring 
substantial savings in shorter assembly lines (m ≤ 40). The savings decline rapidly as the 
line becomes longer. In fairly long assembly lines (m ≥ 90), this arrangement performed 
poorly among the four different arrangements. Overall, the performance of the ‘random’ 
arrangement was consistently higher and outperformed the other arrangements with an 
exception of shorter assembly lines (m ≤ 40).  
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Table 2 Average cost savings (%): the effect of unit failure costs 

Average savings (%) 

m Cs > Ce Cs = Ce Cs < Ce 

10 96.22 85.43 87.62 

20 91.43 78.53 82.58 

30 89.46 72.37 78.15 

40 89.34 66.68 75.16 

50 87.88 61.94 71.12 

60 86.74 56.58 69.98 

70 82.70 51.52 65.00 

80 81.75 46.26 61.36 

90 81.86 40.93 54.99 

100 79.43 36.29 53.98 

Mean 86.68 59.65 69.99 

SD  5.23 16.29 11.28 

Notes: 1 Each figure is based on 40 test problems generated randomly (i.e., ten  
  problems for ‘random’ arrangement, ten problems for ‘ascending’  
  arrangement, ten problems for ‘descending’ arrangement and ten problems  
  for ‘equal’ arrangement). 

  2 A ratio of four to one has been used for the case of Cs > Ce (i.e., Cs = 4 and Ce = 1). 

  3 A ratio of one to four has been used for the case of Cs < Ce (i.e., Cs = 1 and Ce = 4). 

Figure 3 Comparison of four different arrangements 

Average savings (%) of the online repair  policy

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60 70 80 90 100

m

Sa
vi

ng
s 

(%
)

Descending Random Equal Ascending
 



   

 

   

   
 

   

   

 

   

    Assuring quality at the source with varying worker skills 725    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 4 Comparison of three different cases: the effect of unit failure costs 
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In regard to Q3, Table 2 and Figure 4 indicate that when Cs is far greater than Ce, the 
average savings of the online repair policy become substantial, followed by Cs = Ce and 
Cs < Ce. The savings are particularly high in shorter assembly lines. The gap among the 
three different cases becomes wider as the line becomes longer. In summary, the results 
suggest that the online repair policy should be the dominant repair policy, especially 
when a unit internal failure cost, Cs, is substantially higher than a unit external failure 
cost, Ce, as is the case under a traditional COQ framework (Feigenbaum, 1991). 

5.3 Discussion 

In the previous section, we obtained the average cost savings (%) by assuming that Ce 
and Cs remain constant for both policies (i.e., Cs and Ce of the offline repair policy are  
the same as Cs and Ce of the online repair policy). In typical factory settings, however, 
this may not be the case. As described before, when a defective part is shipped to the 
customers, it can incur external failure costs. Because the unit external failure cost, Ce, is 
assumed to be the same for both repair policies, the same Ce has been used in the 
experiment. For normal scraps and losses that occur after parts are tagged irreparable, 
both policies may have similar cost estimates. In practice, however, it is highly likely  
that the offline repair policy will incur much higher Internal Failure Costs (IFCs). When a 
part is tagged reparable and requires a correction, the offline repair policy may be more 
costly than the online repair policy. Since all reworks are done at a separate repair shop, 
maintaining such a shop (or running a regular assembly line on an overtime basis, if 
necessary) would necessitate the retention of extra workers, floor space, machines and 
equipment, thereby incurring extra costs. 



   

 

   

   
 

   

   

 

   

   726 D. Shin and H. Min    
 

    
 
 

   

   
 

   

   

 

   

       
 

By contrast, the online repair policy requires workers to correct defective parts at 
their own workstations during the given cycle time. Some manufacturing firms even 
require workers to repair defective parts on their own time after work. Although workers 
are given the authority to stop the line and make necessary decisions to assure quality, 
workers are also responsible for the workmanship. Considering this, we could easily 
assume that the Cs of the offline repair policy could be higher than that of the online 
repair policy. Therefore, it is also reasonable to assume that the average savings of the 
online repair policy might be much higher than the ones provided in the tables if we 
could get realistic estimates of Cs and Ce under the two different policies. 

In this study we assumed a stabilised manufacturing process under which a line can 
be stopped whenever assembly operations cannot be performed in accordance with work 
standards or production requirements. In practice, however, the benefit of stopping a line 
may not be fully achieved if abnormalities typically occur at the later stages of assembly 
operations, or inspection and repair can be done effectively at a separate repair shop.  
This point has been partially validated in Tables 1 and 2. In the case of ‘descending’ 
arrangements, where highly skilled workers are placed in early stages of assembly 
operations and less-experienced workers are placed in later stages of operations, the 
savings decreased at a faster rate in longer assembly lines. 

As mentioned earlier, prevention and appraisal costs were not factored into the 
computation of the quality failure costs in our study owing, in part, to the difficulty 
involved in generalising the concept. According to Feigenbaum (1991), prevention  
costs do not exceed 5% to 10% of the total quality cost and the appraisal cost is in the 
neighbourhood of 20% to 25%, while internal and external failure costs may represent 
about 65% to 70%. In general, it is conceivable to assume that the online repair policy 
requires more prevention efforts than the offline repair policy. Implementing an online 
repair policy not only requires a strong commitment by the top management but also 
necessitates far greater investments in employee education and training, quality planning 
activities, and product and process design improvements than an offline repair policy. 
However, such prevention efforts would, in turn, ultimately improve the reliability of the 
workmanship and inspection skills of the workers, thereby further decreasing internal and 
external failure costs. 

It is also noteworthy that the online repair policy can reduce typical appraisal costs by 
delegating line-stop authority to workers. In a JIT production system that focuses heavily 
on the elimination of wastes to make the system lean, appraisal costs may be viewed as 
unnecessary waste resulting from a traditional quality management system that relies on 
end-of-line inspection and the offline repair policy. Costs pertaining to quality inspectors, 
inspection stations, tools and equipment can be eliminated by empowering workers  
and making each workstation an inspection and control point. In addition, correction of 
errors in earlier processing through the online repair policy can lower appraisal costs by 
eliminating or reducing the need for work-in-process and finished goods inspections. 

Finally, intangible benefits of the online repair policy may also be carefully 
considered in assuring quality on an assembly line. In the online repair policy, every 
problem or abnormality that causes a line stop is documented using a confirmation  
form and analysed thoroughly by a group, including a help team. After the root cause of a 
problem is identified, permanent remedies which would prevent a recurrence of the 
problem are developed and fully implemented throughout the necessary workstations. 
The online repair policy allows companies to discover quality problems at an earlier 
stage, trace down the problems systematically, and implement countermeasures promptly. 
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The online repair policy also creates an induced learning environment. Workers and 
management become more aware of the causes and effects of problems that are 
detrimental to quality, and are consciously involved with problem solving. As a matter of 
fact, Womack et al. (1990) discovered that as workers were fully empowered to stop the 
line and they gained experience in identifying and correcting problems, their yields 
reached 100% and the assembly line practically never stopped. 

6 Summary and conclusions 

Our study was based on the premise that workers are the best sources of quality 
improvement and quality can be controlled and assured at the workstations by the 
workers themselves, rather than at the final inspection or at separate repair shops. In this 
paper, we have examined the effectiveness of two different assembly line repair policies 
on quality assurance. Despite the fact that the offline repair costs more (usually ten times) 
than the online repair, many manufacturing firms have been hesitant to adopt the online 
repair policy in assuring quality on an assembly line owing to its unproven savings 
potentials. To integrate the online repair policy with TQM concepts, we have developed 
two cost models from the perspective of quality failure costs. Conceptual backgrounds of 
two policies have been discussed and general frameworks have been proposed using flow 
charts. Through the computational experiment, we have demonstrated that the proposed 
framework can be a valuable performance measure for evaluating the contribution of  
the online repair policy to quality improvements. The computational results show that the 
online repair policy can bring substantial cost savings over the offline repair policy under 
different assembly line configurations. Regardless of the length of the assembly line and 
the workers’ skill levels, placing workers ‘randomly’ on an assembly line will result in 
consistently high savings. The results also showed that the savings could be considerable 
when a unit internal failure cost, Cs, was much higher than a unit external failure cost, Ce, 
as was the case under a traditional COQ framework.  

Although our study has focused on cost savings, future research can be expanded  
to include increases in revenues and profits. Considering that the effectiveness of any 
quality improvement programme is determined by its ability to contribute to customer 
satisfaction and profits, it is not unreasonable to measure real profit gains when the 
savings of the online repair policy are achieved. However, because quality assurance  
is considered to be a long-term commitment, and long-run quality improvement  
and profitability are closely related, the overall impact of quality improvement should be 
carefully monitored and assessed over an extended period of time. As quality improves, 
productivity increases and the costs associated with poor quality decline. While 
quantifiable gains in productivity and costs savings can be easily measured, there may be 
some hidden, intangible benefits that are difficult to trace. For example, customers’ 
perception of a company’s products as being of high quality and its competitive  
posture, which may not be readily quantifiable, could result in higher profitability in the 
long run. 

Finally, one thing that is missing in the current study, as well as in the literature on 
COQ, is a consideration of customer value that is directly tied to customer satisfaction 
levels. Current COQ research falls short of recognising ‘invisible loss’, which is not 
taken into consideration for calculating external failure costs. For example, ‘invisible 
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loss’ may occur when dissatisfied customers bad-mouth the poor quality to other 
customers. In other words, costs resulting from tarnished reputation and lost customer 
goodwill should be included in this category. Although these costs are mostly 
nonquantifiable and difficult to trace, reasonable efforts should be made to reflect these 
costs to some extent when measuring the cost of poor quality.  
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