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SIAM J. APPL, MATH. ? 1987 Society for Industrial and Applied Mathematics 
Vol. 47, No. 4, August 1987 005 

POWER SERIES SOLUTION TO A SIMPLE PENDULUM 
WITH OSCILLATING SUPPORT * 

MOHAMMAD B. DADFARt AND JAMES F. GEERt 

Abstract. The problem of determining some of the effects of a small forcing term on a regular 

perturbation solution to a nonlinear oscillation problem is studied via a simple example. In particular, 

we investigate the periodic solution of a simple pendulum with an oscillating support. A power series 

solution is constructed in terms of c-( = )2 L,where w0 and w are the natural and driving frequencies 

respectively, a is the amplitude of the support oscillation, and L is the length of the pendulum. These 

solutions are analyzed for three cases: above resonance (w > wo), below resonance (w < wo), and at 

resonance (w = wo). In each case, the approximate location of the nearest singularities which limit the 

convergence of the power series are obtained by using Pad6 approximants. Using this information, 

a new expansion parameter 6 is introduced, where the radius of convergence of the transformed 

series is greater than the original series. The effects of primary and higher order resonances on the 

convergence of the series solution is noted and discussed. 

Key words. forced nonlinear oscillation, Pad6 approximants, power series, radius of conver- 

gence, regular perturbation expansion, simple pendulum 

AMS (MOS) subject classification. 41 

1. Introduction. We wish to study the use of a straightforward power series 
solution of a forced nonlinear oscillation problem involving a small perturbation pa- 
rameter. The leading terms in many such problems have been calculated and studied 
by several investigators and their results are discussed, along with relevant references, 
in various texts, e.g., [3]. However, to date, relatively little has been established about 
the convergence and hence domain of validity of these series solutions. The purpose of 
this work is to investigate in some detail the power series solution to a simple forced 
nonlinear oscillation problem, with the goal of obtaining some insight into the range 
of validity of the series solution [4]. For the special case of a free nonlinear oscillation, 
this analysis was carried out successfully in [2], using some of the ideas presented in 
[1]. For many such cases, as we shall see below, a large number of terms in a power 
series solution can be calculated using a computer program. From these terms, an 
estimate of the radius of convergence of the series can be obtained [4] and, in most 
cases, the series can be recast into a form which converges for much larger values of 
the perturbation parameter. However, as we shall see, the radius of convergence of 
the series we shall be considering depends critically upon the value of the forcing fre- 

* Received by the editors November 11, 1985; accepted for publication (in revised form) Septem- 
ber 10, 1986. 
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738 MOHAMMAD B. DADFAR AND JAMES F. GEER 

quency. Thus, unlike the free oscillation case where no such frequency was present, the 
range of values of the small parameter for which the first few terms in the perturbation 
solution provide a good approximation to the true solution will vary significantly with 
the value of the forcing frequency. 

The model system we wish to study consists of a simple pendulum (e.g., a rigid 
rod with a mass attached) with its point of suspension moving horizontally according 
to a specified function of time (Fig. 1). The coordinates of the pendulum mass are 

x=f(r)+Lsin0 and y=-Lcos0 

where f(r) is the horizontal coordinate of the support and L is the length of the pen- 
dulum. Then the angle 0(r) which the pendulum makes with the vertical coordinate 
is governed by the equation 

mL# + RLO + mgsin0 = -mf"(r) cosO. (1.1) 

In this equation 0 and 0 are the first and second derivatives with respect to time r, 
while -RLO is a damping force, m is the mass attached to the pendulum and g is the 
accelerate due to gravity. We shall assume that R > 0, i.e., that there is some positive 
damping in our model. 

For simplicity, we shall assume that the horizontal oscillation of the point of 
suspension is described by f(r) = a sin wT, where a is the amplitude and w is the 
frequency of the oscillation. We then define dimensionless variables 

w w2 a 2a Rw R 
t=wr, P = X w2L = -= 2LX r mw0211mw0 (1.2) 

where w0 = V/gi7 is the natural frequency for small oscillations of the pendulum. 

y 

0- f T) x X 

FLmenuw mo 

FI G.1. A simple pendqldum with a smupport which moves horizontally as a function of time. 
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POWER SERIES SOLUTION TO A PENDULUM 739 

Then, in terms of these variables, (1.1) becomes 

,u20 + rO + sin O = e sin t cos O. (1.3) 

This is the equation we wish to study when e is small. In particular, we wish to 
investigate periodic solutions to (1.3) for various values of the parameters ,u, r, and 
c. (We note that, since we are assuming that r > 0, the only periodic solution to 
(1.3) when e = 0 is 0 0 O. Also, we restrict our attention to finding only 2ir periodic 
solutions.) 

2. Power series solution for small c. The solution to equation (1.3) depends upon 
the parameters ,u, r and c. By using a regular perturbation expansion in terms of the 
parameter c, a 2ir-time-periodic solution of (1.3) can be found in the form 

00 

f? = 0 (t, "E) = 
E oi (t)'E Oj (t + 2 7r) = Oj (t) (2. 1) 
j=1 

where the coefficients Oj(t)s will depend on ,u and r. Substitution of (2.1) into (1.3) 
leads to the following sequence of ordinary differential equations for the Oj(t): 

i2O3 + rO, + 3= f3, j = 1,2, ... (2.2) 

with 
j-1 j 

f; = sint EbkOk,j-1-k - Lakik, j-kq, j = 1, 2, ... (2.3) 
k=O k=2 

where 
()k 

a2k =0 and a2k+1 = (2kk+1 )!' 01, 

b2k+1 = 0 and b2k = (2k1)k k = 0,1, . (2.4) 
(2k)!1 

From these equations, each Oj and fj can be evaluated successively. (Note that each 

fj involves only the Ok'S with k < j.) The functions Ok,j appear when (2.1) are used 
to represent sin 0 and cos 0. The recurrence relation for these functions is: 

,0 =1, 0,j=0, j=1, 11 ,j = Oj+1, j?O, 

j+1 

Ok,j = EOk-1,j+l-l 0l, k > 2. (2.5) 
1=1 

To obtain explicit exressions for the periodic solutions for Oj, we represent each 
03 and fj as a finite linear combination of sin nt and cos nt, n = 1, 2, *.. We compute 
the first few 0j and fj explicitly by hand and then use induction to show that 

3 

Oj(t) = Cj + Zaj,n sin nt+ j,n cos nt, j = 1, 2,, 
n=1 

fj (t) = Cj' + , j,n sin nt + j,n COS nt, j = 1,c2,s* (2.6) 
n=1 
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740 MOHAMMAD B. DADFAR AND JAMES F. GEER 

where Cj, C1, a , n i 3 n, and 63,n are certain constants, with aj,n = /3j,n = -Y3,n= 

6,ln = 0, when either j or n is an even number. We also note that the coefficients in 
fj(t) can be expressed in terms of the coefficients in fj(t) as 

_ (1- n2%U2)_yj,n + nr6j,, (1 - n22) -,n- nr'yj,n 

(1-n2,U2)2 + (nr)2 (1-n2,p2)2 + (nr)2 1 2 . 

(2.7) 
The problem of determining the Oj (t) has now been reduced to a purely numerical 

problem. For this purpose, we have constructed a FORTRAN program to carry out the 
required numerical calculations in extended precision arithmetic (to reduce the effects 
of roundoff errors). Due to storage limitations, we could only compute approximately 
50 terms in the series (2.1) and hence we must content ourselves with an approximate 
solution for 0(t) in the form 

50 
0 (t 1,) = 0j (t) cj + 0(651) (2.8) 

j=l 

E=0.4 

= 0.8 

-2 1 

FIG. 2. Phase plane plots for the limit cycle 8(t, e) obtained from (2.8), with ,u = 1.5 and r = 0.075. 
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POWER SERIES SOLUTION TO A PENDULUM 741 

3. Convergence of the power series. We now use the results of ?2 to compute the 
power series solution of a simple pendulum with oscillating support for some particular 
values of the parameters u and r and discuss how well these series can approximate the 
exact solution. We find it convenient to distinguish three cases, corresponding to the 
driving frequency w being greater than, equal to, or less than the natural frequency 
w0. (The case w = wo corresponds to the primary resonance case.) 

3.1. p = w/wo > 1 (Above the resonance). We have studied this case for several 
values of ,u and r, with the particular values of , = 1.5 and r = 0.075 yielding typical 
results. To display and analyze our results, we compute Oj(t), j = 1, 2,.. ,50 for 
0 < t < ir at intervals of At = 2ir/100. It can be shown that the coefficients 9j(t) and 
0j(t) satisfy the relations 

O3(t) = -03(t - ir), 03(t) = -Oj(t - ir) (3.1) 

and hence they need to be evaluated only for 0 < t < 7r. 
In order to study the behavior of the resulting periodic solution and to see for 

what values of the parameter - the series converges, we first plot the limit cycles in 
the phase plane for various values of c. A closed phase plane trajectory corresponds 
to periodic motion. Figure 2 shows the limit cycles for some selected values of e and 
for p = 1.5 and r = 0.075. From these diagrams, we observe that for c < 0.9, the limit 
cycles are closed and smooth, but begin to grow very large for e > 0.9. 

To investigate this behavior more carefully, we have used the ratio and root tests 
on the coefficients Oj(t) for some predetermined values of t. Figure 3 shows some of 
these results. By means of a linear extrapolation, we estimate from the ratio tests 
that the radius of convergence R for the series Oj (t) is approximately 0.80, while from 
the root tests R seems to be approximately 0.83. The results of these tests are very 
consistent for different values of t. In particular, we divided the interval (0, 7r) into 
50 equally spaced subintervals and performed these tests on the series Oj(t) for a 
representative value of t within each of these subintervals. We found no significant 
variation of our estimate of R with t. Thus, it appears that the radius of convergence 
of these series is independent of the value of t. 

Using Pade approximants (see [1], [2] and [4]) on the series Oj(t), we have de- 
termined the locations of the singularities of 0(t, c) near the origin in the complex 
c-plane. The zeros of the numerator and denominator are located near the imaginary 
axis. Based on the results of the Pad6 approximants, it appears that zeros of the 
numerators and denominators are simulating branch point type singularities. (See [1] 
and [2] where a similar pattern of zeros and poles was observed. In addition, we have 
studied the use of Pade approximants with several model functions involving branch 
point singularities. In each case, we used Pade approximants to locate the branch 
points from the Taylor series coefficients and found excellent agreement in all cases.) 
The distance R of the singularity ( or singularities, if more than one) closest to the 
origin determines the radius of convergence of the series [4]. From our results we write 
the singularity closest to the origin in the form Re:it' and estimate 

R_0.81 and ,6-2 (3.2) 2 
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742 MOHAMMAD B. DADFAR AND JAMES F. GEER 

Ioj/oI+1 | lo1u -ill 

0.92 1.35 

.90 1.27 - 

.88 1.19 _ 

0.86 1.11 / 

0.84 1.03 - 

.82 - .95 t , , X 
0 .02 .04 .06 .08 0.1 1// 0 .02 .04 .06 .08 .1 1/j 

t=0 t=0 

.92 1.15 

.90 1.1 

.88 1.05 

.86 1.0 

.84 .95 

.82 X I I .90 , I i 
0 .02 .04 .06 .08 0.1 1/# 0 .02 .04 .06 .08 1 14 

t= 1.508 t= 1.508 

FIG. 3. The rats and root tests on the coefficients 0j(t) of (2.8), ithi = 1.5 and r = 0.075. 

where R is the distance of the singularity from the origin and ,B is the argument of the 
singularity with respect to the positive real axis. We observe that the results from Pade 
approximants agree with those obtained by using the ratio and root tests. Moreover, 
these parameters remain fixed for all 50 different values of t (O < t < ir) which we 
have examined and thus they confirm our previous statement, i.e., parameters R and 
,/ appear to be constant as t changes from 0 to ir. 

3.1.1. Transformation of the series. Using the information about the location 
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POWER SERIES SOLUTION TO A PENDULUM 743 

of the nearest singularities in the complex E-plane, we find that the two nearest sin- 
gularities are located on the imaginary axis as a pair of complex conjugate points 
at 

c = Re?i,. (3.3) 

The transformation formula should map these points to infinity and should at the 
same time bring c = oo to the unit distance from the origin [4]. Therefore, we have 

(R2 - 2Rc cos3 + c2)11/2 

which, using (3.2), becomes 

(R2 + c2)1/2( 

With this transformation formula, the origin remains fixed and with (3.2) the following 
relations are satisfied: 

6(oo) = 1 and 6(Re9) = 6(Re-68) = oo. (3.5) 

We note that a similar transformation was used successfully in [1] and [21 when branch 
point singularities were involved. In particular, we also note that (3.5) maps points 
close to (3.3) far from the origin and hence outside of the unit circle in the transformed 
plane. 

Using (3.4), we convert the series (2.1) in the complex c-plane to a new series in 
the 6-plane. In the complex 6-plane, the solution is approximated by 

50 

G(t,6 ) = E j (t)6 + 0(651) (3.6) 
j=l 

where 9j (t)s are new coefficients which can be determined from the 0j (t) in a straight- 
forward manner. We expect that this series will converge for 6 < 1 or its equivalent, 
c < oo. Using Pad6 approximants on the new series, the radius of convergence R6 in 
the complex 6-plane is 

Rb _ 1.00. (3.7) 

This indicates that our estimates for R and /5 are reasonably accurate, and that the 
definition (3.4) is the proper transformation formula to use. Roundoff errors have not 
been serious in our computation. 

The new series (3.6) can be used to approximate the periodic solution for all 
values of c. Figure 4 shows the limit cycles for different values of c. As e increases, 
the limit cycles become larger and approach a unique closed curve. We observe that 
as c -e oQ, the radius of the limit cycles approaches a fixed value of about 1.38 and 
thereafter remains constant. This indicates that the periodic motion of the pendulum 
does not depend upon the parameter e for significantly large values of c. 

We have investigated this series solution for other values of ,u and r (above res- 
onance). Table 1 shows the results. As ,u increases, the radius of convergence of the 
series increases. This appears to be true for , up to about 10.0, which is above the 
first subharmonic resonance of our system. We shall discuss this matter further in ?4. 
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744 MOHAMMAD B. DADFAR AND JAMES F. GEER 

0(t) 

f 0.0 

2 _/ f=0.25 

&dr =0.075.100 

-2 1 0 2 0t 

-2 _~~~~~~~~~~. 

and r = 0.075.~ ~ ~ ~ ~~~~~~~~~~~~~1. 

3.2. ,u < 1 (Below the resonance). We have performed a similar analysis for 
values of al < 1, for which the case of al = 0.5 and r = 0.025 is a typical case. The 
radius of convergence of the power series is about 1. In this case, the transformed 
series obtained in terms of the variable 

(R4 - 2R2E2 cos 2f + E4)1/4 (3.8) 

with R = 1.07 and f= 1.47 has a radius of convergence of about 2.9. 
Since we do not have accurate estimates for R and f, the transformed series does 

not approximate the solution for large values of c. The radius of convergence R of the 
series solution for other values of ,u are shown in Table 1 and are illustrated in Fig. 7. 
The relative minima which appear in the figure for ,u < 1 will be discussed in ?4. 

3.3. ,u = 1 (Resonance). The case ,u = w/w0 = 1, for which the free and 
forced oscillations have the same frequencies, corresponds to primary resonance of our 
system. In this section we investigate the series solution to the pendulum for ,u = 1 
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POWER SERIES SOLUTION TO A PENDULUM 745 

TABLE 1 

The parameters R andr , of the nearest gingulariti in the first 
quadrant of the complex E-plane uwing /12/12] PadA approximants. 

,u r R la 
0.100 0.0050 0.80 1.48 
0.180 0.0090 0.777 1.466 
0.190 0.0095 0.619 1.366 
0.200 0.0100 0.45 0.80 
0.210 0.0105 0.697 0.260 
0.220 0.0110 0.983 0.163 
0.250 0.0125 0.95 1.46 

0.300 0.0150 0.69 1.37 
0.310 0.0155 0.607 1.332 
0.320 0.0160 0.505 1.248 
0.330 0.0165 0.401 0.975 
0.333 0.0166 0.391 0.824 
0.336 0.0168 0.404 0.671 
0.340 0.0170 0.448 0.517 
0.350 0.0175 0.593 0.352 

0.400 0.0200 1.10 1.46 
0.500 0.0250 1.07 1.47 
0.600 0.0300 1.07 1.28 
0.700 0.0350 0.96 0.98 
0.800 0.0400 0.60 0.00 
0.900 0.0450 - - * 

1.000 0.0500 0.02 0.04 
1.250 0.0625 0.318 ir/2 
1.500 0.0750 0.81 ir/2 
1.750 0.0875 1.414 ir/2 

2.000 0.1000 2.119 ir/2 
2.250 0.1125 2.923 ir/2 
2.500 0.1250 3.824 ir/2 
2.750 0.1375 4.820 ir/2 
2.850 0.1425 5.246 ir/2 
2.900 0.1450 5.464 ir/2 

3.000 0.1500 5.913 ir/2 
3.500 0.1750 8.384 ir/2 
4.000 0.2000 11.237 ir/2 
4.500 0.2250 14.471 ir/2 
5.000 0.2500 18.086 ir/2 
5.500 0.2750 22.110 ir/2 
6.000 0.3000 26.49 ir/2 
6.500 0.3250 31.31 ir/2 
7.000 0.3500 36.46 ir/2 

10.000 0.5000 75.79 ir/2 

* For all values of t except t = 12 * 27r/100, the zeros of 
numerator and denominator cancel each other. 
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746 MOHAMMAD B. DADFAR AND JAMES F. GEER 

and illustrate our results for the case when r = 0.05. In order to avoid some numerical 
difficulties, we introduce a new parameter E' = E/r and rewrite equation (1.3) as 

20 + rO + sin 0 = c'sin t (r cos 0). (3.9) 

Using [12/12] Pade approximants, we can estimate the radius of convergence of 
the series (2.1). The parameters R and d of the singularities in the complex {'-plane 
nearest the origin remain constant as t changes from 0 to ir. We find R,' - 0.40, 
which corresponds to R, 0.02, and 0.79. The limit cycles (Fig. 5) are circles 
with finite radii for E' < 0.45 and then start to grow indefinitely. As c' increases, the 
limit cycles deviate from circles and for c' > 0.50, the series diverges rapidly. 

Using RE, = 0.40 and 3 = 0.79 in transformation (3.8), we obtain the revised 
series in the complex 6-plane. The radius of convergence of the new series from Pade 
approximants is estimated to be R6 _ 1.00. Figure 6 represents some limit cycles for 
different values of E'. The limit cycles are circles in which their radii vary as a function 
of c'. As ' increases, these circles grow and, for large values of c' (c' > 1.0), approach 

0(t)1'Et 

4 _ f'= ~~~~~0.45 

\ -2 _ /4 

FIG. 5. Phase plane trajectores for the limit cycle 9(t, e) computed from the series (2.8) with Ht = 1.0 
and r = 0.05. 
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POWER SERIES SOLUTION TO A PENDULUM 747 

a unique circle. The circles indicate that the periodic motion of the pendulum is 
well approximated by simple harmonic motion. Thus, our method can be used to 
approximate the solution for all values of the parameter c. 

4. Effects of secondary resonances and concluding remarks. For a simple pendu- 
lum with oscillating support, we have found an approximate periodic solution in the 
form of a convergent power series in the parameter c. We have done this for three 
different cases, corresponding to above, below and at the primary resonance. 

In the three cases studied, the power series solution to this problem is limited to 
finite values of c. In order to obtain an approximate solution for a larger range of values 
of c, we have introduced a new parameter 6 as a function of c and have transformed 
the original series into a new series in terms of the new expansion parameter 6. In 
most cases, the transformed series can be used to approximate the solution of the 
pendulum for all real values of c. 

Using Pade approximants, we have computed the parameters R and d of the 

i 0(t) ?2 1.0 

H = 1.0 and r = 0.05. 
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Ri 

4 

3 

2 

0 1 2 3 4 5 A 

1.5 

1.0 

0.5 

0 1 2 3 4 5 j 

FIG. 7. The pamameter89 R and #3 of the nearest singularitie89 in the upper half complex E-plane of the 
/12/12] PadA approximants to the series (2.8) am a function of At = 

w2L~~~~~~~~~~W 
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POWER SERIES SOLUTION TO A PENDULUM 749 

singularities in the complex E-plane closest to the origin. The results are shown in Table 
1 and Fig. 7. (The results we have shown here are representative of several different 
combinations of parameter values we have investigated. Qualitatively, the other results 
are not significantly different from those we have shown.) It appears that in the 
neighborhood of the primary resonance (p = 1), the power series solution is valid only 
for E less than about 0.1. Also, from Fig. 7, it appears that the radius of convergence 
of our series has a local minimum at the primary and higher order (superharmonic) 
resonances [3]. In particular, we notice that for each of the superharmonic resonances 
of w = Awo (Co = 3 ) and w = 5w0 (p.= ), there exists a local minimum for the 
radius of convergence of the power series. Presumably, this will also be true for all 
higher order resonances. In each case, however, the values of R and ,B appear to be 
independent of t, which is in contrast to the case of the free van der Pol limit cycle 
[2]. For this case, it was found that the distance of the singularity closest to the origin 
varied with t for 0 < t < 2ir and gave rise to a radius of convergence of the series 
which varied with t. 

For values of ,u > 1, the radius of convergence of our series increases monotonically 
with u (see Table 1). In particular, the subharmonic resonances (e.g. w = 3w, or 

= 3) do not seem to have the same effects on R as the superharmonic resonances. 
Finally to investigate the behavior of the maximum angular displacement (am- 

max 0 

1.8 

U= 1.50 
1.6 - 

1.4 - 

1.2 / 

1.0 _ / / u0.50 
0.8 k,/ /A 1.0 

0.8 / 

0.6 / ?- 

0.4 / / 
1' 

0.2 

Y I 1. I 1 l 1 . I I I I I I alL 
0 1 2 3 4 5 6 7 8 9 10 

FIG. 8. The maximum angular displacement as a function of a, for u = 0.5, = 1.0 and , = 1.5. 
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plitude of the periodic motion) as a function of c (or more explicitly as a function of 
aIL), we have plotted in Fig. 8 the maximum amplitude of the motion vs. a/L for 
three representative cases. For ,u = 1 and ,u = 1.5, we observe that the angular am- 
plitude rapidly approaches a limit and thereafter remains essentially constant as a/L 
increases. For ,u = 0.5, since the transformed series in the complex 6-plane does not 
converge for large values of c, we are not able to predict the behavior of the amplitude 
as a/L increases. Presumably it approaches a finite limit for large values of a/L. 
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